a2 United States Patent

US008345873B2

(10) Patent No.: US 8,345,873 B2

Lablans 45) Date of Patent: Jan. 1, 2013
(54) METHODS AND SYSTEMS FOR N-STATE (56) References Cited
SIGNAL PROCESSING WITH BINARY
DEVICES U.S. PATENT DOCUMENTS
4,304,962 A 12/1981 Fracassi et al.
. : : 4,663,501 A 5/1987 Pospischil
(75) Inventor: Peter Lablans, Morris Township, NJ 4669118 A 5/1987 Pospischil
Us) 5412665 A 5/1995 Gruodis
5,745,522 A 4/1998 Heegard
: . : . : 5,844,989 A 12/1998 Nishida et al.
(73) Assignee: Ternarylogic LL.C, Morris Township, 5966447 A 10/1999 Nishida et al
NJ(US) 6.038,577 A 3/2000 Burshtein
6,122,376 A 9/2000 Rao]
(*) Notice: Subject to any disclaimer, the term of this 6,188,714 B 2/2001 .Yamaguc}“
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 1044 days.
OTHER PUBLICATIONS
(21) Appl. No.: 12/273,262 http://www-inst.eecs berkeley.edu/~cs150/sp03/handouts/15/
LectureA/lec27-6up.pdf “Fibonacci and Galois Representations of
- Feedback with Carry Shift Registers”—Mark Goresky and Andrew
(22) Filed: Nov. 18, 2008 Klapper, PSU, Dec. 2004.*
(65) Prior Publication Data (Continued)
US 2009/0092250 Al Apr. 9, 2009 Primary Examiner — Krista Zele
Assistant Examiner — Randy Scott
Related U.S. Application Data (74) Attorney, Agent, or Firm — Diehl Servilla LLC
(63) Continuation-in-part of application No. 11/696,261, (57 ABSTRACT
filed on Apr. 4, 2007, now Pat. No. 7,487,194, and a Linear Feedback Shift Registers (LFSRs) based 27 state with
continuation-in-part of application No. 12/264,728, p>2 or p=2 scramblers, descramblers, sequence generators
ﬁled. on .NO.V~ 4, 2008, how. abandoned, and a and sequence detectors in binary implementation are pro-
continuation-in-part of application No. 12/137,945, vided. An LFSR may apply devices implementing a binary
filed on Jun. 12, 2008. XOR or EQUIVALENT function, a binary shift register and
binary inverters and binary state generator, wherein at least an
(60) Provisional application No. 61/078,606, filed on Jul. 7, output of one shift register element in a first LFSR is con-
2008. nected to a device implementing a reversible binary logic
function is a second LFSR. They may also apply 27 state
(51) Int.Cl inverters using binary combinational logic are applied.
H0;$ F 1 5/16 (2006.01) Memory based binary 27 state inverters are also applied. Non-
i ’))) LFSR based n-state scramblers and descramblers in binary
(52) US.CL 380/255f 380/210f 380/21 lf 380/212f logic are also provided. A method for simple correlation
380/268; 380/260; 713/180; 713/189’.713/165’ calculation is provided. Communication systems and data
T14/774; 7147777 storage systems applying the provided LFSR devices are also
(58) Field of Classification Search 380/28, disclosed.

380/255, 287, 210, 268
See application file for complete search history.

sig_in

20 Claims, 39 Drawing Sheets

)2

srl

el

sr2 sr3

v sig_line

US 8,345,873 B2
Page 2

6,282,230
6,295,301
6,430,246
6,463,448
6,510,228
6,665,692
6,785,389
6,788,668
6,933,862
6,947,468
7,046,803
7,082,449
7,227,949
7,383,295
2003/0063677
2004/0090907
2004/0111613
2007/0047623
2007/0168406
2007/0283231
2007/0290901

U.S. PATENT DOCUMENTS

Bl
Bl
Bl
Bl
B2
Bl
Bl
Bl
B2
B2
B2
B2
B2
B2 *
Al
Al
Al*
Al
Al
Al*
Al*

8/2001
9/2001
8/2002
10/2002
1/2003
12/2003
8/2004
9/2004
8/2005
9/2005
5/2006
7/2006
6/2007
6/2008
4/2003
5/2004
6/2004
3/2007
7/2007
12/2007
12/2007

Brown et al.
Asano

Ozluturk

Mo

Rose

Nieminen

Sella et al.

Shah et al.

Neff

Medlock

Lee et al.
Rarick

Heegard et al.
Souvignier et al.
Mix et al.

An

Shen-Orr et al.
Eun et al.
Meyer

Hoyle 714/781
Hekstraetal. ... 341/95

........... 708/252

............. 713/165

OTHER PUBLICATIONS

http://www.math.ias.edu/~goresky/pdf/Fibjour.pdf “Fibonacci and
Galois Representations of Feedback with Carry Shift Registers”™—
Mark Goresky and Andrew Klapper, IEEE Transactions on Informa-
tion Theory, vol. 48, No. 11, Nov. 2002.*

Arazi, Benjamin “Self Synchronizing Digital Scramblers”, IEEE
Transactions on Communications,vol. Com-25,No. 12, (Dec. 1977),
1505-1507 pp.

Sklar, Bernard “Reed-Solomon Codes”, Downloaded from URL
http:/iwww, facweb.iitkgp.ernet.in/~pallab/mob__com/art__sklar7__
reed-solomon.pdf, (unknown), 1-33 pp.

Clarke, C.K.P. “Reed-Solomon Error Correction”, BBC R&D White
Paper, (Jul. 2002), 47 pp.

Rogers, Derek P., “Non-Binary Spread-Spectrum Multiple-Access
Communications”, Thesis for the degree of Doctor of Philosophy,
The University of Adelaide, Faculty of Engineering, Department of
Electrical and FElectronic Engineering, Adelaide, Australia, (Mar.
1995), 213 pages.

* cited by examiner

U.S. Patent Jan. 1,2013 Sheet 1 of 39 US 8,345,873 B2

sig_in
sc?) @ @
srl sr2 sr3
sig_line
FIG. 1
sig_line
A srl sr2 sr3
o532 ()
sig_out FIG. 2
sig_in 300
sc3
303
o
srl @ sr2 @ sr3
sig_line y \ \
302
301 FIG. 3
sig_line
t G G (] e (]
ds3)

sig_out FIG. 4

U.S. Patent

Jan. 1, 2013 Sheet 2 of 39 US 8,345,873 B2
sig in
)
inl in2 in3
srl sr2 sr3
sig_line v
FIG. 5
PRIOR ART
sig_line
A srl sr2 sr3
Lt
sig_out FIG. 6
PRIOR ART
sig_in
SC)
inl in2 in3
i srl sr2 sr3
sig_line FIG. 7
sig_line
‘ srl sr2 sr3
ds
sig_out

FIG. 8

US 8,345,873 B2

Sheet 3 of 39

Jan. 1, 2013

U.S. Patent

sig_line

l sig_in
Sa

inl

in2

n3

sig_line

N

FI1G. 9

| inl

(0

\Z/

/513

| in2
(1
N

| in2 in3
BT
_/

| inl

an

NN N

n3

| inl

| in2
FO 1 (0
N

N
in2 | in3
[0 /(5

N

N/

| inl

(1

N

N

n3

| inl

| in2
(1 1y
_/

Z/

sig_in

\Z/

FIG. 10

U.S. Patent Jan. 1,2013 Sheet 4 of 39 US 8,345,873 B2
sig_in
() ()
+ +
/ ./ N
srl sr2 sr3
v sig_line
FIG. 11
sig in
T e
) @
srl sr2 sr3
\ AT
sig_line
FIG. 12
sig in
SMi | o
srl sr2 sr3
¥ sig_line FIG. 13
sig_line
srl sr2 #q} sr3
T
e ©
sig_out

FIG. 14

U.S. Patent Jan. 1,2013 Sheet 5 of 39 US 8,345,873 B2

sig_line
L
srl sr2 sr3
inl n2 n3
@m}f\
sig_out FIG. 15
. l sig_line
mnl
\' N i
i / o s1g_out
in2 »| dmi >—>
in3 /v\v/
FIG. 16

4‘ stl ‘4‘ sr2 } } sr3 } srd —<gc\lj

v sig lineG

FIG. 17

(ol
scl

N
4‘ sr2 } } sr3 } sr4 sr5
v sig lineF

FIG. 18

U.S. Patent Jan. 1,2013 Sheet 6 of 39 US 8,345,873 B2

240

200 - -

150 -

100 -

_"“jl:l 1 1 1 1 1 1 1 1 1
a 50 100 150 200 250 300 350 400 450 500

FIG. 19

40 —

s0 i
-60

7o

-80

80 -

-100

-110

aml ' ' P

7130 1 | 1 1 1 1 1 1 |
] &0 100 150 200 250 300 350 400 450 500

FIG. 20

U.S. Patent Jan. 1,2013 Sheet 7 of 39 US 8,345,873 B2

srl ' sr2 sr3 srd st

io lineF
v Sig_tme FIG. 21

250
2001
180
100 -
a0
(N
A0 F
_1DD 1 1 1 1 1 1 1 1 1
0 a0 100 150 200 250 300 350 400 480 500
FIG. 22
srl sr2 sr3
v sig line

FIG. 23

U.S. Patent Jan. 1,2013 Sheet 8 of 39 US 8,345,873 B2

srl @ ST. U ST

v sig line FIG. 24
srl sr2 s13 ! sr4 srd ! sro
v sig_lincF
FIG. 25

@ sr2 “‘ sr3 Hsc2T sr4 I @) I sr5 I { sr6 I

v sig_lineG
FIG. 26

U.S. Patent Jan. 1,2013 Sheet 9 of 39 US 8,345,873 B2

x = [x1 x2 x3]
Y srl sr2 J sr3
(det) (sel) @
I y=I[yly2y3]
FIG. 27
srl @ sr2 @ sr3
v
FIG. 28
x=[x1 x2 x3]
srl @ sr2 @ sr3

det)

FIG. 29
y=lyl y2 y3]

U.S. Patent Jan. 1,2013 Sheet 10 of 39 US 8,345,873 B2

= = N
_/ _/
2)
— srl sr2 s1r3 srd sr5
vy sig_lineF
FIG. 30
3101
@ ;
— srl s12 sr3 std \Qt// st5
v sig lineG
FIG. 31
x=[x1 x2 x3 x4 x35]
srl sr2 srd /i;\\ sr5

3201

y=[yl y2 y3 y4y5]

FIG. 32

U.S. Patent Jan. 1,2013 Sheet 11 of 39 US 8,345,873 B2
i 3300
A\ 4
3301 3308
E—
3302 3303
3304 3305
3306
i 3307
FIG. 33

3401

()

srl @ sr2 \D sr3
\ / FIG. 34
x=[x1 x2 x3]

3501 srl O sr2 O sr3

~_ \
3502

.

+
3503,
y=lyl y2 y3]

FIG. 35

U.S. Patent Jan. 1,2013 Sheet 12 of 39 US 8,345,873 B2

shift register shift register

srl | sr2 | si3 srl sr2 | si3
1 3 0 1 3 2
0 1 3 3 3 1
1 3 2 2 2 2
3 3 1 3 0 0
2 2 2 0 3 0
3 0 0 0 0 3
0 3 0 1 3 3
0 0 3 1 2 0
1 3 3 0 1 2
1 2 0 3 2 3
0 1 2 1 0 1
3 2 3 2 0 1
1 0 1 2 3 1
2 0 1 2 3 2
2 3 1 3 0 1
2 3 2 2 2 1

FIG. 36
FI1G. 37
3801 3802 3803

srl

@

s12 Q sr3

v FIG. 38

U.S. Patent

FIG. 40

Jan. 1, 2013 Sheet 13 of 39 US 8,345,873 B2

shift register

srl | sr2 | sr3
0 1 0
0 0 1
1 1 1
3 0 0
1 3 0
21 1] 3
o | 1] 2
2 2 3
0 1 1
1 1 0
2 1 1
2 3 0
3 2 3
2 0 1
2 3 1
21 3| 2

FIG. 39
srl sr2 sr3 O sr4 S5

U.S. Patent Jan. 1,2013 Sheet 14 of 39 US 8,345,873 B2
x=[x1 x2 x3 x4 x35]
i srl sr2 sr3 (+) sr4 S
f 4001
)
y=lyl y2y3 y4y3]
v
FIG. 41
shift register
stl | sr2 | sr3 | sr4 | sr5
0 1 0 0 1
1 0 1 1 0
0 1 0 1 1
1 0 1 1 1
1 1 0 0 1
1 1 1 1 0
0 1 1 1 1
1 0 1 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 1 1
1 1 0 1 1
1 1 1 1 1
1 1 1 0 1

FIG. 42

U.S. Patent

FIG. 44

Jan. 1, 2013 Sheet 15 of 39 US 8,345,873 B2
srl sr2 sr3) sr4 srd
FIG. 43
shift register
srl | sr2 | sr3 | sr4 | sr5
1 1 1 1 1
1 1 1 0 1
0 1 1 0 0
1 0 1 1 0
1 1 0 1 1
0 1 1 1 1
0 0 1 0 1
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 0 1
0 0 0 1 0
1 0 0 0 1
1 1 0 1 0

U.S. Patent Jan. 1,2013 Sheet 16 of 39 US 8,345,873 B2

4505

—_

sig_line

4700

A

v sig line FIG. 47

U.S. Patent Jan. 1,2013 Sheet 17 of 39 US 8,345,873 B2

sig_line >
e . sig_out
4802 v_< srl H sr2 —{(scl dsd }
—
(‘3‘>/4801 ~
v 4803
> -~
FIG. 48 4800’
‘—

srl 2 W sr4 sr5 —
L o2 (e e (G Dt
v sig_line -
FIG. 49
sig_line

‘H srl H s12

5100

srl }—{ sr2

sig_line >

FIG. 51

U.S. Patent Jan. 1,2013 Sheet 18 of 39 US 8,345,873 B2

sig_line
,Asig_out
VL{ ol ‘4{ 512 ‘% + m (#H
(5200
FIG.52
-
(ii —'5300 (B0
—{ srl }—‘ sr2 }H P, %75 ;é %v sig_in
v sig_line >
FIG. 53
sig_line
. t
L b o Da 41 &
(5400 (T 5401
.,

FIG. 54

U.S. Patent Jan. 1,2013 Sheet 19 of 39 US 8,345,873 B2

-
%/5501 Tsso2 (5503 L>/goo
et s | s e B e,
v sig_line >
FIG. 55
-

o b (o O e e

—sig in

sig line >
v g

FIG. 56

+—

1. 1 1

15700 [sjo1 L 5702 (15703 5704
A= EHOH =

sig >

FIG. 57

U.S. Patent Jan. 1,2013 Sheet 20 of 39 US 8,345,873 B2

5803

5802 5804
5808
5809 5801 /
1 /
] % "
I T T&
L L (12

[N—

vvvyy \\ \\ \\
580

5807
5810 > FIG.58 o806

5904
5902 5901
¥5903 —~
W
5908 5905 50906 5907
FIG. 59
v . .
ﬂJ%%u hw[#;4‘

——

| 16001

vy FIG. 60

U.S. Patent Jan. 1,2013 Sheet 21 of 39 US 8,345,873 B2

S /\
J
6101
v
FIG. 61
6203
6211 6202 6208
N 6201 6200
\ — [] L
B L—‘rl A] A
y A

6212—

vy \ \ 6206 \ 6207

6205
6210 FIG. 62
6302
= . 6300
— = — &
LT
A
6301
6303 <£) o |
i v

FIG. 63

U.S. Patent Jan. 1,2013 Sheet 22 of 39 US 8,345,873 B2

6302
= - 6400
K Y
'y 'y
6301
6303 %)
6404
A 4
FIG. 64
6503 6502 6501
6500

6504
6506) 6507

'6505 FIG. 65

U.S. Patent Jan. 1,2013 Sheet 23 of 39 US 8,345,873 B2

6502 6501

)
-

6603
pAY 6600

6506) 6507

6611 6612

4
6605
FIG. 66

EEI:I 1 1 1 1 1

240

220

200

180

160

140

120

100

80

B0

| | 1 1 1
1 100 200 300 400 500 500

FIG. 67

U.S. Patent

70

B0

50

40

30

20

300

280

200

150

100

&0

Jan. 1, 2013

Sheet 24 of 39

US 8,345,873 B2

1
100

1 1 |
200 300 400

FIG. 68

1
a0

kOO

|
100

| | |
200 300 400

FIG. 69

|
500

GO0

U.S. Patent Jan. 1,2013 Sheet 25 of 39 US 8,345,873 B2

7002 7009 2000
D]
I A] 3
'y &
7010 —— | [1]7001
7005 (7004 7003 O
7011 — 7006
vy FIG. 70
7002 7101
© iy 7000
I —
'y
7010 ——.
7005 () 7004 7003
7011 —

vy FIG. 71

U.S. Patent

B5

B0

55

50

45

40

35

Jan. 1, 2013

Sheet 26 of 39

US 8,345,873 B2

30
a

B4

G0

25

a0

45

40

35

30

25

20

1 1
100 120

140

L L
80 oo 120

140

U.S. Patent Jan. 1,2013 Sheet 27 of 39 US 8,345,873 B2

7400 7400

7401 7401

7402 7402
7403 7403| [7504
v —— 7505

v

7404 7506

l7405 l 7507
FIG. 74 FIG. 75
7601
7601
seqn
seqn v
v
sign scramm - > dsl E——
— ¥ scl ' ’ scramn sign

FIG. 76 FI1G. 77

U.S. Patent Jan. 1,2013 Sheet 28 of 39 US 8,345,873 B2

7801‘ 7802
7800
7803 Jij
M| > 7805
7804 ;Y
’@——> 7806
7807 ogne
FIG. 78
7902
(/
— —
4» 4»
—> > 7903
7901 — |
7900 —
—p
—
L —p

FIG. 79

U.S. Patent Jan. 1,2013 Sheet 29 of 39 US 8,345,873 B2

8002
8004 | -
— SN
) :
D — 8003
8001 — 2000 | >
4’. 4’
i —>
—>
\
8005 FIG. 80
8107 8108
8120
\4
8101 8105 8109 8111
> —>
8102 8106 8100 8110 | 8112
8103 8104
FIG. 81
8207 8208
8220
v
8201 8211
> —»
8202 R | 8212
8203 8204

FIG. 82

U.S. Patent Jan. 1,2013 Sheet 30 of 39 US 8,345,873 B2

8301 8302 8303 8304

‘ 8300
8305 l >
> [% > 8307
N > 8308
8306 \
\ \ 8310
8309 FIG. 83
8401 8402 8303 8304
l 8400
o
8405 gl >
! > [> 8407
1 »
> 8408
8406 -
FIG. 84
8502
8503 9501 8504
/// - 8500
1 1
[ry x
]]
[* A
'y x
N
8505
L] L]
8506 8507 8508
vV VY
8509

FIG. 85

U.S. Patent Jan. 1,2013 Sheet 31 of 39 US 8,345,873 B2
8603
8602
// 8601
8600
]
1
v v
Sy v
v L v —
]
* s
8606 8607 8608
v vy 8604
8609
FIG. 86
8700
‘ D
8701
8702 ())
v
—— =
L] v v
I~]
v vV

FIG. 87

U.S. Patent Jan. 1,2013 Sheet 32 of 39 US 8,345,873 B2

3802

[Je——

8800
ssor ||| 4 y
|
L L [
‘L \ A 4
8809 FIG. 88
3902
I A
8900
LJ‘ 1 ||
| — A _ 'y
L '« y
[] L]
vy x
L L] [
FIG. 89

8909

U.S. Patent Jan. 1,2013 Sheet 33 of 39 US 8,345,873 B2

9001
l 9004
X _ _ 9000
v - g - ¥
[0 N
9003
®
» o
AN
\ L
v 9005 9006

9002 FIG. 90
9102
A
9104
L _ _ 9100
sl 'y 'y
] N n
- = n
9103 1]
* ®
? |
9105
2106 £ 91

9101

U.S. Patent Jan. 1,2013 Sheet 34 of 39 US 8,345,873 B2
9202
A
9200
= 1]
s S - n Ty
] &
9204 — =] - T
|
T FIG. 92
9201
9301 9304 9306
lp | / 9300
= 7
o3 '
[
1
\2 v
) - A
?) J L I A
I l v 9305 9303

FIG. 93

U.S. Patent Jan. 1,2013 Sheet 35 of 39 US 8,345,873 B2

9402 9404

A 9406
1 T 9400
‘ 7
®
o
1
9405
. \ v
I;r' =y 2 L
L v L Y L]
I, — —
/ 9506
9500 ®
1
A 4 A4
? -y v 3
? £7 [. ; L |_;
I l v 9505 9504 9501

U.S. Patent Jan. 1,2013 Sheet 36 of 39 US 8,345,873 B2

/ 9606
9600 .
1
) 4 v
¥ T v %
K \ 2 L . 2 |
i — —{ | ®
- \ 4 ¢ ¢
9605 2604 9602
9700
1
9703
¢ ﬁ L 2 L 2 EP [AE
T 2 L I J L q
S ¥
1 l v 9701
FIG. 97

U.S. Patent Jan. 1,2013 Sheet 37 of 39 US 8,345,873 B2

9800
]
9803
. A v .
L x v v
- e v L v f.
L L
v l v
9802
9903
//// 9902
// ////// 9901
7 o -
/ []]
‘ 'y 'y
1
““.‘r9910
9909] L
9904 9905 ' 9907
v

9906
FIG. 99

U.S. Patent Jan. 1,2013 Sheet 38 of 39 US 8,345,873 B2

10003 / /10002

) 10009
/10001 \'
{/ // //
/ / '
|
1
10010 v A4
Ny @ Ly] — J.
T s
T 10004 10005
Y 10006 FIG. 100 10007

) [e ()

v 10101 FIG. 101

;

x=[x1 x2 x3 x4 x5]

e e e e e

10201

o

10202 | y=[y1 y2 y3 y4 y5]
v FIG. 102

U.S. Patent Jan. 1,2013 Sheet 39 of 39 US 8,345,873 B2

10301ly=[yl y2y3 y4y5]
7N
(+)
NS

[

o o (-
10302 o

v x=[x1 x2 x3 x4 x5]

SN
s s
—

FIG. 103
10412 10411
10405 | 10406
\/ \/
10401 10402 10403 10404 10407 10408 10409 10410
R B B B o B o B

FIG. 104

10501 10502 10503 10504

—_ ~ 10506
> > > = ()
10505 —
FIG. 105
10601
10602 10603 10604 10605 10606
<_ /) E) —» > —

FIG. 106

US 8,345,873 B2

1
METHODS AND SYSTEMS FOR N-STATE
SIGNAL PROCESSING WITH BINARY
DEVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of U.S. Non-
Provisional patent application Ser. No. 11/696,261, filed on
Apr. 4, 2007 now U.S. Pat. No. 7,487,194, which is incorpo-
rated herein by reference in its entirety. This application is
also a continuation-in-part of U.S. Non-Provisional patent
application Ser. No. 12/264,728, filed on Nov. 4, 2008 now
abandoned, which is incorporated herein by reference in its
entirety. This application is also a continuation-in-part of U.S.
Non-Provisional patent application Ser. No. 12/137,945, filed
on Jun. 12, 2008, which is incorporated herein by reference in
its entirety. This application claims the benefit of U.S. Provi-
sional Application No. 61/078,606, filed Jul. 7, 2008, which is
incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

The present invention relates to n-valued Linear Feedback
Shift Registers (LFSRs). More specifically it relates to
equivalency of n-valued LFSRs in Fibonacci and Galois con-
figuration, implemented in binary circuitry.

Data scramblers, descramblers, sequence generators,
detectors and coders based on shift registers with feedback
are important components in data communications and data
transfer in applications such as magnetic and optical data
storage. It is known that linear feedback shift registers (LF-
SRs) can be realized in Fibonacci and Galois configurations.
LFSRs in Fibonacci configuration are easier to analyze.
Descramblers in Fibonacci are self-synchronizing. No prior
art was found with sequence descramblers in a first Galois
configuration. However descramblers in a first Galois con-
figuration herein provided as an aspect of the present inven-
tion are not self-synchronizing. LFSRs in Galois configura-
tion require fewer clock cycles for execution than Fibonacci
equivalents.

LFSRs are also of interest in n-valued applications with
n>2. It is sometimes advantageous to design an LFSR in
Fibonacci configuration, while implementing it in Galois
configuration. It may also be advantageous to implement an
n-valued sequence generator in Galois configuration, because
it is fast. One may want also to create a matching self syn-
chronizing detector for such a generator, which may be in
Fibonacci configuration. The rules for creating correspond-
ing n-valued Fibonacci equivalent LFSRs in descramblers to
Galois scramblers were not known prior to the present inven-
tion.

This invention relates to the processing of multi-valued or
n-state (non-binary) signals with n>2. More in particular it
relates to the scrambling, descrambling, generation and the
detection of multi-valued (non-binary) or n-state signals rep-
resenting sequences of multi-valued (non-binary) or n-state
symbols such as n-valued pseudo-noise sequences. Multi-
valued signals, also referred to as n-valued or n-state signals,
can assume one of n states, wherein n is greater than or equal
to three.

The n-state scramblers and descramblers are implemented
by using a Linear Feedback Shift Register or LFSR. Well
known is the binary LFSR based scrambler and the corre-
sponding self synchronizing [.FSR based binary descrambler.

Its potential application is in telecommunication systems,
control systems and other applications. Specific examples of

20

25

30

35

40

45

50

55

60

65

2

utility where the invention can be used include spread-spec-
trum technologies, signal scrambling, CDMA, line-coding
including error control, error detection and error control cod-
ing and scrambling application in video, voice and data com-
munication and other signal distribution.

LFSR based scramblers are used to change the appearance
of a digital signal in such a way that during transmission the
signal is different from the original signal. The original signal
can be recovered from the scrambled signal at the receiving
end by a descrambler. Most commonly in today’s telecom-
munications, the scramblers relate to binary signals.

Scrambling of a binary signal can be achieved by combin-
ing the binary signal to be scrambled with a second known
binary signal through a digital circuit that has the character-
istics of a reversible function. A known signal is commonly
known as a key and may for instance be derived from a prime
number, which may be a large prime number.

In the case of scrambling with an LFSR scrambler there is
no real known signal. A second signal that is used for scram-
bling comes from the LFSR. Such a signal is essentially
unknown. However, the nature of the LFSR allows the signal
from the LFSR to be reconstructed at the receiving side.
Though the signal from the LFSR is still unknown, it can be
reconstructed and thus can be applied to recover the original
signal from a scrambled signal.

The inventor has provided the rule for an n-valued or
n-state LFSR based descrambler corresponding to an n-val-
ued LFSR based scrambler. This has been disclosed in U.S.
patent application Ser. No. 10/935,960 filed Sep. 8, 2004
entitled Ternary and multi-valued digital signal scramblers,
descramblers and sequence generators and in U.S. patent
application Ser. No. 10/912,954 filed Aug. 6, 2004 entitled
Ternary and higher multi-valued digital scramblers/descram-
blers, which are both incorporated herein by reference in their
entirety.

There are two known binary functions that can perform this
reversible function: the Exclusive Or (XOR) and the Equality
function in a binary scrambler and descrambler. The XOR
function is also known as the modulo-2 adding function.

Telecommunication markets such as wireless communica-
tions and Internet communications demonstrate an ongoing
increase in demand for higher information transmission rates.
This demand in increased information transmission rates in
wireless communications is addressed by increasing band-
width of communication channels, by compression of the
information and by moving into much higher radio spectra
(such as Ultra Wide Band in the 5 GHz area). Eventually, new
technology has to be applied to obtain better performance
from existing bandwidth, starting with highly congested
spectrum areas. Current transmission technology predomi-
nantly uses digital binary signals. One possible technology to
provide better bandwidth usage is the application of multi-
valued or n-state signals on a much broader scale. Scram-
bling, descrambling and signal sequence generation is an
important element of signal processing technology, espe-
cially in wireless communications. Currently very little tech-
nology exists that can perform multi-valued digital scram-
bling, descrambling and sequence generation. Most of
existing solutions in scrambling, descrambling and sequence
generation only performs binary functions, as previously dis-
cussed. Transmission of non-binary signals already takes
place. Examples are for instance QAM-2? signals with p=2.
One may easily find articles describing QAM-4096 signals. A
QAM-4096 symbol may capture the equivalence of 12 bits.

Despite the transmission of high information content sig-
nals, processing of symbols in general takes place completely
in the binary domain. The processing of 27 valued or state

US 8,345,873 B2

3

signals may be facilitated by considering a 27 state signal as
being defined in GF(27). This allows the creation of GF(2?)
based LFSRs as was described extensively by the inventor in
U.S. patent application Ser. No. 12/137,945 filed on Jun. 12,
2008 which is incorporated herein by reference in its entirety.
The application describes scramblers, descramblers and
sequence generators.

The LFSR over GF(27) approach may also be applied to
other novel types of scramblers, sequence generators and
sequence detectors which may provide for instance better
security or a greater statistical variety in sequences and
changing of sequences.

Accordingly, new and improved methods and apparatus for
n-state scrambling, descrambling, sequence generation and
sequence detection on multi-valued or n-state signals with
binary technologies are required.

SUMMARY OF THE INVENTION

In the context of the present invention the term n-valued is
used. In general n is intended to indicate a state of a signal or
a symbol with n>2, unless it is specifically mentioned that
nZ2. Symbols may represent a signal. The term symbol and
signal may be used interchangeably. An n-valued symbol or
signal is able to assume one state at a time, wherein the
symbol or signal assumes one of n possible states. In general
states are indicated with values from 0 to (n-1). A state
signifies only that it is different from another state. While a
state of a symbol may represent a signal, a state does not
reflect the actual value of a signal. An exception herein may
be the state 0, which in certain cases may reflect absence of
signal. A symbol which is indicated as being able to assume
one of n states, is intended to be able assume at a time any of
the n possible states. In some cases a symbol may be able to
only or at least assume a limited number of states. In that case
it may be mentioned that a symbol can assume for instance a
first or a second state.

LFSRs are widely used for coding and decoding. Scram-
blers and descramblers differ from some coders that they are
first of all generally streaming, coding one received symbol
into another symbol and no symbols are added or removed.
This is different from for instance Reed-Solomon coders,
which use LFSRs. However those coders work on a pre-
determined number of symbols and form a codeword or
decode a codeword of finite length. Also for each codeword
the initial content of the shift register is reset. This is usually
different for scramblers and descramblers.

In accordance with an aspect of the present invention a
method is provided for scrambling a binary word of p-bits
with p=2 with a plurality of p binary Linear Feedback Shift
Registers (LFSR), each LFSR in the plurality having an input
and an output, each input of an LFSR enabled to receive a
signal representing a bit, and each output enabled to provide
a signal representing a bit, each binary LFSR having a plu-
rality of shift register elements, each shift register element
having an input and an output, comprising, creating a scram-
bler containing: the p LFSRs, p inputs and p outputs, provid-
ing a signal representing a bit in the word of p bits on a first
input of each of p scrambling devices, each scrambling device
implementing a binary 2-place function and each scrambling
device further including a second input and an output,
wherein the second input of each of the p scrambling devices
is connected uniquely to the output of one of the p LFSRs in
the plurality of binary LFSRs, connecting each of the p out-
puts of the scrambling devices uniquely to one input of the p
LFSRs in the plurality of LFSRs, connecting a first input of a
device that is in a first LFSR in the plurality of LFSRs, the

20

25

30

35

40

45

50

55

60

65

4

device implementing a reversible binary two-place logic
function further having a second input and an output to a
connection point in a second LFSR in the plurality of LFSRs,
the first and second LFSRs being different LFSRs, and out-
putting p signals representing a scrambled word of p bits on
the p outputs of the scrambler.

In accordance with a further aspect of the present invention
a method is provided, wherein each of the outputs of the p
scrambling devices is uniquely connected to the input of the
one of p LFSRs of which the output is connected to the second
input of the one of the p scrambling devices.

Inaccordance with yet a further aspect of the present inven-
tion a method is provided, wherein each of the outputs of the
p scrambling devices is connected uniquely to the input of one
of'the p LFSRs in such a way that the output of each of at least
two scrambling devices is uniquely connected to an input of
the LFSR of which the output is not connected to the second
input of the scrambling device.

Inaccordance with yet a further aspect of the present inven-
tion a method is provided, wherein each of the outputs of the
p scrambling devices is connected uniquely to the input of one
of'the p LFSRs by a binary logic device that may be amemory
or a combinational device implementing a multiplier over
GF(27).

Inaccordance with yet a further aspect of the present inven-
tion a method is provided, wherein the first and the second
LFSR are the same LFSR.

Inaccordance with yet a further aspect of the present inven-
tion a method is provided, wherein an LFSR has a Fibonacci
configuration.

Inaccordance with yet a further aspect of the present inven-
tion a method is provided, wherein an LFSR has a Galois
configuration.

Inaccordance with yet a further aspect of the present inven-
tion a method is provided, further comprising descrambling
with a descrambler the p signals representing the scrambled
word of p bits into p signals representing the binary word of p
bits.

Inaccordance with yet a further aspect of the present inven-
tion a method is provided, wherein the descrambler contains
a binary LFSR in Galois configuration and the scrambler is
self-synchronizing.

Inaccordance with yet a further aspect of the present inven-
tion a method is provided, wherein the descrambler contains
a binary LFSR in Galois configuration and the scrambler is
not self-synchronizing.

In accordance with another aspect of the present invention
a device is provided for scrambling a binary word of p-bits
with p=2, comprising, p inputs, each input enabled to receive
a signal representing one of p-bits of the binary word, p
outputs, each output enabled to provide a signal representing
one of p scrambled bits, the p scrambled bits forming a
scrambled binary word of p bits, a plurality of p binary Linear
Feedback Shift Registers (LFSR), each LFSR in the plurality
having an input and an output, each input of an LFSR enabled
to receive a signal representing a bit, and each output enabled
to provide a signal representing a bit, each binary LFSR
having a plurality of shift register elements, each shift register
element having an input and an output, p scrambling devices,
each scrambling device implementing a binary 2-place func-
tion and each scrambling device including a first and a second
input and an output, wherein the first input of each scrambling
device is enabled to receive the signal representing one of p
bits of the binary word, the second input of each of the p
scrambling devices is connected uniquely to the output of one
of the p LFSRs in the plurality of binary LFSRs, and the
output of each of the p scrambling devices is connected

US 8,345,873 B2

5

uniquely to the input of one of the p LFSRs in the plurality of
LFSRs, a device that is in a first of the p LFSRs, the device
implementing a binary two-place logic function having a first
and a second input and an output, wherein the first input of the
device in the first LFSR is connected a connection point in a
second LFSR in the p LFSRs, the first and second LFSRs
being different LFSRs.

In accordance with yet another aspect of the present inven-
tion a device is provided, wherein each of the outputs ofthe p
scrambling devices is uniquely connected to the input of one
of p LFSRs of which the output is connected to the second
input of the one of the p scrambling devices.

In accordance with yet another aspect of the present inven-
tion a device is provided, wherein each of the outputs ofthe p
scrambling devices is connected uniquely to the input of one
of'the p LFSRs in such a way that the output of each of at least
two scrambling devices is connected uniquely to an input of
the LFSR of which the output is not connected to the second
input of the scrambling device.

In accordance with yet another aspect of the present inven-
tion a device is provided, wherein each of the outputs ofthe p
scrambling devices is connected uniquely to the input of one
of'the p LFSRs by a binary logic device that may be a memory
or a combinational device implementing a multiplier over
GF(27).

In accordance with yet another aspect of the present inven-
tion a device is provided, wherein the first and the second
LFSR are the same LFSR.

In accordance with yet another aspect of the present inven-
tion a device is provided, further comprising a descrambler
for descrambling the p signals representing the scrambled
word of p bits into p signals representing the binary word of p
bits.

In accordance with yet another aspect of the present inven-
tion a device is provided, wherein the descrambler contains a
binary LFSR in Galois configuration and the scrambler is
self-synchronizing.

In accordance with yet another aspect of the present inven-
tion a device is provided, wherein the descrambler contains a
binary LFSR in Galois configuration and the scrambler is not
self-synchronizing.

In accordance with yet another aspect of the present inven-
tion a device is provided, wherein the device is part of a
communication system.

In accordance with yet another aspect of the present inven-
tion a device is provided, wherein the device is part of a
storage system.

In accordance with yet another aspect of the present inven-
tion a device is provided, wherein the descrambler is part of a
playing device.

In accordance with one aspect of the present invention
presents a novel method and system that implement binary
and n-valued with n>2 sequence generators, scramblers,
descramblers and detectors in LFSRs and Linear Forward
Connected Shift Registers (LFSCRs) in fast Galois configu-
ration.

In accordance with another aspect of the present invention
binary and n-valued corresponding scramblers and descram-
blers in Galois configuration are provided.

In accordance with a further aspect of the present invention
binary and n-valued scramblers, descramblers, detectors and
generators are provided which apply multi-input switching
functions.

In accordance with another aspect of the present invention
methods are provided for determining equivalent LFSRs in
Galois and Fibonacci configuration.

20

25

30

35

40

45

50

55

60

65

6

In accordance with a further aspect of the present invention
a method is provided to determine the content of a shift
register in Galois configuration.

In accordance with another aspect of the present invention
methods, apparatus and a system are provided for detecting a
maximum length sequence of binary or n-valued symbols by
using LFSRs in Galois configuration.

In accordance with a further aspect of the present invention
self synchronizing binary and n-valued descramblers in
Galois configuration using a LFSCR are provided.

In accordance with another aspect of the present invention
self synchronizing binary and n-valued descramblers in
Galois configuration using a LFSCR and corresponding to
scramblers with a Galois LFSR and one or more inverters are
provided.

In accordance with a further aspect scramblers, descram-
blers, sequence generators, and detectors with inverters being
equivalent to the same without inverters are provided.

In accordance with a further aspect of the present invention
systems including communication and data storage systems
are provided.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an n-valued scrambler in Fibonacci
configuration.

FIG. 2 is a diagram of an n-valued descrambler in
Fibonacci configuration.

FIG. 3 is a diagram of an n-valued scrambler in Galois
configuration.

FIG. 4 is a diagram of an n-valued descrambler in Galois
configuration.

FIG. 5 is a diagram of a binary scrambler in Fibonacci
configuration.

FIG. 6 is a diagram of a binary descrambler in Fibonacci
configuration.

FIG. 7 is a diagram of a scrambler with a multi-input
function.

FIG. 8 is a diagram of a descrambler with a multi-input
function.

FIG. 9 is a diagram of a multi-input switching function in
accordance with an aspect of the present invention.

FIG. 10 is an implementation of a multi-input function in
accordance with an aspect of the present invention.

FIG. 11 is a diagram of a scrambler in Fibonacci configu-
ration.

FIG. 12 is another diagram of a scrambler in Fibonacci
configuration.

FIG. 13 is yet another diagram of a scrambler in Fibonacci
configuration.

FIG. 14 is a diagram of a descrambler in Fibonacci con-
figuration.

FIG. 15 is another diagram of a descrambler in Fibonacci
configuration.

FIG. 16 is a diagram of a multi-input switching function.

FIG. 17 is a diagram of a sequence generator in Galois
configuration.

FIG. 18 is a diagram of a sequence generator in Fibonacci
configuration.

FIG. 19 is a correlation graph.

FIG. 20 is a cross-correlation graph.

FIG. 21 is a diagram of a sequence generator in Fibonacci
configuration in accordance with an aspect of the present
invention

FIG. 22 is a cross-correlation graph.

FIG. 23 is a diagram of a sequence generator in Fibonacci
configuration.

US 8,345,873 B2

7

FIG. 24 is a diagram of a sequence generator in Galois
configuration in accordance with an aspect of the present
invention.

FIG. 25 is a diagram of a sequence generator in Fibonacci
configuration.

FIG. 26 is a diagram of a sequence generator in Galois
configuration in accordance with an aspect of the present
invention.

FIG. 27 is a diagram of a sequence detector in Fibonacci
configuration.

FIG. 28 is a diagram of a sequence generator in Galois
configuration.

FIG. 29 is a diagram of a sequence detector in Galois
configuration in accordance with an aspect of the present
invention.

FIG. 30 is a diagram of a sequence generator in Fibonacci
configuration.

FIG. 31 is a diagram of a sequence generator in Galois
configuration.

FIG. 32 is a diagram of a sequence detector in Galois
configuration in accordance with an aspect of the present
invention.

FIG. 33 is a diagram of a system for sequence detection in
accordance with an aspect of the present invention.

FIG. 34 is a diagram of a sequence generator in Galois
configuration.

FIG. 35 is a diagram of a sequence detector in Galois
configuration in accordance with an aspect of the present
invention.

FIG. 36 is a table with consecutive states of a shift register
in Galois configuration.

FIG. 37 is another table with consecutive states of a shift
register in Galois configuration.

FIG. 38 is a diagram of a sequence generator in Galois
configuration.

FIG. 39 is another table with consecutive states of a shift
register in Galois configuration.

FIG. 40 is a diagram of a sequence generator in Galois
configuration.

FIG. 41 is a diagram of a sequence detector in Galois
configuration in accordance with an aspect of the present
invention.

FIG. 42 is a table with consecutive states of a shift register
in Galois configuration.

FIG. 43 is a diagram of a sequence generator in Galois
configuration.

FIG. 44 is a table with consecutive states of a binary shift
register in Galois configuration.

FIG. 45 is a diagram of a scrambler in Galois configuration
in accordance with an aspect of the present invention.

FIG. 46 is a diagram of a descrambler in Galois configu-
ration in accordance with an aspect of the present invention.

FIG. 47 is a diagram of a scrambler in Galois configuration
in accordance with an aspect of the present invention.

FIG. 48 is adiagram of a self-synchronizing descrambler in
Galois configuration in accordance with an aspect of the
present invention.

FIG. 49 is a diagram of a binary scrambler in Galois con-
figuration in accordance with an aspect of the present inven-
tion.

FIG. 50 is a diagram of a binary self-synchronizing
descrambler in Galois configuration in accordance with an
aspect of the present invention.

FIG. 51 is another diagram of a binary scrambler in Galois
configuration in accordance with an aspect of the present
invention.

20

25

30

35

40

45

50

55

60

65

8

FIG. 52 is another diagram of a binary self-synchronizing
descrambler in Galois configuration in accordance with an
aspect of the present invention.

FIG. 53 is another diagram of a binary scrambler in Galois
configuration in accordance with an aspect of the present
invention.

FIG. 54 is another diagram of a binary self-synchronizing
descrambler in Galois configuration in accordance with an
aspect of the present invention.

FIG. 55 is another diagram of a binary scrambler in Galois
configuration in accordance with an aspect of the present
invention.

FIG. 56 is another diagram of a binary self-synchronizing
descrambler in Galois configuration in accordance with an
aspect of the present invention.

FIG. 57 is a diagram of possible binary sequence genera-
tors in Galois configuration in accordance with an aspect of
the present invention.

FIG. 58 is a diagram showing a scrambler in accordance
with an aspect of the present invention.

FIGS. 59-61 are diagrams showing a scrambler in accor-
dance with one or more further aspects of the present inven-
tion.

FIGS. 62-66 show a diagram of Linear Feedback Shift
Register (LFSR) based sequence generators in accordance
with aspects of the present invention;

FIGS. 67-69 show correlation graphs in accordance with
an aspect of the present invention;

FIGS. 70-71 show a diagram of a Linear Feedback Shift
Register (LFSR) based sequence generators in accordance
with an aspect of the present invention;

FIGS. 72-73 show correlation graphs in accordance with
an aspect of the present invention;

FIGS. 74-75 show a diagram of a sequence generator in
accordance with an aspect of the present invention;

FIGS. 76-84 show a diagram of a scrambler/descrambler in
accordance with yet a further aspect of the present invention;

FIGS. 85-87 show a diagram of an LFSR based sequence
generator in accordance with an aspect of the present inven-
tion;

FIG. 88 shows a diagram of an LFSR based scrambler in
accordance with an aspect of the present invention;

FIG. 89 shows a diagram of an LFSR based descrambler in
accordance with an aspect of the present invention;

FIG. 90 shows a diagram of an LFSR based scrambler in
accordance with an aspect of the present invention;

FIG. 91 shows a diagram of an LFSR based descrambler in
accordance with an aspect of the present invention;

FIG. 92 shows a diagram of an LFSR based sequence
detector in accordance with an aspect of the present inven-
tion;

FIG. 93 shows a diagram of an LFSR based scrambler in
accordance with an aspect of the present invention;

FIG. 94 shows a diagram of an LFSR based descrambler in
accordance with an aspect of the present invention;

FIG. 95 shows a diagram of an LFSR based scrambler in
accordance with an aspect of the present invention;

FIG. 96 shows a diagram of an LFSR based descrambler in
accordance with an aspect of the present invention;

FIG. 97 shows a diagram of an LFSR based scrambler in
accordance with an aspect of the present invention;

FIG. 98 shows a diagram of an LFSR based descrambler in
accordance with an aspect of the present invention;

FIG. 99 shows a diagram of an LFSR in accordance with an
aspect of the present invention;

FIG. 100 shows a diagram of another LFSR in accordance
with an aspect of the present invention;

US 8,345,873 B2

9

FIG. 101 shows a diagram of a sequence generator in
accordance with an aspect of the present invention;

FIG. 102 shows a diagram of a detector/descrambler in
accordance with an aspect of the present invention;

FIG. 103 shows a diagram of a scrambler in accordance
with an aspect of the present invention;

FIGS. 104-106 show diagrams of devices applying at least
one method or apparatus in accordance with an aspect of the
present invention.

DETAILED DESCRIPTION OF THE INVENTION

Standard binary LFSR based scramblers, descramblers and
sequence generators are generally provided in Fibonacci
form. The inventor has shown elsewhere, such as in U.S.
Non-Provisional patent application Ser. No. 10/935,960 filed
on Sep. 8, 2004 entitled: Ternary and multi-value digital
signal scramblers, descramblers and sequence generators,
which is incorporated hereby in its entirety by reference, how
non-binary scramblers, descramblers and sequence genera-
tors can be created in Fibonacci form.

FIG. 1 shows in diagram an illustrative n-valued LFSR
based scrambler. The shift register is comprised of 3 elements
[SR1 SR2 SR3] and there are 3 taps. The n-valued feedback
logic functions are sc1 and sc2. The functions sc1, sc2 and sc3
are n-valued 2 inputs/single output n-valued reversible logic
functions. The n-valued function sc3 combines an incoming
signal ‘sig_in’ with a signal that was fed back by the LFSR.
The output of the circuit is ‘sig_line’. One can create many
different scramblers based on LFSRs with any p-length shift
register applying one or p feedback taps and any of the pos-
sible n-valued reversible logic functions.

The scrambled signal ‘sig_line’ can be de-scrambled by the
corresponding n-valued LFSR based descrambler. The
descrambler is shown in diagram in FIG. 2.

The descrambler is almost a perfect reverse or mirror
image of the scrambler around the x-axis, with sc3 becoming
ds3 and with an input and output of function sc3 changing
position. The rule for the descrambler is that it has an identical
number of elements of shift registers, identical number of taps
and position of taps. Also the feedback taps are connected to
identical reversible n-valued functions as in the scrambler.
The only difference is that instead of a reversible n-valued
function ‘sc3’ the descrambler has an n-valued function ‘ds3’.
The function ‘ds3’is the reverse of “sc3’. Soifc=(asc3 b) then
a=(c ds3 b).

Both the scrambler and descrambler work under the con-
trol of a clock signal upon which the content of the shift
register elements moves one position. The clock signal is
assumed but not drawn in the diagrams.

The advantage of the above descrambler is that it is self
synchronizing with regard to the content of'its shift register. In
case of an error in the incoming signal the error will not be
propagated, but will be flushed after the error has been shifted
out of the shift register. This means that an error will not
propagate beyond the length of the shift register.

One can also create a scrambler and descrambler in Galois
configuration. In that case the logic function in the tap con-
nects directly two adjacent shift register elements. A scram-
bler in Galois configuration is shown in a diagram in FIG. 3.
Its corresponding descrambler is shown in diagram in FIG. 4.

The advantage of the Galois configuration is that the delay
in determining all the signals can be less than in the Fibonacci
configuration. One can see for instance in the diagram of FIG.
1 that in the Fibonacci configuration one has to generate
intermediate results from function sc1, then from sc2 before

20

25

30

35

40

45

50

55

60

65

10

one can generate the scrambling result. This can be substan-
tially longer than in the Galois configuration.

While Galois configurations are known, they are usually
designed as for instance Galois Field multipliers or dividers.
This requires in many cases that the taps have a multiplication
function over GF(n) and that the functions sc1 and sc2 for
instance are adders over GF(n). The inventor has shown in the
cited patent application Ser. No. 10/935,960 that one can
combine an n-valued logic function with an inverter in one or
both inputs into a single n-valued logic function. The inventor
has also shown in U.S. patent application Ser. No. 11/679,316
filed on February 27, entitled METHODS AND APPARA-
TUS IN FINITE FIELD POLYNOMIAL IMPLEMENTA-
TIONS which is incorporated hereby in its entirety by refer-
ence, how Galois type scrambling and descrambling
solutions can be created that apply no multipliers in their taps.

While the scrambler of FIG. 1 and FIG. 3 look similar, with
just the functions in different places, their results in scram-
bling usually are different, even when the initial state of the
shiftregisters of FIG. 1 and FIG. 3 are identical. The descram-
bler of FIG. 4 descrambles correctly the sequence generated
by the scrambler of FIG. 3. Accordingly the descramblers of
FIG. 2 and FIG. 4 will in general be different. The descram-
bler of FIG. 4 unfortunately is not self synchronizing as the
shift register will not be flushed over time. An error in the
received signal will thus be perpetuated.

If one expects errors during transmission or processing of
the scrambled signals one should use a self-synchronizing
descrambler. One may reduce the delay time of descramblers
in Fibonacci configuration by using multi-input adders over
GF(n). It was shown in the cited patent application Ser. No.
11/679,316 that one can create a multi-input adder with mul-
tipliers over GF(n) at the inputs from a limited set of n-valued
inverters and n-valued switches which are in series and can be
switched simultaneously.

The diagram of FIG. 5 and FIG. 6 show a known binary
scrambler and descrambler. FIG. 7 and FIG. 8 show how the
individual XOR function may be combined into a single
multi-input function sc with a truth table of sub tables and into
a single multi-input function ds for the descrambler. It is
believed to be a novel approach to implement sc and ds with
inverters and switches.

It may be difficult to visualize the truth table of sc and ds.
The truth table is in fact an array sc(sig_in, inl, in2, in3). One
may show sc along different dimensions. Because in general
an n-valued truth table is shown as a 2-dimensional matrix,
the truth table will be shown as a series of two dimensional
sub-tables in the following tables:

©o 0o 1 (1,0 0 1 ©D o 1 (1,1 0 1
0o 0 1 10 10 0o 1
1 1 0 0o 1 0o 1 10

This truth table implements the multi-input binary logic
function of FIG. 9.

An implementation of the function sc of FIG. 9 by way of
individually controlled gates and inverters is shown in FIG.
10. The inventor has shown in U.S. patent application Ser. No.
11/000,218 filed on Nov. 30, 2004 entitled SINGLE AND
COMPOSITE BINARY AND MULTI-VALUED LOGIC
FUNCTIONS FROM GATES AND INVERTERS, which is
incorporated herein by reference in its entirety, how one can
realize any truth table from individually controlled switches
and inverters, including binary and non-binary truth tables.

US 8,345,873 B2

11

The approach herein is that a row or a column is implemented
by an inverter. One way to visualize such an implementation
is to assume that the signals are optical in nature able to
assume 2 or more states and are passed by a switch or are
blocked. Herein absence of signal is also a state.

A column or row [0 1] in the truth table of sc is identity or
a plain conductor. A column or row [1 0] is an inverter ‘inv’.
Assume that [0 1] and [1 O] are ‘seen’ by signal ‘sig_in’
depending on a state of ‘in1’, “in2’ and ‘in3’. Accordingly the
implementation only requires one conductor and one inverter
and a number of gates activated by signals ‘in1’, ‘in2’ and
‘in3’ acting upon ‘sig_in’ to generate the correct state of
‘sig_line’. The truth table of FIG. 9 can then be realized by an
implementation as shown in FIG. 10. Because all gates switch
simultaneously there should be minimal delay.

The same approach can be applied to a non-binary adder
used in a scrambler or descrambler. One can start out design-
ing such a multi-input scrambler configuration with the con-
figuration in FIG. 3 wherein all functions are n-valued. Herein
the functions sc3 is assumed to be an adder over GF(4) for
simplicity reasons. However if sc3 is not an adder one may
expand sc3 into an adder with inverters at the input. The
functions sc2 and scl are also expanded into adders and
multipliers over GF(4).

Assume to start out with the 4-valued scrambler of FIG. 11.
Because the adder is associative one can reduce the configu-
ration to the implementation as shown in FIG. 12. And in a
next step one can reduce the multi-input 4-valued adder over
GF(4) with multipliers at the input to the configuration of
FIG. 13 having no multipliers and a 4-valued multi-input
function ‘smi’.

One may use this approach also for the descrambler.
Accordingly an n-valued descrambler in Fibonacci configu-
ration as shown in FIG. 14 with an adder over GF(4) in the
present example and with multipliers p, q, and r over GF(4)
can be reduced to a descrambler with a single multi-input
function ‘dmi’ as shown in FIG. 15.

In a next section the rules for creating matching sets of
n-valued scramblers in Galois configuration with n-valued
descramblers in Fibonacci configuration will be provided.
This allows one to create a fast scrambler with a matching
descrambler. The here provided method of implementing
multi-input n-valued functions also allows to create fast
Fibonacci descramblers, which are self-synchronizing.

Using the descrambler of FIG. 15 wherein in 1 is the signal
from shifts register element srl, in2 is the signal from shifts
register element sr2 and in3 is the signal from shifts register
element sr3. Further more ‘sig_line’ is the signal received by
the descrambler and ‘sig_out’ is the signal generated by the
descrambler. The multi-input function ‘dmi’ consolidating
the different functions with its inputs and output is shown in
FIG. 16.

Assume the multipliers to be p=3, =2 and r=3 over GF(4)
as an illustrative example. A basic 2-input addition and a
multiplication truth table over GF(4) are provided in the fol-
lowing tables.

+ 0 1 2 3 x 0 1 2 3
0 0 1 2 3 0 0 0 0 0
1 1 0 3 2 1 0 1 2 3
2 2 3 0 1 2 0 2 3 1
3 3 2 1 0 3 0 3 1 2

Accordingly a multiplier 2 is the 4-valued inverter [0 23 1]
and multiplier 3 is the inverter [0 3 1 2]. The truth table of the

20

25

30

35

40

45

50

55

60

65

12

4-input 4-valued function has 4x4 or 16 truth sub-tables (with
every additional input the number of sub tables is multiplied
by n=4 in this case). Each sub table has the same columns (or
rows) as in the original addition table which will be modified
according to the multipliers. So in this case the 4 columns (or
inverters) are [0 1 2 3] which is identity; [1 03 2];[2301] and
[3 21 0]. As in the binary case one can implement the com-
plete truth table of the function ‘dsi’ by using the 4 inverters,
with signal ‘sig_line’ as input, and enabling the appropriate
inverter by a set of individually controlled gates, which are
controlled by the signals ‘in1’, ‘in2” and ‘in3’. All the signals
are available at the same time and each gate can be enabled at
the same time.

Sequence Generators in Galois Configuration

It is possible to create multi-valued sequences with feed-
back shift registers in Galois configuration. An example will
first be provided of a ternary PN generator in Galois configu-
ration. The shift register is comprised of 5 elements and a
ternary logic function sc1 will be used between element 4 and
5 of the shift register. The truth table of sc1 is provided in the
following table.

scl 0 1 2
0 0 1 2
1 2 0 1
2 1 2 0

The initial content of the shift register is [1 0 2 1 0]. The
diagram in FIG. 17 provides the used Galois configuration.
(As before a clock signal is assumed but not shown). This
sequence generator will create a ternary pseudo-random
sequence of length 242 symbols and its auto-correlation
graph is a bi-level graph with a single peak. The top input of
scl determines the column and the input to scl from shift
register element sr4 determines the row of the truth table.

FIG. 19 shows an auto-correlation graph of the sequence
generated by this configuration.

One can also create a sequence generator in Fibonacci
configuration from these components and the same ternary
logic function. This is shown in the diagram of FIG. 18. This
configuration will also generate a ternary PN-sequence of
length 242. Also the order of the inputs to the function scl is
switched. The generated sequence here is different from the
sequence generated in the Galois configuration. The graph in
FIG. 19 shows an auto-correlation of the sequence generated
by the Galois configuration and by the Fibonacci configura-
tion. FIG. 20 shows a cross-correlation graph of the two
sequences generated by the generators of FIG. 17 and FI1G. 18
which demonstrates that the two sequences are not shifted
versions of each other.

Thus it should be clear that one can use the Galois configu-
ration as a method to create PN sequences. The method also
works for other values of n and for configurations with more
than 1 tap and different n-valued functions.

Comparing Fibonacci and Galois Sequence Generators

In this section 4-valued and 3-valued sequence generators
in Galois and in Fibonacci configuration will be demon-
strated.

As a first example a 3-valued sequence generator in
Fibonacci configuration as shown in FIG. 21 will be used.
One can see that this generator, like the generator in Galois
configuration in FIG. 17 has only one 3-valued function.
However instead 3-valued function scl at a tap after shift
register element sr4 it has a function sc1? (which is the trans-

US 8,345,873 B2

13

posed version of sc1) at the tap after shift register element 1.
The truth table of sc17 is shown in the following table.

sc1? 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

This generator will generate a maximum length pn
sequence. The generator of FIG. 17 will also generate a maxi-
mum pn sequence. A cross correlation graph of the pn
sequences of 242 symbols generated by each generator using
the same initial shift register is shown in FIG. 22. One can see
that the graph has two peaks, not centered. This means that the
two sequences are shifted maximum length sequences. By
using different initial content of the shift register one is able to
generate two identical sequences from the Galois and the
Fibonacci configuration.

Basically this provides the rule for finding equivalent
Fibonacci and Galois configurations for sequence generators.
The example shows that one should carefully watch the order
of inputs of n-valued functions if a function is non-commu-
tative. Switching a set of inputs will make the configurations
non-matching. Another issue to watch carefully is to make
sure to select a generator that will generate either a maximum
length sequence or sequences that have the same repetitive
performance. In most cases, it turns out there will be no
matching pairs of configurations. However a maximum
length sequence can only repeat over (n0p-1) in an n-valued
LFSR with p shift register elements. So each maximum
length pn sequence can be generated by a particular generator,
be it in Galois or Fibonacci configuration. Further more a
Galois configuration cannot create more pn sequences than a
Fibonacci configuration with the same number of shift regis-
ter elements. Consequently there is at least one Galois and
Fibonacci configuration for each maximum length sequence.

It is also possible to find matching pairs in Fibonacci and
Galois configuration for some (but not all) sequences not
being a maximum length sequence. However such pairs do
not have to be unique, in the sense that a Galois configuration
may have several matching Fibonacci configurations.

The diagram of FIG. 23 shows a Fibonacci configuration of
an n-valued sequence generator. Assume that the circuit is
4-valued. The truth tables of sc1 and sc2 are provided in the
following tables.

scl 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

sc2 0 1 2 3
0 0 2 3 1
1 1 3 2 0
2 2 0 1 3
3 3 1 0 2

20

25

30

35

40

45

50

55

65

14

Function scl is commutative and sc2 is non-commutative.
Assume that the initial state of the shift register [sr1 sr2 sr3]
is [1 0 3]. This particular sequence generator will generate a
maximum length 4-valued pn sequence of 63 symbols seq41.

seq41=[013230011031222322102021310
022012333133203032120033023111211
301].

The diagram in FIG. 23 shows the equivalent 4-valued
sequence generator in Galois configuration of the generator in
FIG. 22. One should apply ‘flipping’ or ‘mirroring’ the taps
and functions in the Fibonacci configuration to create the
Galois configuration and vice versa. One has also to mirror
the position of the taps to complete the equivalent transfor-
mation. Assume that there are p shift register elements both in
Fibonacci and in the Galois configurations. In order to change
the Fibonacci configuration into an equivalent Galois con-
figuration, remembering that this rule in general only applies
to maximum length sequence generators, one has to perform
the following steps.

1. Determine the position of a tap in the Fibonacci configu-
ration. Assume a tap is in the position k of (p-1) possible
positions (this is 1 less than the number of elements, as a tap
is always between two elements) wherein k is the number of
elements between the tap and the input of the first element.

2. Determine the truth table of the function connected to a
tap.

3. Determine the mirror position of the Fibonacci tap in the
Galois configuration.

This is then k elements from the output of the last tap of the
shift register in the Galois configuration.

4. Determine the transposed (columns and rows exchanged
so that the first row becomes the first column etc.) versions of
the truth tables of the logic functions at the taps and put the
transposed functions in their mirror position.

This is a rule that cannot be extrapolated from binary
configurations. Clearly the binary case has no non-commu-
tative reversible functions and thus cannot apply this rule.

Application of this rule to the example will then create the
following functions and their truth tables.

sc2? 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

The function sc2 is commutative. Consequently the func-
tion sc2 will have the same truth table as sc2.

sc1? 0 1 2 3
0 0 1 2 3
1 2 3 0 1
2 3 2 1 0
3 1 0 3 2

The initial state of the shift register [srl sr2 sr3] is [1 0 3].
The Galois sequence generator will create a sequence seq42.

seq42=[3320303212003302311121130101
323001103122232210202131002201233
3 1]. Sequences seq41 and seq42 are shifted versions of each
other.

The Galois configuration of FIG. 24 will generate exactly
the same sequence as the Fibonacci configuration of FIG. 23

US 8,345,873 B2

15

when the initial state of its shift register is [1 1 0]. In order to
generate an identical sequence when the conditions of tap
positions and functions have been met the initial content of
the shift register in the Galois configuration needs to be 1
higher than the one in the Fibonacci configuration in this
example.

A 3-Valued Example

To show that the transformation from Fibonacci to Galois
(or Galois to Fibonacci) works in general, another sequence
generator will be in 3-valued example with a shift register of
6 elements and 3 different functions.

The example will start with the Fibonacci configuration in
FIG. 25 having three functions (sc1, sc2 and sc3) and 6 shift
register elements and transform to Galois (though to one
skilled in the art it should be apparent that one can also start
with Galois and transform to Fibonacci) in FIG. 26.

The truth tables of the ternary functions sc1, sc2 and sc3 are
shown in the following tables.

scl 0 1 2
0 2 1 0
1 1 0 2
2 0 2 1

sc2 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0

sc3 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

The sequence generator as shown in FIG. 25 will create a
maximum-length 3-valued pseudo-noise sequence of 728
symbols with a 2-level auto-correlation. Assume that the ini-
tial content of the shift registeris [1 00 2 0 1]. The equivalent
Galois sequence generator (applying the mirroring-rules) is
provided in FIG. 26. Of the 3-valued switching functions scl,
sc2 and sc3; scl and sc3 are commutative and sc2 is non-
commutative. This means that sc1=sc1” and sc3=sc3”. The
truth table of sc27 is provided in the following table.

sc2? 0 1 2
0 0 1 2
1 2 0 1
2 1 2 0

The sequence generator of FIG. 26 will create a shifted
equivalent pn-sequence of the Fibonacci generator when both
start with initial content [1 0 0 2 0 1]. The 6-element/3 func-
tion Galois generator will create exactly the same sequence as
the Fibonacci one if the initial content of the Galois shift
registeris [11 02 00].

20

25

30

35

40

45

50

55

60

65

16

The Binary Case

The same equivalence transformation between Fibonacci
and Galois configurations can be applied to other shift regis-
ter/tap/function configurations as well for any n-valued
sequence generator of maximum length sequences, including
the binary one. One may for instance use the sequence gen-
erator as shown in the ternary logic form in FIGS. 25 and 26
and replace all elements by binary elements (functions and
shift register). In general one uses the binary XOR function as
binary logic function in this type of circuits. The transposition
of'the truth table of the XOR is of course again a XOR. So the
transformation from Fibonacci to Galois when only XOR
functions are used, only require exchange of the position of
the functions. If the initial shift register contentis [1 0010 1]
in the Fibonacci case then its Galois configuration will gen-
erate exactly the same sequence (in-phase) when the initial
shift register contentis [1 1000 1].

Things can be come a little more complicated if one mixes
XOR and EQUAL functions in a single realization. Though of
course the transposition of an EQUAL function is again an
EQUAL function, the transformation rule requires that the
order changes. So ifin the Fibonacci configuration sc1=XOR,
s¢2=XOR and sc3=EQUAL, then in the Galois configuration
sc3’=EQUAL, sc2’=XOR and sc17=XOR.

Accordingly it is possible for any Fibonacci configuration
of any n-valued sequence generator of maximum length
sequences, wherein all functions are reversible, to create a
Galois configuration that will generate exactly the same (in-
phase) sequence and vice-versa.

Detecting Sequences

The inventor has shown earlier how a type of descrambler
can be used to detect sequences that are created by Fibonacci
generators. See for instance US Patent Application Publica-
tion no. 20050184888 filed on Feb. 25, 2005 entitled: GEN-
ERATION AND DETECTION OF NON-BINARY DIGI-
TAL SEQUENCES, which is incorporated herein in its
entirety. In this section it will be shown how shift register
circuits can be applied to detect sequences generated by shift
register circuits, also when these circuits or methods are in
Galois configuration.

As an illustrative example assume that a sequence is gen-
erated by the method or circuit as shown in the diagram of
FIG. 23. The sequence generated by that generator can be
detected by the descrambler type solution as shown in FIG.
27.

One can make different choices for the function ‘det’. The
only restriction to ‘det’ for detection purposes is that the
diagonal of its truth table has identical values or states. The
reason for that is that if the input signal ‘X’ is generated by the
sequence generator that corresponds with the detector con-
figuration; and the content of the shift register is correct; then
both inputs to ‘det’ will provide identical signals. For instance
assume that correct detection means that the output signal ‘y’
is all 0s. Then the diagonal of the truth table of ‘det’ should be
all 0.

The advantage of the shown Fibonacci configuration is that
ifthe content of the shift register is not correct even if the input
signal ‘X’ is a correct sequence, then at most only 3 symbols
can be detected wrongly. That is because the shift register will
be flushed.

Assume that one would like to determine at the occurrence
of'the signal ‘x’ if the correct sequence is present. The way to
do this is at every clock pulse to assume that the correct signal
is present and can be detected. On that assumption one can
then determine the content of the shift register that would
correspond with correct detection. Next, one should make the
calculated shift register content the actual shift register and

US 8,345,873 B2

17

run the detector. Ifnota correct ‘sequence detect’ signal (0s in
our illustrative example) is generated after more than 3 pulses
then at the next input signal one should recalculate the correct
content.
This method applies the following reasoning.
a. assume that the next 3 consecutive input symbols [x1 x2
x3] are part of the correct to be detected sequence;
b. the output y=[y1 y2 y3] as a result of the input should be
[000];
c. the initial content of the shift register is [s1 s2 s3] when
the input signal is x1.
This will give the following equations:

x1={s3s¢2s2}sclsl
x2={s2sc2s1 }sclxl

x3={s1sc2x1}sclx2
With solutions:

s1={x3sc1 %2} sc2 751
s2={x2sc1™'x1}sc27s1

s3={x1sc1 sl }sc271s2

The use of inverse function in these expressions may be
confusing. As the functions may be non-commutative in gen-
eral (a scl b)=(b scl a). So in solving these equations one
should carefully check if one applies the correct inverse func-
tion. The order of inputs is selected in such a way that an input
from one side of a function determines the row input and an
input from the top determines the column in a truth table. It is
assumed in general that in (a scl b) input ‘a’ determines the
row and ‘b’ determines the column in the truth table.

This novel method as an aspect of the present invention
allows calculating the correct shift register content at any time
assuming that the correct sequence is being received. This
method can be used for any length shift register and for any
n-valued logic (including binary) as all functions at the taps
have to be reversible. This method may not be extremely
urgent in Fibonacci configurations (because of shift register
flushing) however it is very useful in Galois configurations.
This is because in some Galois configurations error propaga-
tion in the shift register will occur. Calculating the correct
shift register content after an error has occurred may stop
error propagation.

As an illustrative example the Galois sequence generator
shown in the diagram of FIG. 28 will be used. A detector for
the sequence created with this generator is shown in the
diagram of FIG. 29.

Assuming that the correct sequence is at the input one can
create the following equations.

x1=s3
x2=(s525¢253)

x3={s1scls3}sc2{s2sc2s3}={s1scls3 }sc2x2

This leads to the following states of the shift register:
s3=x1
52=(x2s¢27x1)

s1={(x3sc2 7 x2)sc17'x1}

Assume that one uses the (in this case 3-valued) functions
with the following truth tables.

20

30

35

40

45

50

55

60

65

scl 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

sc2 0 1 2
0 0 1 2
1 2 0 1
2 1 2 0

det 0 1 2
0 0 1 2
1 2 0 1
2 1 2 0

The sequence generated with initial register state [1 0 2] is
the pn-sequence seq3_26=[222100220201211120
01101021].

Inputting this sequence to the detecting circuit with initial
shift register state [1 0 2] will generate res=[00 0000000
00000000000000000].Onecan demonstrate the effect
of error propagation in Galois type detectors by changing the
initial content of the shift register of the detector to for
instance [1 00]. The result at the output of the detector is then:
res_er=[22011022011022011022011022]. Clearly
one would conclude on this basis that an incorrect sequence
was received.

Inorderto start or restart the Galois detector at any time one
would need to make sure that the correct content is in the shift
register. The first way to do that is to use the formulations that
calculate the correct content assuming that the correct
sequence without errors is available at the input of the detec-
tor. Applying the already determined expressions:

s3=x1
§2=(x2sc27x1)

s1={(x3sc27'x2)sc17x1}

The truth tables of the inverse functions are provided in the
following tables.

scl™! 0 1 2
0 0 2 1
1 1 0 2
2 2 1 0
sc27! 0 1 2
0 0 1 2
1 2 0 1
2 1 2 0

US 8,345,873 B2

19

One can determine the initial state when the first three
elements of the sequence are [2 2 2]. Inserting the values of
the symbols in the equations will generate: s3=2

§2=(25c2712)=0

s1={(2sc2712)sc17 2} ={0sc17'2}=1

This means that the initial content should be [1 0 2].

One can apply the same approach for instance by starting at
symbol 4 ofthe sequence and registering the first 3 symbols as
of'symbol 4. That means [x1 x2 x3]=[1 0 0]. This requires for
correct decoding that the setting of the shift registeris [2 1 1]
by applying the above equations.

This method can be extended to any n-valued sequence
generator including the binary one. Clearly long shift regis-
ters with relatively many taps will create more complex
expressions. However the method will still work. The equa-
tions become easier to solve if one applies adders and multi-
pliers over GF(2"p) with p>1. Adders will be commutative,
self-reversing and associative.

The method works as well for the binary case, especially
because the XOR and EQUAL functions are commutative
and associative and self-reversing. These aspects make the
solving equations easier to be determined. They apply in
general to LFSRs having adders over GF(2'p) with p=1
wherein p=1 is of course the binary case. An illustrative
4-valued example will be provided.

In FIG. 30 a 4-valued sequence generator in Fibonacci
configuration is provided, wherein the adder ‘+’ is an adder
over GF(4) and the multipliers 2 and 3 are multipliers over
GF(4). The truth tables of ‘+” and ‘X’ are provided in the
following tables.

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0
X 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

The generator of FIG. 30 generates a 1023 4-valued sym-
bol maximum length sequence. The matching Galois con-
figuration is shown in FIG. 31. Again one sees that the Galois
and Fibonacci configurations are mirrored over the diagonal
of'the Fibonacci configuration: that is: the taps move to mirror
positions (including the multipliers) and the functions go in
transposed positions. Because the 4-valued ‘+’ is commuta-
tive, the functions will appear as being the same.

A detector in Galois configuration for the sequence gener-
ated by the generator of FIG. 31 is shown in FIG. 32. One
should take care in reversing the multiplier of 3101 in FIG. 31
to the multiplier 3201 in FIG. 32 to correctly detect the
sequence. The function ‘detd’ can for instance be the ‘+” in
GF(4).

One can see from the multiplier truth table that the inverse
of multiplication by 3 is multiplication by 2 in GF(4). One
may also circumvent the issue of multipliers by first elimi-

20

25

30

35

40

45

50

55

60

65

20

nating the multipliers in the Fibonacci configuration in accor-
dance with a method shown by the inventor in U.S. patent
application Ser. No. 11/679,316 filed on Feb. 27, 2007
entitled METHODS AND APPARATUS IN FINITE FIELD
POLYNOMIAL IMPLEMENTATIONS which is hereby
incorporated herein by reference in its entirety. After elimi-
nating the multipliers one can then apply the conversion rule
being an aspect of the present invention and then create the
appropriate detector in Galois configuration which will then
have no multipliers.

As an illustrative example of calculating the correct initial
content of the Galois detector with multipliers the detector of
FIG. 32 will be analyzed.

Assume that the initial state of the shift register of the
detector of FIG. 32 is [al a2 a3 a4 a5] when at the input the
signal x=[x1 x2 x3 x4 x5] is provided and the signal y=[y1 y2
y3 y4 y5] will be generated at the output. Assume that the state
of the shift register is correct and that the input signal was
generated by the corresponding sequence generator. Using
the 4-valued function ‘+’is ‘det4’ as the detection function in
FIG. 32 then the output signal y=[0 0 00 0]. All functions and
multipliers are reversible, and accordingly one can create
sufficient equations to solve al, a2, a3, a4 and a5 as the
unknowns. The Galois LFSR is somewhat more complicated
because at every clock pulse the content of a shift register
element after a function is different from the content of pre-
ceding shift register element at the previous clock pulse.

However the conditions are set in such a way that the
content of the last shift register element is easily determined
by the equation yn=(3*xn det4 sr5), wherein detd is the 4-val-
ued adder over GF(4) and 3* is a multiplier over GF(4) and
sr5 is the content of the last shift register element. One can
then for the first clock pulse determine that: y1=x1+3*sr5 or
0=x1+3*sr5.

Assume that the generated sequence starts with [x1 x2 x3
x4 x5]=[2 2 2 0 0]. One can then easily calculate [al a2 a3 a4
a5]. It should be clear that one may apply this approach at any
stage of a sequence. Once [al a2 a3 a4 a5] is known one can
then calculate y6 by using the calculated states of the shift
register. If one is receiving a correct sequence then y6 will
also be 0. If not one, can re-calculate the shift register content
as shown here from x2 to x6 and check if the then next
outputted symbolis a 0. Based on expected symbol error ratio
one can perform this several times. If for several cycles the
output of the detector is not 0 one may decide that not the
correct sequence was received and that non-receiving was not
due to errors.

One approach to calculate the value of [al a2 a3 a4 a5] is to
assume that the content of the shift register of FIG. 32 in 5
consecutive clock cycles is provided by: initial: [al a2 a3 a4
a5

after pulse 1: [b1 b2 b3 b4 b5]

after pulse 2: [c1 ¢2 c3 c4 c5]

after pulse 3: [d1 d2 d3 d4 d5]

after pulse 4: [el e2 e3 e4 e5]

The relation between the consecutive states can be
expressed as: initial: [al a2 a3 a4 a5]

after pulse 1 [x1 al(a2+3*a5) (a3+3%*a5) (ad+a5)]

after pulse 2[x2 x1(b2+3*b5) (b3+3%b5) (b4+b5)]

after pulse 3 [x3 x2(c2+3*c5) (c3+3*c5) (cd+c5)]

after pulse 4 [x4 x3(d2+3*d5) (d3+3*d5) (d4+d5)]

The above provides the representation of the states of the
shift register after a pulse match with the previous represen-
tation.

Accordingly one can create sets of equations. For instance
the earlier representation shows that after (clock) pulse 1 the
content of the third shift register element is b3. This is equal

US 8,345,873 B2

21

to (a2+3*a5) and leads to b3=(a2+3*a5), keeping in mind that
‘+”and ‘*’ are defined in GF(4) and were already presented as
truth tables. Assuming that the correct sequence was detected
so the output y=[0 0 0 0 0]. Accordingly: 0=3*x1+a5;
0=3*x2+b5; 0=3*x3+c5; 0=3*x4+d5; and 0=3*x5+e5. The
4-valued function ‘=’ is associative, commutative and self-
reversing, and accordingly: a5=3%x1; b5=3*x2; c5=3*x3;
d5=3*x4; and e5=3*x5.

The solution, expressing the shift register content [al a2 a3
a4 a5] in x1, x2, x3, x4 and x5 will provide:

al1=3*3%x2+3*3*x3+3x4+3*x5
a2=3*3%x1+3*3*x2+3*x3+3%x4
a3=3*3%x1+3*x2+3*x3
a4=3*x1+3%*x2

a5=3*x1

For instance assume that 5 consecutive 4-valued symbols
created by the sequence generator of FIG. 31 arex=[22200].
A correct detection requires that [al a2 a3 a4 a5]=[013 0 1].
This is the correct initial state of the LFSR of FIG. 31 to
generate the sequence.

The detector can be used to indicate that either symbol
errors have occurred in the received sequence or that the
wrong sequence is being detected for the content of the shift
register, or a wrong state shift register state is being used. This
is indicated when the output of a detector does not generate
identical symbols (such as Os in the illustrative example).

Accordingly the calculation of the state or the content of
the shift register of a detector LFSR in Galois configuration
provides at least two useful applications in detection of
sequences of symbols.

As an aspect of the present invention one can restart the
Galois detection of a sequence of symbols created by a
sequence generator, in which errors have occurred. While this
Galois configuration detector is not self synchronizing, one
may overcome the errors by calculating the correct shift reg-
ister content.

As another aspect of the present invention, one can also use
the method of calculating the content of the shift register to
detect the presence of a sequence. In telecommunication
applications such as CDMA cell phone systems, often an
LFSR generated m-sequence is used, wherein for individual
users a shifted version of such sequence is applied. The cor-
relation between an m-sequence and a shifted version is Low,
while the correlation between two identical sequences is
High. FIG. 19 shows a correlation graph that demonstrates
this aspect. In general one requires a sufficient amount of
symbols of a sequence to determine a correlation graph.

Assuming that a sequence is error free, one has one of two
situations: either a sequence in a correct phase is received, or
asequence not in correct phase is received. Ifa sequence is not
in a correct phase it should be rejected and treated as for
instance noise. The current reconstruction method for deter-
mining the content of the shift register in Galois configuration
offers a rapid and simple detection method. In general receiv-
ers maintain a low power clock circuit which allows areceiver
to determine a phase with a main sequence generator. In fact
one often applies this to synchronize an offset mask for gen-
erating an expected sequence when part of a receiving circuit
comes out of a sleep mode. In the detection method one uses
a clock signal to determine a state of a shift register based on
an assumed correct reception of a sequence. At the same time

20

25

30

35

40

45

50

55

60

65

22

one retrieves from a memory the known correct state that an
LFSR should have ata certain moment if the correct sequence
was received.

It was shown by the inventor that an LFSR generating an
m-sequence (be it binary or n-valued with n>2) that over the
length of the sequence being generated at every clock pulse
the content of the shift register is different from any other state
of the shift register during the generation of the m-length
sequence. This is for instance described in U.S. patent appli-
cation Ser. No. 11/427,498, filed on Jun. 29, 2006 entitled The
Creation and Detection of Binary and Non-Binary Pseudo-
Noise Sequences Not Using LFSR Circuits which is incorpo-
rated herein by reference in its entirety. This means that a
calculated content of the shift register of a detector detecting
an out-of-phase sequence, the out-of-phase sequence will be
different from the calculated content of the shift register in the
detector from an in-phase sequence. Accordingly one can
correctly distinguish between sequences in different phases
by calculating the content of the shift register of a detector and
comparing it to the known required content which is for
instance stored in a memory.

A diagram for such a detector is provided in FIG. 33. A unit
3302, which can for instance comprise a processor which may
use A/D converters to convert n-valued signals in binary
words, is used to calculate from k incoming symbols the
required state of a state register with k elements at a moment
10, assuming that at moment t0 the first of k correct n-valued
symbols of a sequence were received. N-valued symbols are
received on an input 3301. A clock signal is provided on an
input 3300. After k incoming symbols have been received the
calculated state of the shift register is provided on output
3304. The clock signal is also provided to a memory unit 3303
that has stored the correct state of the LFSR related to a
sequence in a certain phase, and makes it available on an
output 3305. The memory 3303 may contain a unit 3308 that
controls a delay time for providing the stored state of the
LFSR on the output, to make sure that both units 3302 and
3303 will provide information at the appropriate time. The
output of the units 3303 and 3305 is inputted to a comparator
3306, which compares the inputs from 3303 and 3305. The
comparator 3306 also may use the clock signal 3300 to deter-
mine when to execute the comparison, which may include
calculating a delay. A signal acknowledging identity or dif-
ference between the inputs will be provided on an output
3307. One may make a decision after just calculating 1 con-
tent. One may also compare several consecutive or non-con-
secutive calculated and known states to make sure that poten-
tial errors in a received signal are dealt with based on a certain
symbol error ratio.

The method and apparatus here provided works for n with
n>2 as well as for binary detection. A first illustrative 4-val-
ued example will be provided. Herein the sequence generator
in Galois configuration is shown in diagram in FIG. 34. The
function ‘+’is the earlier provided 4-valued adder over GF(4).
The multiplier 3401 is a multiplication with factor 2 accord-
ing to the earlier provided multiplication over GF(4). One
may reduce the structure in such a way that no multipliers are
used. A multiplier is used in the example.

The corresponding detector is shown in FIG. 35. The detec-
tor is the generator flipped along the horizontal axis, wherein
now a detecting function 3502 is inserted. The detecting
function preferably has a truth table with the diagonal pro-
viding identical states. The ‘+” function meets this require-
ment and thus is applied as detecting function. The input to
the first element of the shift register may be considered the
input to the LFSR ofthe detector and to the detector. The input
to the LFSR is also connected to a multiplier 3501 which

US 8,345,873 B2

23

should reverse the multiplier 3401 in the generator of FIG. 34.
This is the multiplier 3 over GF(4). Further more the input to
the detector is connected to the input of the multiplier 3501.
The output of the multiplier 3501 is connected to a first input
of function 3502 and the output of the last element of the shift
register of the LFSR is connected to a second input of the
function 3502. When the correct sequence is received and the
shift register has the correct state the output 3503 will gener-
ate all Os.

As before all LFSRs work under control of a clock signal
which is assumed but not shown. Assume that the generator of
FIG. 34 has an initial shift register content [srl sr2 sr3]=[1 3
0]. The generator will provide a 4-valued maximum length
sequence of 63 symbols of which the first 16 symbols are [0
132300110312223].

The table in FIG. 36 provides the content of the shift for the
first 16 clock pulses. One can see that the content of the first
element of the shift register is identical to the first 16 symbols
of the sequence.

The content of the shift register [srl sr2 sr3] based on the
assumption of the received sequence [x1 x2 x3] being the
correct one can be calculated from:

sP1=3*x1+3*x2+3%x3
sP2=3*x1+3*x2

s¥3=3%*x3

One can then input series of 3 consecutives symbols into
the above equations to generate a shift register table. For the
current case that is a table identical of course to the table of
FIG. 36.

Assume that the received sequence is out of phase by two
symbols with the here provided sequence. The first 16 sym-
bols of the sequence are then: [3230011031222322].
The first 16 calculated states of the shift register using the
above equations are provided in the table of FIG. 37. Not
unexpectedly the table of FIG. 37 is different from FIG. 36.
The table is shifted in vertical direction by 2 positions. This
means that at any time the content of a table with shift register
states corresponding with a sequence in a certain phase is
different from a table representing the states of the same
sequence in a different state. Accordingly one can detect a
sequence in a certain phase and distinguish it from the same
sequence in a different phase.

The here provided method and apparatus can also be
applied to distinguish between a first m-sequence generated
by the generator of FIG. 34 for instance and a second
sequence generated by a different sequence generator. In an
illustrative example a 4-valued m-sequence of 63 symbols
will be generated by the generator of which a diagram is
provided in FIG. 38. As one can see this generator has three
multipliers 3801, 3802 and 3803 all being a multiplier 3 over
GF(4). The reason to use this example is because the shift
register of this generator will have all the states of the gen-
erator of FIG. 34, but substantially in a different order. The
first 16 symbols of the sequence generated from the initial
shift register state [130] are[0220013120201223].

One can provide this sequence to the comparator 3303 of
FIG. 33. The unit will then generate the calculated states as
provided in the table of FIG. 39. Comparing the table of FI1G.
39 with FIG. 36 of the correct sequence shows that in certain
cases one has to compare a series of consecutive states before
deciding if a sequence was detected. In this case the shift
register contents [20 1], [23 1] and [2 3 2] appear in the same
order in the same phase. After this the correct and calculated
shift register content will be different again. However it is

20

25

30

35

40

45

50

55

60

65

24

clear that in such situations at least 4 consecutive shift register
contents should be calculated and compared in order to arrive
at a correct decision of detection.

As illustrative examples 4-valued LFSRs are used wherein
‘+’ and ‘x” are defined over GF(4). This makes symbol
manipulation fairly simple as the operations are commuta-
tive, reversible, distributive and associative. It should be
appreciated that the here provided method works for any
reversible n-valued function with reversible n-valued invert-
ers. Symbol manipulation may be not as easy as in an
extended binary field; however solutions can be determined
and applied.

One can use the here provided method and apparatus also
in the binary case. A diagram of a binary sequence generator
in Galois configuration is provided in FIG. 40. It has 5 shift
register elements. The binary function ‘+’ is the XOR func-
tion. The corresponding detector is provided in FIG. 41. The
binary detection function 40001 is also a XOR function. In
case of correct detection of the sequence generated by the
generator of FIG. 40 by the detector of FIG. 41 the following
relations hold between the state of the shift register at detec-
tion of x1 between the state register content [sr1 sr2 st3 sr4
sr5] and the input signal during 5 consecutive input symbols
[x1 x2 x3 x4 x5].

sr1=x3+x5
SF2=x2+x4
sr3=x14x3
sPA=x2

sr5=x1

The first 16 symbols generated by the generator of FIG. 40
with initial content of the shift register [0 100 1]are[101 1
101100011111].

FIG. 42 shows a table with consecutive shift register con-
tent for the generator of FIG. 40, which is identical to the
calculated content of the shift register of the detector when the
sequence in correct phase is detected. As before, every shift
register content is unique and different from every other shift
register content if only sequences being phase shifted ver-
sions of each other are received.

FIG. 43 shows a diagram of another binary m-sequence
generator. This generator has the same number of shift regis-
ter elements as the one FIG. 40. Accordingly both generators
will have the same set of contents of the shift register, only in
substantially different order. Assume that the generator of
FIG. 43 starts with the same shift register content as FIG. 40.
The shift register content calculated by the detector of F1IG. 41
is shown in the table of FIG. 43. In this case only the 9th row
ofthe table of FIG. 44 and FIG. 42 have a content in common,
the content being [1 1 0 0 0]. Accordingly the method as
provided can also used to detect between sequences gener-
ated by different generators. Such detection in most cases
may require calculating multiple contents to address common
content occurrences.

One application of detection as here provided for instance
can be track location on a magnetic or optical disk, wherein a
position can be marked by a sequence which can be detected
by the present method or apparatus.

One can use the method and apparatus as provided in FI1G.
33 also to distinguish between sequences generated by dif-
ferent sequence generators. In such a case one should com-
pare several consecutive states.

US 8,345,873 B2

25

Fibonacci and Galois Scramblers and Descramblers

It is another aspect of the present invention to provide
identical Fibonacci and Galois scramblers and descramblers.
Galois scramblers and descramblers have been provided. In
the configuration as shown in FIG. 3 and FIG. 4 it has been
demonstrated that the Galois scramblers and descramblers
work as expected. However the Galois scramblers are not
identical to the shown Fibonacci scramblers and a Fibonacci
descrambler cannot descramble a sequence created by a
Galois scrambler without extra measures. Such a possibility
may be attractive as it would provide a fast scrambler and a
perhaps slower, but self-synchronizing descrambler. In fact
one could make descrambling faster by using the memory
based descrambler or the multi-input function descrambler as
demonstrated in an earlier section.

As an example of the provided method to achieve equiva-
lence, a modified Galois scrambler derived from the one
shown in FIG. 3 will be used.

The example starts with a scrambler in Fibonacci configu-
ration as shown in FIG. 1. The equivalent Galois configura-
tion descrambler is shown in FIG. 45. The modification
applies the rules of transforming the sequence generator (mir-
roring the position of the taps) and transposing the truth tables
of'the functions at the taps from Fibonacci to Galois configu-
ration. A novel element in the method is the change in position
of function sc3 at the top left of the Fibonacci scrambler to the
right of the modified Galois scrambler.

The signal generated by the Galois scrambler of FIG. 45 is
“out-of-phase” with the signal generated by the Fibonacci
scrambler. However it turns out that that does not matter for
the Galois descrambler as shown in FIG. 46 as it will self-
synchronize after flushing. The following examples will illus-
trate the approach.

One can start out with a to be scrambled ternary sequence
sig_in.

sig in=[01221120012001201021110210].

The Fibonacci scrambler of FIG. 1 has the functions with
the following truth tables.

20

25

30

35

40

26
The Galois scrambler of FIG. 45 has functions with the
truth tables:

sc2? 0 1 2
0 0 1 2

1 1 2 0
2 2 0 1
sc1? 0 1 2
0 0 1 2

1 2 0 1
2 1 2 0
sc3 0 1 2
0 0 1 2

1 1 2 0

2 2 0 1

Assume the initial state of the shift register of the scrambler
of FIG. 45 also to be [1 0 2]. This will create the scrambled
sequence: sig g scram=[2022110100110201020
21001 21]. This is clearly a different sequence than
sig_{ scram. However if one makes the shift register initial
state [1 1 2] then the sequence generated by the Galois scram-
bler is the same as the one from the Fibonacci scrambler.

The corresponding descrambler of the Galois scrambler of
FIG. 45 is the Galois descrambler of F1IG. 46, which is another
aspect of the present invention. As before the descrambler is
the mirror image of the scrambler, wherein the LFSR uses the
same functions as in the scrambler. However as the scrambler
has a scrambling function ‘sc3’, the descrambler has a
descrambling function ‘ds3’ which is the reverse of ‘sc3’.

The signal sig_g_scram is inputted into the descrambler of
FIG. 46 on sig_line wherein ds3 has the truth table:

scl 0 1 2
0 0 2 1
1 1 0 2 =
2 2 ! 0 ds3 0 1 2
0 0 2 1
1 1 0 2
S0 2 2 1 0
sc2 0 1 2
When the initial state of the shift register is also [1 0 2] then
0 0 1 2 the original signal sig_in will be provided on the output of the
i i é ? descrambler of FIG. 46.

55 As another aspect of the present invention the Fibonacci
descrambler of FIG. 2 will be provided as a descrambler for
the n-valued scrambler of FIG. 45. Assume the initial state of
the shift register of this Fibonacci descrambler to be [1 0 2].
This will result into: sig_f dscram=[0222112001200

53 0 ! 2 60 120102111021 0]. The first 3 symbols of the original

0 0 1 2 input sequence were [0 1 2]. The equivalent initial states of the

1 1 2 0 two scramblers of FIG. 1 and FIG. 44 are different for creating

2 2 0 ! the same scrambled sequence. Accordingly a Fibonacci
descrambler descrambling a Galois scrambled sequence has

Assume the initial state of the shift registertobe [10 2] and 65 to be flushed of the ‘wrong’ symbols before descrambling

the scrambled sequence is seq_f scram=[22120110112
002120001222001].

correctly. However after flushing the descrambler correctly
descrambles the signal scrambled by the Galois scrambler

US 8,345,873 B2

27

back into sig_in (except of course for the beginning during
flushing if the initial content was not correct).

This approach works for any n-valued Fibonacci scram-
bler, by finding the corresponding Galois scrambler and
descrambling with the Fibonacci descrambler. This includes
the binary case. The Galois configuration scrambler of FIG.
45 is essentially different from the scrambler of FIG. 3. Both
scramblers have the same LFSR. In FIG. 3 the LFSR is to the
right of line 300. If the line 300 is a short circuit then FIG. 3
is a sequence generator. With the scrambling function ‘sc3’
connected to the LFSR FIG. 3 is a scrambler. In FIG. 3301 is
the input to the shift register and 302 is the output of the shift
register. One input of “sc3’ is connected to output 302 and the
output 303 of the scrambling function ‘sc3’ is connected to
the input 301 of the shift register. Also an input of the LFSR
functions (scl and sc2) is connected to the output of the
LFSR.

The scrambler of FIG. 45 is almost identical to the scram-
bler of FIG. 3; however there are important differences. The
LFSR is the part to the left of line 4500. If the line 4500 is a
short circuit then the circuit id a sequence generator. However
while the LFSR functions in FIG. 3 were directly connected
to the output of the shift register, in FIG. 45 the functions sc1”
and sc2” of the LFSR are not directly connected to the output
4501 of'the shift register. In FIG. 45 the functions ofthe LFSR
are connected to the output of the scrambling function sc3.
Because one can descramble a sequence scrambled by the
scrambler of FIG. 45 by a Fibonacci descrambler, the con-
figuration as shown in FIG. 45 will be called a Galois LFSR
configuration scrambler in Fibonacci equivalent mode.

Accordingly a method is provided to create a Fibonacci
descrambler for a Galois scrambler. This method can be
applied to binary and n-valued scramblers and descramblers.

The steps of this method are:

1. design an n-valued Fibonacci scrambler with p storage
element shift register and q taps;

2. design the equivalent Galois scrambler, by changing the
tap at position k to position (p-k) and the function from
sc to sc”.

3. use the Fibonacci descrambler corresponding to step 1
for descrambling the signal of step 2.

Accordingly a method has been provided that allows an
n-valued or a binary sequence to be scrambled by a Galois
type scrambler and to be descrambled by a Fibonacci (self-
flushing) type descrambler.

The Self-Synchronizing Galois Descrambler

It is also possible to create a self-synchronizing descram-
bler in Galois configuration for a corresponding scrambler in
Galois configuration. One can use a Galois scrambler in the
Fibonacci equivalent mode, such as shown in FI1G. 45, with a
scrambling function connected directly to the output of the
LFSR and the signal outputted by the scrambling function
being the feedback signal. The corresponding descrambler in
Galois configuration is shown in FIG. 46. Comparing the
scrambler of FIG. 45 with the descrambler of FIG. 46 one can
see that the input 4504 to the scrambler of FIG. 45 becomes
the output 4604 of the descrambler of FIG. 46. Further more
the output 4505 of the scrambler of FIG. 45 becomes the input
4605 of the descrambler of FIG. 46. Further more the scram-
bling function sc3 of the scrambler of FIG. 45 becomes a
descrambling function ds3 in the descrambler of FIG. 46
whereby functions ‘sc3” and ‘ds3’ are each others reverse.
This then provides a general rule for binary and n-valued
corresponding scramblers and descramblers in Galois con-
figuration.

One can easily conclude from the diagram of FIG. 46 that
the descrambler is self-synchronizing. The symbols on the

20

25

30

35

40

45

50

55

60

65

28

input 4605 provide new content for the shift register as well as
the feed-forward signals. An occurring error will be shifted
through the register elements. As the incoming signal
becomes error free, so is the feed-forward signal, and so will
be the outputted signal on 4604, once the errors are flushed
from the shift register. As before, both the scrambler and
descrambler LFSR are under control of a clock signal, not
shown but may be assumed. Accordingly a self-synchroniz-
ing descrambler in Galois configuration has been provided.

For practical reasons one may identify 3 important nodes or
terminals in the descrambler. The circuit within these termi-
nals in the descrambler is not a Linear Feedback Shift Reg-
ister but rather a Linear Forward Connected Shift Register
(LFCSR), wherein the signal on the input is forwarded
through taps to functions separating shift register elements.
Herein 4605 is an input of the LFFSR, 4601 is a first output
and 4602 is a second output of the LFCSR. In the configura-
tion as shown in FIG. 46 4602 and 4605 are carrying the same
signal. The following 4-valued illustrative example will show
that in some cases 4602 and 4605 may have different signals.

In general a test to distinguish if a shift register in Galois
configuration is in LFSR or in LFCSR mode is to identify a
function connected between two shift register elements. If the
function has an input connected to the output (potentially
through an inverter) of the shift register, it is part of an LFSR.
Ifit is connected (potentially through an inverter) to the input
of the shift register it is part of an LFCSR.

The illustrative example is a 4-valued variation of the
scrambler and descrambler combination as earlier provided
in FIGS. 31 and 32. They are shown in Galois Fibonacci
equivalent mode in FIGS. 47 and 48. The scrambler of FIG.
47 has a multiplier 4701 which is 2 over GF(4) in its input.
The functions scl, sc2, sc3, sc4 and ds4 are the earlier pro-
vided adder over GF(4). The descrambler of FIG. 48 has a
multiplier 4801 in a corresponding position at the input. This
multiplier, which inverts multiplication 2 over GF(4) and
accordingly is a multiplication 3 over GF(4), can be consid-
ered an inverter, that reverses multiplier 4701, in order to
correctly descramble. This condition for multipliers at the
input is one general requirement for a correct descrambler
corresponding to an n-valued scrambler in Galois configura-
tion with an inverter at the input. Further more the descram-
bling function ‘ds4’ in the descrambler of FIG. 47 should
reverse function ‘sc4’. It is easy to see that the signals at 4802
and 4803 may be different.

Assume that the scrambler of FIG. 47 is provided with a
4-valued sequence sig_in=[012301230123012332
1 0], the initial state of the shift register is [0 1 3 0 1], the ‘+’
and ‘x’ functions are the earlier provided 4-valued adder and
multiplier over GF(4). The generated sequence sig_line=[2 0
313311211020023230]

Inputting sig_line into the descrambler of FI1G. 48 with the
same initial shift register content will again generate sig_in.
Assume thatsymbols [1 1 2] in positions 7, 8 and 9 of sig_line
experienced errors and are now [0 O 0]. Determining the
difference of the descrambled sequence with sig_in provides
[000000-100-11-212000000]. This shows thatafter
the errors are flushed from the shift register the errors have
disappeared from the descrambled sequence. This applies to
any n-valued and binary Galois descrambler in Fibonacci
equivalent mode, as long as the conditions for corresponding
scramblers and descramblers are met.

In FIG. 47 the input of the shift register is also the input of
shift register element srl. In scramblers in Galois configura-
tion like in FIG. 47 when it is stated that the output of a
scrambling function (in FIG. 47 sc4 is the scrambling func-
tion) is connected to the input of a shift register it is intended

US 8,345,873 B2

29

to mean either directly without an inverter in the path from
function output to shift register input, or indirectly, meaning
like in FIG. 47 through an inverter such as for example
inverter 4701. The same applies to connecting the output of
the scrambling function to an input of a reversible function
connecting two shift register elements, such as functions scl,
sc2 and sc3 in FIG. 47. While the output of sc4 is directly
connected to an input of sc3, it is indirectly connected to an
input of sc2 through an inverter. Accordingly connected
herein means directly connected or indirectly connected
through an inverter. This applies to scramblers, descramblers,
detectors and sequence generators.

One can check the method in the binary case by making all
multipliers in FIG. 47 1 and replacing the 4-valued ‘+” with
the 2-valued “+’. This binary Galois scrambler is shown in
FIG. 49. Making the initial state of the shift register [0 1 1 0
1]andsig_in=[011100111010111001 00] the binary
scrambler of FIG. 49 will generate sig_line=[101011110
1001010101 1]. Inputting sig_line into the corresponding
descrambler as shown in FIG. 50 with an identical initial shift
register content will generate sig_in again.

Replacing the first 4 symbols of sig_line as being in error
by [01 0 1] and descrambling sig_line will generate a signal
that differs with sig_inas[-1010-1011000000000
0 0], which demonstrates that the Galois configuration
descrambler of FIG. 50 is flushed of errors and thus is self-
synchronizing.

In FIG. 51 a binary scrambler is shown almost identical to
the binary scrambler of FIG. 49. A difference is an inserted
binary inverter 5100. The corresponding descrambler is
shown in FIG. 52. FIG. 52 has an inverter 5200. F1IG. 52 is the
exact mirror not only in structure, but also in functions and
inverters of FIG. 51. In fact, no matter where an inverter is
inserted into a binary scrambler in Galois configuration in
Fibonacci mode, its descrambler will be a mirror image, and
have exactly the same functions and inverters. Another binary
example is provided in FIG. 53 with inverters 5300 and 5301
and its corresponding descrambler is shown in FIG. 54 with
inverters 5400 and 5401.

The use of binary inverters in binary scramblers, descram-
blers and sequence generators has essentially the effect of
changing a XOR or mod-2 addition function into an EQUAL
function. One can easily check that a XOR function with one
binary inverter at the input is identical to an EQUAL function.
A XOR function with a binary inverter at the output also is
equivalent to an EQUAL function. A XOR function with a
binary inverter at both inputs remains equivalent to a XOR
function. Accordingly the use of inverters in binary scram-
blers, descramblers and sequence generators is equivalent to
replacing some or all XOR functions by EQUAL functions.
As an illustrative example the binary scrambler of FIG. 51 is
provided by its equivalent circuit in FIG. 55, by ‘moving’ the
inverter 5100 to 5500 in FIG. 55. This changes the signal
provided to the XOR function between the shift register ele-
ments in FIG. 55. To correct that each tap is provided with an
inverter: inverter 5501, 5502 and 5503. Based on the earlier
provided explanation one can then change all the relevant
XOR functions combined with inverters into EQUAL func-
tions as shown in FIG. 56. Based on the earlier cited patent
applications it should be appreciated that all multipliers in
n-valued with n>2 LFSRs and LFCSRs can be eliminated so
that only 2-input functions are used.

FIG. 53 and FIG. 54 show corresponding binary scrambler
and descrambler with inverters 5300, 5301 and 5400 and
5401. These inverters can be eliminated by using EQUAL
functions at the appropriate positions.

5

20

25

30

35

40

45

50

55

60

65

30

The effect of using inverters in binary sequence generators
may be that the sequence will be inverted or that the sequence
is shifted in phase. In both cases the absolute correlation
number between such a sequence and sequences generated
different inverter configurations of the generator will be the
minimum number, indicating that the sequences are not in
phase.

A binary illustrative example of this method which is an
aspect of the present invention is provided in a binary
sequence generator as shown in FIG. 57. Herein one of the
binary multipliers 5700, 5701, 5702, 5703 or 5704 is used in
generating a binary m-sequence of 31 chips. Again a clock
signal is assumed, though not shown. For each case the gen-
erator starts with shift register content [0 1 1 0 1]. For each
generator with a different inverter the generated sequence is
provided:

Inverter 5700:[00011001001111101110001
01011010]

Inverter 5701:[11110011011000001000111
01010010]

Inverter 5702:[11000001000111010100101
11100110]

Inverter 5703:[10100101111001101100000
10001110]

Inverter 5704:[01101100000100011101010
01011110]

For instance using the sequence generated using Inverter
5700 as the baseline the sequence of Inverter 5701 is an
inverted and shifted version of the sequence of Inverter 5700.
The sequence of Inverter 5702 is a shifted version of the
sequence of Inverter 5701; etc. One can generate additional
sequence versions by using combinations of the Inverters.
This method which is an aspect of the current invention
applies to binary as well as to non-binary sequence genera-
tors. It provides a relatively simple method to create orthogo-
nal sequences with minimal modifications and without
changing initial shift register content.

It was shown here and elsewhere by the inventor that a
combination of binary and n-valued inverters and a single
2-input (or 2-place) switching function can be reduced to an
equivalent 2-input switching function. Conversely one can
expand a single 2-input function into a 2-input switching
function with inverters. Accordingly the scramblers,
descramblers, sequence generators and detectors of the
present invention that have no inverters can also be realized
by equivalent circuits having functions and inverters. Accord-
ingly scramblers, descramblers, sequence generators and
detectors that have inverters and which can be reduced to
equivalent scramblers, descramblers, sequence generators
and detectors having no inverters and can perform in accor-
dance with one or more aspects of the present invention are
fully contemplated.

Ithas been demonstrated in earlier cited patent applications
that multipliers can be avoided in LFSRs in Fibonacci con-
figuration. It has been shown as an aspect of the present
invention how a Fibonacci LFSR can be converted into a
Galois LFSR. Accordingly it is possible to create Galois
LFSRs wherein multipliers are avoided. Further more multi-
pliers only play a role in n-valued LFSRs with n>2. For n=2
or the binary case a multiplier is either O or 1, which means
either a connection is present or not.

In one embodiment of n-valued functions it is sometimes
preferred to use adders and multipliers over GF(20p) or in an
extended binary field. This allows implementing adders and
multipliers with binary circuits. In such a case it may not be
beneficial to circumvent the use of multipliers. Accordingly it
has been show how to create descramblers, scramblers,

US 8,345,873 B2

31

sequence generators and detectors with multipliers. It should
be appreciated that a self synchronizing descrambler in
Galois configuration having an LFCSR and having an appro-
priate descrambling function so that identical 2 inputs always
provide an output in a first state, will serve as a self synchro-
nizing detector for a sequence of n-valued symbols generated
by an n-valued sequence generator with an LFSR with the
same structure (taps, functions and shift register) as the
LFCSR.

The general rules and configurations are provided for con-
verting a Fibonacci structure LFSR into a Galois configura-
tion; also a rule for converting a Galois configuration into a
Fibonacci configuration was provided; further more a method
was provided for determining the content of the shift register
of'a Galois configuration and a detector for detecting n-valued
sequences. Also adescrambler in Galois configurationused in
Fibonacci mode was provided and a Galois scrambler and
corresponding self-synchronizing Galois descrambler was
provided for binary and n-valued signals. The LFSR based
scrambler and descrambler of which at least one is in Galois
configuration may be part of a system of scrambling/de-
scrambling wherein scrambler and descrambler are posi-
tioned in different apparatus and/or locations. The descram-
bler may have a LFCSR instead of an LFSR. Also a sequence
generator and a sequence detector, wherein the sequence
generator has an LFSR may be part of a system. The detector
may be considered a descrambler with a non-reversible
descrambling function, wherein the output of the descram-
bling function provides important information about a
detected sequence.

A novel concept that was introduced is the Linear Forward
Connected Shift Register or LFCSR. In a scrambler in Galois
configuration such as FIG. 47 an LFSR is used. Herein the
movement of symbols from input to output of the scrambler
through the shift register is different from the direction of
movement through the loop 4700 in FIG. 47. In a descrambler
in Galois configuration such as shown in FIG. 48 all move-
ment from symbols either through the shift register or through
loop 4800 has the same direction. Accordingly the descram-
bler of FIG. 48 has an LFCSR. The structure of the LFSR of
the Galois scrambler and the LFCSR of the corresponding
LFSR are identical. This is intended as: the shift registers are
identical with taps and functions in the same positions. Invert-
ers, if included, occur in the same positions in LFSR and
LFCSR. As explained in certain cases an inverter in an
LFSCR connected to the input of the shift register of a scram-
bler may be the reverse of an inverter connected to the output
of the LFSR of the corresponding scrambler.

It should be clear that the descrambler in Galois configu-
ration with an LFCSR reverses the direction of movement of
symbols as compared to the LFSR of the corresponding
scrambler. Accordingly the input of the descrambler corre-
sponds with the position of the output of the scrambler. The
input of the scrambler (or an input of the scrambling function)
corresponds with the output of the descrambler (or the output
of the descrambling function). The output of the scrambling
function of the scrambler corresponds with an input of the
descrambling function in the descrambler.

It is here repeated that anywhere and anytime an LFSR or
an LFCSR is used a clock signal to initiate the shift of content
into an element of a shift register is assumed. If the LFSR or
LFCSR is implemented in a processor such clock signal is
implied by executing an instruction. Elements of a shift reg-
ister that can hold a binary or n-valued symbol or a binary
word representing an n-valued symbol may be realized as for
instance latches or Flip-Flops. N-valued memory elements
are enabled and disclosed in U.S. Pat. No. 6,133,754 by

20

25

30

35

40

45

50

55

60

65

32

Olson, issued on Oct. 19, 2000 entitled Multiple-valued logic
circuit architecture; supplementary symmetrical logic circuit
structure (SUS-LOC). N-valued latches and memory ele-
ments are also disclosed by the inventor in U.S. patent appli-
cation Ser. No. 11/139,835 filed May 27, 2005 entitled Multi-
valued digital information retaining elements and memory
devices which is incorporated herein by reference in its
entirety. Scramblers, descramblers, sequence generators and
sequence detectors, substantially in n-valued form with n>2
were disclosed by the inventor in earlier cited patent applica-
tions and in U.S. patent application Ser. No. 11/042,645, filed
on Jan. 25, 2005 entitled Multi-valued scrambling and
descrambling of digital data on optical disks and other storage
media which is incorporated herein by reference in its
entirety.

An n-valued or n-state symbol can have one of n-states with
n>2. Ann-state symbol can be represented by a signal that can
assume one of n states. An n-state symbol can also be repre-
sented by a plurality of k-state symbols with k<n. A k-state
symbol can be represented by a signal that can assume one of
k states. Accordingly, an n-state symbol can be represented by
a plurality of k-state signals. For instance an 8-state symbol
can be represented by at least 2-state symbols. The finite field
GF(n=2) may be an extension of the finite binary field GF(2).
It the field GF(2) is defined in using 2-valued arithmetic, then
the field GF(n=27) may be defined using similar operations to
define elements in GF(n=2%) wherein a symbol in GF(n=2%)
may be represented by a word of p bits.

An n-state symbol may be processed by an n-valued logic
function. Under certain circumstances an n-state symbol may
be represented by a plurality of k-state symbols with k<n and
the plurality of k-state symbols may be processed by a plu-
rality of k-valued logic functions. The result of such a pro-
cessing may be another plurality of k-state symbols repre-
senting an n-state symbol.

Under certain conditions the processing of a first plurality
of k-state symbols representing a first n-state symbol with a
first plurality of k-state logic functions will generate a second
plurality of k-state symbols representing a second n-state
symbol. This processing by a plurality of k-valued functions
is equivalent to the processing of the first n-state symbol by a
first n-valued logic function into the second n-state symbol
when GF(K?) is an extension field of GF(k).

Herein a field GF(n=27) will be called an extension field or
and extension finite field or an extended field of GF(2).
Because binary operations are currently the preferred switch-
ing technology at the time of the invention, the examples
provided herein use binary extension fields. It is to be under-
stood that extension fields for other values of'k may be created
and applied and are fully contemplated.

FIG. 58 shows a 16-state LFSR based scrambler 5800 in
binary form. Its 16-state form is shown in FIG. 59. The
scrambler 5800 is comprised of 4 parallel LFSRs 5801, 5802,
5803 and 5804. A 16-state symbol is represented by a binary
word of 4 bits. Each word can be stored in parallel in shift
register elements 5805, 5806 and 5807 each able to store and
shift 4 bits. This LFSR has no multipliers or inverters. This
means that feedback is straight forward within an LFSR to a
XOR function in the LFSR. For instance 5808 is a diagram of
an XOR device. In fact all squares similar to 5808 indicate a
binary XOR function. Numerals are not provided to prevent
the diagram from becoming unreadable. An input 5809 is
provided with a word of 4 bits to be scrambled and the input
is actually made up from 4 individual inputs. The output 5810
(which are of course in binary form 4 individual outputs)
provides the scrambled 16-state symbol in binary form as 4
bits.

US 8,345,873 B2

33

One can imagine that such a scrambler can be used to
scramble a symbol for a QAM-16 system. A/D and D/A
converters can be used to create the actual 16 valued symbols
orto create a4 bit word in order to process the 16-state symbol
in binary form. It was explained in earlier cited U.S. patent
application Ser. No. 12/137,945 that the scrambler executes a
16-state LFSR scrambler using 16-state adders over GF(16).
One can see that without inverters the scrambler is actually
made from 4 individual binary scramblers.

The diagram of FIG. 58 is equivalent with the diagram of
FIG. 59 wherein all elements are 16-state elements. Shift
register elements 205,206 and 207 can store and shift 16 state
symbols. Functions 5901, 5902 and 5903 are adders over
GF(16). The 16-state symbols may be inputted on 5904 and
the scrambled 16-state symbols are outputted on 5908. In the
binary implementation 16-state symbols are processed as
2*-symbols or as 4-bit words.

The LFSR of FIG. 58 and its equivalent form in FIG. 59 are
not optimal in scrambling. One may look at the LFSR in a
sequence generation configuration, which is the form as in
FIG. 59 wherein the function 5903 is shorted. The optimal
form of the LFSR for scrambling is wherein the LFSR will
generate amaximum length 16-state symbol sequence. In that
case the scrambler with such an LFSR is least sensitive to
sequences to be scrambled with certain repetitive patterns
such as all 1 bits words or all 0 bits words.

Such an optimal LFSR usually can be realized by inserting
an n-state (in this case a 16-state) reversible inverter. Such a
reversible inverter may be an n-valued multiplier over GF(n).
It may also be an inverter that does not transform state 0 into
state 0, which may be called a non-zero based n-state revers-
ible inverter. Such an inverter 6101 is shown in FIG. 61 which
is almost identical to FIG. 59 except of course for the inverter.
This is equivalent to the binary implementation as shown in
FIG. 60 with inverter 6001.

An 8-state reversible inverter may be [0 12345 6 7]—[0
345671 2]. The inversion is provided by the states in
corresponding positions. It shows that state 0 always remains
state 0, while state 7 is inverted to state 2. Herein inverters will
be displayed as horizontal vectors. They may also be dis-
played as vertical vectors. The above zero-based inverter is
shown in vertical form in the following table. A binary rep-
resentation is also provided.

0 0 000 000
1 3 001 011
2 4 010 100
3 5 011 101
4 — 6 100 — 110
5 7 101 111
6 1 110 001
7 2 111 010

It was shown in for instance earlier cited U.S. patent appli-
cation Ser. No. 12/137,945 by the inventor that multipliers
over GF(n) may be realized easily in binary combinational
circuitry in binary form. One may of course also apply
memory based inverters wherein for instance an incoming
word may be considered as a memory address and the content
of the memory address is the inverted word as shown for
instance in the above table. Some inverters can be realized by
simple inversion. For instance the reversible 8-state non-zero-
basedinverter [01234567]—[7 6543210]inbinary form
requires only inversion of each bit in a word, as can be
determined from the following table.

20

25

30

35

45

50

55

60

65

34
0 7 000 111
1 6 001 110
2 5 010 101
3 4 011 100
4 — 3 100 — 011
5 2 101 010
6 1 110 110
7 0 111 000

The following table shows a truth table for an adder over
GF(8).

+GF(®) 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 4 7 2 6 5 3
2 2 4 0 5 1 3 7 6
3 3 7 5 0 6 2 4 1
4 4 2 1 6 0 7 3 5
5 5 6 3 2 7 0 1 4
6 6 5 7 4 3 1 0 2
7 7 3 6 1 5 4 2 0

The above table is shown next in binary form, wherein
binary words are assigned according to a definition over
GF(8).

+GF(8) 000 100 010 001 110 011 111 101
000 000 100 010 001 110 011 111 101
100 100 000 110 101 010 111 011 001
010 010 110 000 011 100 001 101 111
001 001 101 011 000 111 010 110 100
110 110 010 100 111 000 101 001 011
011 011 111 001 010 101 000 100 110
111 111 011 101 110 001 100 000 010
101 101 001 111 100 011 110 010 000

The above truth table demonstrates two aspects of adders
over GF(27) when p>2. The first aspect is (which applies to all
adders over GF(2?) that the sum over GF(27) is achieved from
inputs by applying to individual corresponding bits a XOR
function. The second aspect is that states over GF(2?) for p>2
do not conform with the actual binary representation of the
decimal value of a state. One may rearrange the truth table
according to the decimal value that each word represents as is
shown in the following table GFm(8).

+GFm(8) 000 001 010 011 100 101 110 111
000 000 001 010 011 100 101 110 111
001 001 000 011 010 101 100 111 110
010 010 011 000 001 110 111 100 101
011 011 010 001 000 111 110 101 100
100 100 101 110 111 000 001 010 011
101 101 100 111 110 001 000 011 010
110 110 111 100 101 010 011 000 001
111 111 110 101 100 011 010 001 000

This rearrangement does not fundamentally change the
working of the binary implementation. However it does
change the relationship between LFSRs over GF(21) in
2P-state form and those in binary representations in binary
words when inverters are involved.

It is to be understood that at any time the relationship
between binary and 27-state representation can be restored by

US 8,345,873 B2

35

assigning the correct states to an inverter. However, one may
also create LFSRs wherein words of p-bits are being pro-
cessed without directly considering the GF(n) representation.

In the above context an LFSR 6200 over GF(4) in binary
form is provided in FIG. 62. Herein each 4-state symbol is
represented by 2 bits. The LFSR in compliance with earlier
definitions such as in U.S. patent application Ser. No. 12/137,
945 is defined as the circuit to the right of line 6201. The
combination 6211 may be considered an output of the LFSR
and the combination 6212 an input. A connection between
6211 and 6212 may create a sequence generator. Inserting
two XOR functions may create a scrambler. The two LFSRs
6202 and 6203 work independently of each other it seems.
The connecting event between the two LFSRs is a clock
signal which allows the shift register elements 6205, 6206 and
6207 to shift at the same moment. Each shift register element
stores two bits. A clock signal is assumed but not shown in
order to keep the diagrams uncluttered. The feedbacks are
implemented through an XOR function 6208. Each small
square like 6208 indicates a device implementing an XOR
function. The circuit of FIG. 62 provides an output of 2 bit
words on output 6210. One may apply for instance a D/A
converter to create actual 4-valued signals. One may also
convert each word of p bits in a physically independent signal.
For instance into a light signal wherein a wavelength deter-
mines a state.

One may change the working of the combined binary
LFSRsin different ways. For instance one may insert a binary
inverter [0 1]—[1 0] into a feedback tap. This is shown in FIG.
63 in LFSR 6300 as 6301. One may also change an XOR
function into an EQUALITY function (=) as is shown in 6302
as the double square. Furthermore, one may also insert a
binary inverter in any other connection, for instance as shown
in FIG. 63 as 6303.

One may also insert as is shown in FIG. 64 in LFSR 6400
a binary inverter 6404 in the output of a sequence generator or
of'ascrambler. This will change the appearance of a sequence.
However, such a change is external to the LFSR.

How great the variety of a sequence generated through a
binary LFSR is may be determined by the sequences that are
generated by the LFSR in sequence generation form. The
variety is determined by a sequence of 27 state symbols rep-
resented by p binary words, and not by the binary LFSRs. In
general identical p binary LFSRs will not generate pseudo-
random like 27 state sequences. Sequences may change in
phase, depending on the initial content of the shift registers.
However, if p LFSRs will not generate a 27 state pseudo-
random sequence a phase shift in the binary shift registers will
generally not generate a 27 state sequence that is pseudo-
random.

There are several ways to create 2 pseudo-random LFSR
based sequence generators. One way is to design a sequence
generator with n=2%-state commutative functions and multi-
pliers and zero-based n=27-state inverters. Such an approach
for a 4-state sequence generator was explained by Derek Paul
Rogers in his 1995 Ph. D. thesis “Non-binary spread-spec-
trum multiple-access communications”. One may also take a
more general approach using also non-commutative n-state
reversible switching functions and non-zero based reversible
inverters for n=2# wherein p can also be greater than 2, an
aspect that was deliberately not investigated by the Rogers
reference, but was extensively described by the inventor for
instance in U.S. patent application Ser. No. 10/935,960 filed
on Sep. 8, 2004 which is incorporated herein by reference in
its entirety.

One may then translate the designed n-state sequence gen-
erator into binary form. This is a valid approach. However,

20

25

30

35

40

45

50

55

60

65

36

except for adders over GF(n=2%) almost none of the n-state
switching functions are easy to implement in binary logic. An
approach provided herein as an aspect of the present invention
is to use as much as possible binary components, including:
functions implementing XOR and EQUIVALENT functions,
binary inverters, binary shift registers and binary state gen-
erators. For instance a binary state 0 may be generated by
ground and binary state 1 by a power source. A binary state
may also be generated by a signal with a defined wavelength
for instance. Inverters, such as multipliers over GF(n) may be
implemented by binary combinational logic circuitry. In cer-
tain instance also table or memory based inverters may be
applied.

One way to define a pseudo-random sequence is by a
correlation, including an auto-correlation as well as a cross-
correlation with another sequence. A novel method of deter-
mining a correlation value for n-state sequences was provided
by the inventor earlier. For instance in U.S. Patent Application
(optical disks) which is incorporated herein by reference in its
entirety. The novel method of determining a correlation value
between two n-state symbols includes adding a fixed value to
a sum when the two n-state symbols are identical. One may
also subtract a fixed value when two symbols are different.
Such a value may be zero, it may be positive and it also may
be negative. The value is not dependent upon a state of a
symbol. It was shown in the earlier cited U.S. patent applica-
tion Ser. No. 12/137,945 how one may compare words of p
bits as n-state symbols and how this creates a simple correla-
tion graph which is improved over a correlation graph of a
binary sequence.

In accordance with one aspect of the present invention a set
of n-state pseudo-random generators is provided wherein the
cross-correlation has a strict upper limit, wherein the genera-
tors differ by a single element. This approach may also be
used in binary sequence generators. The background of the
approach is to invert all symbols in an n-state sequence in
such a way that no symbols in the inverted sequence are
not-inverted. One can thus create a set of n n-state pseudo-
random sequences which are inverted versions without over-
lap. For instance in a 4-state sequence one may use the invert-
ers[0123]—[1032],[0123]—=[2301]and[0123]—[3
2 1 0] to create the desired sequences.

FIG. 65 shows a 4-state sequence generator 6500 with a
4-state shift register with 4 shift register elements and 3
devices implementing an adder over GF(4): 6501, 6502 and
6503. There are also 2 4-state inverters: 6506 implementing
[0123]—[023 1] and 6507 implementing [0 1 23]—=[03 1
2]. Also a source 6504 is provided on an input of 6503 which
may provide a signal with either state 0, 1, 2 or 3. In general
one may consider state 0 to be an open connection. A
sequence of 255 4-state symbols (=4*-1) is provided on out-
put 6505. Again, a clock signal driving the LFSR is assumed
but not shown.

The states represented by the source replace the use of the
non-zero based inverters provided earlier. This is shown in
FIG. 66. Generator 6600 of FIGS. 66 and 6500 of FIG. 65 are
equivalent. Generator 6600 provides identical sequences on
6605 as generator 6500 on 6505 depending of course on the
initial condition of the shift registers. However, the adder over
GF(4) 6503 with the source 6504 have been replaced with an
inverter 6603. The inverter 6603 may be identity ([0 1 2
3]-=[0123Dor[0123]—=[1032],[0123]—=[2301]or
[0123]—[3 21 0], which are non-zero based inverters.

FIG. 67 shows an auto-correlation graph generated accord-
ing to the earlier provided method for the 255 4-state
sequences generated according to the generator of FIG. 65 or
66. FIG. 68 shows a cross-correlation between each of the

US 8,345,873 B2

37

sequences. FIG. 68 shows that when two of the set of 4
sequences are aligned there are no corresponding identical
4-state symbols. FIG. 69 shows the combined auto-correla-
tion and cross-correlation graphs. One may in certain appli-
cations, such as spread spectrum applications use the set of 4
sequences and their shifted versions, instead of just one
sequence and its shifted version.

The correlation (including auto-correlation and cross-cor-
relation) of n-state symbols, including when an n-state sym-
bol is represented by a binary word may be determined in
accordance with a further aspect of the present invention. In
classical correlation methods a number corresponding to a
state of a symbol is multiplied with a number corresponding
to the state of the symbol with which it is compared. A simpler
method in accordance with an aspect of the present invention
is applied herein. Two n-state symbols, or two words for
instance binary words representing the two n-state symbols,
are compared. If the two symbols, or their representation, are
identical a number, for instance 1, may be added to a sum. The
number may be the same for each pair of identical symbols.
The number may also depend on the state of the identical pair.
If two compared symbols, or their representations are not
identical, one may leave the sum unchanged; one may also
subtract from the sum a fixed number when a pair of symbols
or their representations are not identical; one may also sub-
tract a number depending on only one of the symbols of the
pair that has no identical symbols or symbol representations.

One preferred embodiment of creating a 27-state LFSR is
by using only binary switching devices and state resources
and no inverters realized by memory tables. One problem in
creating a 2¢-state LFSR with binary LFSRs is that the maxi-
mum length of the 27-state LFSR with k 27-state shift register
elements is (27)*-1, while the maximum length of a binary
LEFSR with k elements is 2°~1. Inverters, such as for instance
multipliers, act like a switch between at least two parallel
LFSRs and create a maximum length binary sequence that is
longer than provided by using a single LFSR.

This aspect of the present invention is illustrated in FIG. 70.
For demonstration purposes a 4-state LFSR in a 4-state
sequence generator is provided. In accordance with a further
aspect of the present invention one may apply this approach
also to 27-state LFSRs in binary form with p>2 and n>4 for
instance for n=8 and n=16 or n=4096 or any n-state LFSR that
requires to be implemented in binary logic. In FIG. 70 one can
distinguish two binary LFSRs 7010 and 7011, each with three
binary shift register elements. The feedback in the LFSRs is
through a device implementing a XOR function, shown as
little squares of which 7002 and 7009 are two examples. XOR
device 7009 is provided on one input with a constant source 1.
This is an aspect of the invention that was explained above.
One feedback tap also has an inverter 7003. The switch
between the two LFSRs 7010 and 7011 takes place in taps
7005 and 7006. Tap 7006 connects the outer LFSR 7011 with
the inner LFSR 7010 through an XOR device. Tap 7006
connects inner LFSR 7010 with outer LFSR 7011 through an
XOR device.

One may replace in FIG. 70 the source 7001 which always
provides state 1 and the XOR device 7009 by the binary
inverter 7101 in FIG. 71. The sequence generators 7000 of
FIGS. 70 and 71 are functionally identical. One may further
reduce component counts for instance by replacing XOR
device 7002 and inverters 7004 and 7101 at its inputs by a
device implementing an EQUALITY (=) function. Possible
binary logic reductions are assumed to be known as equiva-
lent.

The thus created sequence generator formed by cross-link-
ing at least two binary LFSRs being individual binary

20

25

30

35

40

45

50

55

60

65

38

sequence generators of p binary LFSR based sequence gen-
erators may be maximum length sequence generator of a
2P-state symbol sequence. The two 63 binary symbol
sequences created by the generator of FIG. 70 or 14 are:
[0000100001100010100111101000111001001011011101-
10011010101111110] and [011010010001001100-
101010000001111101111001110101100001011100011]
which are shifted versions of each other. Combining two
corresponding bits in each sequence into a 4-state symbol
creates the 4-state sequence [011030010221003120-
123230200023311301313203330321122021213322231]
wherein each 4-state symbol is a 2-bits word.

FIG. 72 and FIG. 73 show the auto-correlation graph for
the binary and the 4-state sequence respectively. These graphs
are determined by the comparison method provided earlier
wherein a 1 is added if symbols are identical and nothing is
added or subtracted if they are not identical. The 4-state
auto-correlation clearly has a better performance against for
instance noise and other disturbances as its base value is 15
and peak 63, versus basis value 31 and peak 63 in the binary
case. One may also apply different correlation calculations.

One may generate different 4-state sequences by changing
the configuration. A simple change is for instance to remove
the inverter 7101 in FIG. 71. One may also place the “switch-
ing taps” after the first shift register element. One may place
inverters at different places in taps and in an input or an output
of a switching device. One may also increase the number of
shift register elements.

Another way to generate 27-state maximum length
sequences is by starting out with a binary maximum-length
sequence generator. One may then take a shifted version of
the generated sequence for instance as is shown in FIG. 74. In
FIG. 747400 may be a binary maximum length sequence
(ML) generator, generating a binary ML sequence 7401 of for
instance length 63. One may create an out-of-phase version
7402 of the sequence by inserting a shift register element that
delays the sequence by at least one symbol. The delayed
sequence is then outputted on 7403. Both the original and the
delayed sequence may then be combined in symbols created
from 2-bits words in 7405 and a ML 4-state sequence is
outputted on 7406. One may repeat the delay as shown in FIG.
75 by delaying the delayed sequence in a shift register 7504
and creating a delayed sequence on 7505. In 7506 one may
combine all bits and for instance with a D/A converter create
an n-state symbol on 7507 or provide the equivalent binary
word on 7507. This method of combining will generate a
sequence of symbols wherein a symbol is represented by
3-bits, and wherein the sequence has a correlation graph that
is an 8-state ML sequence.

Assume the binary ML sequence of 63 bits is
[0010001001100101010000001111101111001110101100-
00101110001101101]. A delayed or shifted version of the
sequence may be [0100010011001010100-
00001111101111001110101100001011100011011010].

Combining corresponding bits will generate the 4-state
sequence [0210021023102121210000023333123331023-
31212310002123310023123121].

One may combine with an again delayed sequence as
shown in FIG. 18, thus creating an ML 8-state sequence:

[2410241265124343410000267775367751267534365-
10024367510265365341].

Accordingly, one may use at least three methods to gener-
ate an n=2-state MLL sequence from binary circuitry: (a) by
designing an n-state sequence generator and implementing all
components in binary form; (b) by generating a binary ML
sequence and combining with p delayed instances of the ML,

US 8,345,873 B2

39

sequence into p bits words based symbols; (¢) by using par-
allel binary LFSRs with cross-connections between the
LFSRs.

One may use the n=27-state ML, sequences in different
ways. One may transform each p bit word into for instance a
n=27-state symbol for transmission, for instance in QAM-
n=2% state signal transmission in for instance video signal
transmission or mobile phone transmission. One may also
generate from a n=2"-state word of p bits an n-state Phase
Shift Key or Frequency Shift Key signal.

In general in n=27-state symbol modulation, especially
wherein a phase or an amplitude is modulated in a constella-
tion one will try to even out the energy in a channel over the
symbols. For instance in QAM-n=27 state signal transmission
one would prefer a low Peak-to-Average ratio.

A current way of scrambling QPSK or NPSK (n-Phase
shift key modulation) is by adding a pseudo-random phase
shift to a phase shift that represents a symbol. One may try to
do the same in QAM. Because a QAM signal has two com-
ponents (phase and amplitude) the scrambling by moditying
the signal by modulation is not preferred. It would be easier to
scramble a symbol when it still can be processed as a logic
symbol.

FIG. 76 shows an illustrative example of an n-state logic
scrambler. A unit 7601 generates an n-state sequence, which
preferably is a ML pseudo-random sequence which can be
repeated in the descrambling phase. The sequence of n-state
symbols is generated as a sequence ‘seqn’ and is inputted on
a device implementing a scrambling function ‘scl1’, which is
preferably a reversible n-state logic function. On a second
input a sequence of n-state symbols ‘sign’ is provided. The
device implementing ‘sc1’ generates a sequence of n-state
symbols ‘scramn’.

One may descramble the sequence ‘scramn’ of scrambled
n-state symbols as shown in diagram in FIG. 77. Herein a
device 7601 also generates a sequence ‘seqn’ of n-state sym-
bols which is inputted to a device implementing a descram-
bling n-state function ‘ds1’. Function ‘dsl’ reverses ‘scl’
with ‘seqn’ as a known input. The sequence of scrambled
n-state symbols ‘scramn’ in inputted to the device implement-
ing ‘ds1’and also inputted with ‘seqn’. If “seqn’ and ‘scramn’
are in phase or in synchronization then the descrambler of
FIG. 77 will generate the original sequence of n-state symbols
‘sign’.

The scrambler and descrambler of FIGS. 76 and 77 are
easy to implement and run in binary logic. It is preferred to
apply self-reversing n-state functions as scrambling/de-
scrambling functions, and in particular an adder over GF(n)
because of its easy implementation in binary logic. Suppose
for illustrative purposes that one wishes to scramble/de-
scramble a sequence of 4-state symbols or n=22. In that case
one may generate a 2°-state ML sequence and scramble
through the scrambler with a sequence of 2>-state symbols to
generate words of 2 bits which represent the scrambled sym-
bols.

One embodiment of a scrambler is shown in FIG. 78. This
may also be a descrambler, as these functions as shown in
FIG. 78 are completely reversible. A symbol of pseudo-ran-
dom or other known 4-state sequence is provided as a 2-bit
word on inputs 7801 and 7802 of devices 7807 and 7808
which may implement an XOR or an EQUALITY binary
function. A symbol of a to be scrambled (or descrambled)
4-state sequence is provided as a 2-bit word on inputs 7803
and 7804 of 7807 and 7808. A scrambled 4-state symbol as a
binary word of 2-bits is provided on outputs 7805 and 7806.

20

25

30

35

40

45

50

55

60

65

40

The scrambler/descrambler requires a clock and circuitry for
coordinating all signals, which is assumed but not shown. The
same applies for the descrambling part of course. The
descrambler further requires a synchronization mechanism to
make sure that the sequences for scrambling and descram-
bling are synchronized. Such mechanisms or circuitry are
known and will not be explained further, but are assumed
throughout the specification.

One may expand the scrambler/descrambler to the scram-
bling/descrambling of any 27 state symbol by expanding the
number of devices implementing reversible binary logic
functions to p and related inputs to p inputs and the outputs to
p outputs with p>2. To maintain a random like appearance of
the symbols one may wantto use a generated ‘known’ pseudo-
random sequence of an adequate number of n-state symbols.

A 16-state scrambler thus will process 4-bits word by
scrambling each 4-bits word against a 4-bits word from a
known sequence; a 256-state scrambler will process 8-bits
words; etc.

FIG. 79 shows a diagram of a 256-state scrambler in binary
form. It has 8 binary inputs 7901 enabled to receive an 8-bits
word representing a 256-state symbol. An 8-bit word is
scrambled with an 8-bits word provided on 7902, which may
be an 8-bits word generated by a 256-state ML sequence
generator. Scrambling takes place by XOR-ing bits providing
on corresponding inputs by a device implementing a binary
XOR or EQUALITY function. Each device outputs a single
bit on the 8 outputs of 7903, providing an 8-bits word repre-
senting a 256-state symbol. Device 7900 implements thus an
adder over GF(256) in binary form. The scrambler of FIG. 79
is self reversing and may be used as its own descrambler.

One may modify the scrambler of FIG. 79 to the scrambler
as shown in FIG. 80. This scrambler also has two sets of 8
inputs 8001 and 8002 providing binary symbols to be pro-
cessed by 8 XOR or EQUALITY implementations in 8000
and generating 8-bits words on 8003. However the scrambler
is modified by applying two binary inverters 8004 and 8005 in
the input set 8001. A single inverter in an input to a XOR or
EQUALITY function reverses that function. It does not mat-
ter if an inverter is in a first or a second input or in the output.
So, while the inverters are shown in inputs 8001 they may be
as well in relevant inputs in 8002 or in the relevant outputs of
8003. Two inverters in either inputs or in an input and an
output leave the function unchanged. Three inverters have the
same effect as 1 inverter. The scrambler with inverters as
shown in FIG. 80 is also self-reversing and thus may act as its
own descrambler, provided that the correct sequence to
descramble against is provided.

One may also apply a more complex inverter, which will
invert the 27-state symbols rather than the individual bits. If
the inverters are multipliers over GF(n=27) then one may
implement the inverters in binary combinational circuits. As
was shown earlier by the inventor a reversing inverter to an
inverter being a multiplier over GF(n=27) is also a multiplier
over GF(n=2%) and thus can also be implemented in a com-
binational circuits. One may implement non-zero based
n-state inverters and any other inverter as a translation table in
a memory device.

The simple relation between scrambler and descrambler
that exists by using only XOR or EQUALITY functions and
using binary inverters is in general not possible in using
n-state inverters. An illustrative example is shown in FIG. 81.
Herein a 4-state scrambler is shown wherein a 2-bit word (as
a 4-state symbol) is provided on inputs 8101 and 8102 to a
4-state inverter 8103. The following table shows an example
of a non-zero based reversible 4-state inverter.

US 8,345,873 B2

re-
4-state binary invert binary 4-state invert 4-state binary
0 00 11 3 1 01
1 01 — 00 0 — 2 10
2 10 01 1 3 11
3 11 10 2 0 00

Also shown in the table is the reversing inverter that will
undo or revert the inversion. This is a different inverter. The
4-state inverter as shown is not self reversing.

The inverter 8103 provides a two-bits word on 8105 and
8106. The inputs are inputted to 8100 having XOR or
EQUALITY functions as used before. A 4-state word which
may be generated from a 4-state pseudo-random sequence is
provided on inputs 8107 and 8108. A binary word is provided
on binary outputs 8109 and 81 10. The scrambler/descram-
bler inside dotted box 8120 is identical to the above provided
scrambler/descrambler. Binary inverters may be inserted if
one so desires.

One may further scramble a symbol by using a 4-state
reversible inverter 8104 to invert the 4-state symbol to a
4-state symbol generated on outputs 8111 and 8112.

FIG. 82 shows a corresponding descrambler to the scram-
bler of FIG. 81. The heart of the descrambler 8220 is identical
to the heart 8120 of the scrambler of FIG. 81. The same
sequence as provided on 8107 and 8108 should be provided
on 8207 and 8208. The 4-state symbols generated on 8111
and 8112 should be provided on inputs 8201 and 8202 of the
descrambler of FIG. 82. The inputs are provided to an inverter
8203 which is the reversing inverter of 8104 of FIG. 81. The
symbols outputted by 8203 are being processed by 8220 and
then outputted on 4-state inverter 8204 which should be the
reversing inverter of 8103 in FIG. 81.

In a further embodiment of the present invention one may
also scramble a sequence of 27 symbols into a sequence of 27
symbols, with p>q. For instance, one may increase the secu-
rity of a QPSK signal as well as its random properties by
generating a sequence of symbols with more states. In a phase
modulated signal one may do that by “adding” a phase-shift.
This is usually done by multiplying the signal with a phase
shifted signal, requiring a modulator as well as a means to
create a phase shift.

A scrambler, in accordance with an aspect of the present
invention can do that in a much easier way. For instance one
may scramble a 4-state signal into a 16-state signal by using
an adder over GF(16) in a scrambling circuit and by using a
pseudo-random 16-state ML sequence. Each 16-state symbol
may be represented by a 4-bits word. The 4-state symbols are
represented by a 2-bit word. One illustrative example is
shown in FIG. 83. An unknown 4-state symbol provided as a
2-bit word is provided on inputs 8305 and 8306 of scrambler
8300. A sequence of 16-state elements as 4-bits words is
provided on inputs 8301, 8302, 8303 and 8304. The XOR
devices 8309 and 8310 scramble the 2-bits words against 2
bits of the 4-bits word and provide the scrambled 2-bit word
on outputs 8307 and 8308. The 2 bits provided by 8303 and
8304 may be provided directly as an output signal.

The sequence of 16-state symbols provided on 8301-8304
is preferably a pseudo-random sequence. This means that
8300 will provide a sequence of 16-state symbols that is
substantially pseudo-random. However, in many cases one
would like to scramble (even with minimal security) all sym-
bols. Such a case is shown in FIG. 84. The scrambler 8400
shown in FIG. 84 is almost identical to scrambler 8300 of
FIG. 83. However, in 8400 one also scrambles 2-bit word

20

25

30

35

40

45

50

55

60

65

42

provided on 8303 and 8304 with the input signals on 8305 and
8306 through XOR devices and outputs a scrambled 2-bits
word on 8409 and 8410. It should be clear that for descram-
bling for both scramble 8300 and 8400 only the 2-bits word
on 8307 and 8308 has to be descrambled by reversing the
process with almost the same circuit as in FIGS. 83 and 84.
For descrambling the inputs 8303 and 8304 do not need to be
provided. This aspect of the present invention can be applied
to scrambling of any sequence of k (withk>1)27 symbols to a
sequence of k 22 symbols with p>q. Other configurations,
including cross-connections and the use of inverters are pos-
sible and fully contemplated.

The above scramblers require a means for synchronization
with a descrambler. If synchronization between scrambler
and descrambler is lost the descrambler may incorrectly
descramble a scrambled sequence. Errors may continue
unless synchronization is restored.

It was show earlier by the inventor how one may create
n-state Linear Feedback Shi Register Based scramblers and
descramblers.

For illustrative purposes an 8-state LFSR based sequence
generator 8500 in binary form is provided in FIG. 85. The
LFSR has 3 8-state shift register elements 8506, 8507 and
8508, each able to hold and shift a 3-bit word representing an
8-state symbol. The 8-state LFSR contains 3 LFSR loops
8501, 8502 and 8503. Furthermore, logic operations are pro-
vided by XOR or EQUIVALENT devices 8504. A constant
state may also be provided. This is the case with 8505 which
provides state 1. The 8-state symbols are provided as 3-bit
words on output 8509. One may also include binary inverters
and reversible 8-state inverters which may be implemented as
combinational binary logic circuits or as memory based
binary 8-state inverters. A clock signal is assumed but not
shown. One may thus create any 2°-state LFSR using binary
circuits and devices with p=2 and p>2.

Examples were provided herein of n-state LFSRs in binary
implementations wherein the LFSRs are Fibonacci LFSRs.
One may also implement n-state LFSRs with n=27 and p=2
or p>2 for LFSRs in Galois configuration. An illustrative
example is provided in FIG. 86 for n=8. The 8-state LFSR is
part of an 8-state sequence generator 2900 for k=255 8-state
symbols, each symbol being represented by 3 bits. The LFSR
has 3 parallel binary LFSRs 8601, 8602 and 8603 with 3-bits
shift register elements 8606, 8607 and 8608. Feedback taps
are connected through a device indicated by a small square
such as 8604 which may implement a binary XOR or
EQUIVALENT function. The 8-state symbols are generated
on 8609 as 3 bit words. A clock signal is assumed but not
shown. The configuration as shown in FIG. 86 uses the feed-
back taps to switch between the individual LFSRs. One tap is
replaced by a source providing a state 1.

Other configurations allow a sequence to be generated with
by further using binary inverters, absence of taps and n-state
inverters. This is shown in FIG. 87 wherein an 8-state Galois
LFSR 8700 in binary form applies a binary inverter 8702, an
8-state inverter 8701 which may be implemented using com-
binational binary logic or a memory based inverter.

One may create also a 2°-state ML sequence of length k by
first generating a binary ML sequence of length L, then shi or
delay the sequence and then combining the delayed
sequences to create symbols of p words. A 27-state ML
sequence requires then generating p binary ML sequences of
length k that each are delayed of each other as was shown in
the case of the Fibonacci sequence generator above.

US 8,345,873 B2

43

The next step in accordance with a further aspect of the
current invention is to demonstrate that the 27-state LFSRs in
binary form can be used to implement scramblers, descram-
blers and sequence detectors.

A first illustrative example is shown in FIG. 88, being an
8-state scrambler 8800 using the LFSR of the sequence gen-
erator of FIG. 85. The scrambling function is an adder over
GF(8) implemented by XOR devices 8801. An 8-state symbol
represented by a p-bit word with p=3 is inputted on 8802. A
scrambled symbol is outputted as a p-bit word with p=3 on
8809. One may, as before add binary inverters, fixed state
sources and zero and non-zero based inverters. Inverters
which can not be implemented by binary inverters may be
implemented in combinational binary circuitry or as binary
memory based inverters.

FIG. 89 shows the corresponding descrambler 8900 for the
scrambler 8800. This descrambler is self-synchronizing. In
essence, if no 8-state inverters are applied that cannot be
implemented by binary inverters only, the scrambler and
descrambler use the same structure and components. Only the
input is now 8909 and the output is 8902. In case an 8-state
inverter is used that is not self-reversing and that is not in the
LFSR but between the input and output of the scrambler then
one should use the inverter in the descrambler that reverses a
corresponding inverter in the scrambler. Such requirement
does not exist if the 8-state inverter is in the LFSR. An essen-
tial aspect of LFSR based scramblers and descramblers is that
they may use LFSRs that are functionally identical.

The scrambler and descrambler provided as illustrative
examples in FIGS. 88 and 89 in Fibonacci configuration are
8-state and have 3 8-state shift register elements. One of
ordinary skill in the art should be able to now also create
longer or shorter LFSRs of any n=27 state LFSR based scram-
bler and descrambler for p>2 and p=2.

FIG. 62 shows a diagram defining an input and an output of
an LFSR. When a scrambler (or a sequence generator) has a
reversible device between the input and output then the cor-
responding descrambler or sequence detector requires the
reversing device. When such a device is self-reversing it may
be the same device. This aspect is illustrated in FIGS. 90 and
91. FIG. 90 shows in diagram an 8-state scrambler 9000 with
input 9001 and output 9002 and with a reversible 8-state
inverter 9003 between input and output. The dotted line 9004
defines the output of the combined LFSR, or the outputs of the
individual LFSRs of FIG. 90. The dotted line 9005 defines the
input of the combined LFSR or the inputs of the individual
LFSRs of FIG. 90. Dot 9006 is a connection point in the
binary LFSR containing this point.

The corresponding descrambler 9100 is shown in FIG. 91
with input 9101 and output 9102 with an 8-state inverter 9103
which reverses inverter 9003 in FIG. 90. This aspect also
applies to devices applying n-state LFSRs in binary form in
Galois configuration. The dotted line 9104 defines the output
of'the combined LFSR, or the outputs of the individual LFSRs
of FIG. 91. The dotted line 9105 defines the input of the
combined LFSR or the inputs of the individual LFSRs of FIG.
91. Dot 9106 is a connection point in the binary LFSR con-
taining this point.

FIG. 92 shows in diagram a detector 9200 of the sequence
generated by the generator shown in FIG. 85. Only if the
correct sequence is entered on input 9201 will output 9202
generate an all 1 pattern (keeping in mind that a 3-bit word of
all 1s may represent 7 in 8-state symbols. To achieve this, the
devices 9204 are all to implement binary EQUIVALENT (=)
functions.

An 8-state LFSR based binary scrambler 9300 in Galois
configuration is shown in FIG. 93. The logic devices such as

20

25

30

35

40

45

50

55

60

65

44

9303 indicated by a small square, as before, may implement
a XOR or a binary EQUIVALENT function. Binary inverters
may also be inserted. The 8-state symbols are inputted as p-bit
words with p=3 on 9301 and the scrambled symbols are
provided as p-bit words with p=3 on 9302. The dotted line
9304 defines the output of the combined LFSR, or the outputs
of the individual LFSRs, of FIG. 93. The dotted line 9305
defines the input of the combined LFSR or the inputs of the
individual LFSRs of FIG. 93. Dot 9306 is a connection point
in the binary LFSR containing this point.

A corresponding descrambler 9400 is shown in FIG. 94
with input 9401 and output 9402. The dotted line 9404 defines
the output of the combined LFSR, or the outputs of the indi-
vidual LFSRs, of FIG. 94. The dotted line 9405 defines the
input of the combined LFSR or the inputs of the individual
LFSRs of FIG. 94. Dot 9406 is a connection point in the
binary LFSR containing this point. This descrambler in
Galois configuration is not self-synchronizing.

This means that initial setting of the shift registers of
scrambler and descrambler have to be identical for the
descrambler to descramble correctly. An occurring error in a
received sequence that has to be descrambled may perpetuate
through the complete sequence after the error.

One may also create a detector of a sequence generated by
a Galois configured sequence generator by using only binary
EQUIVALENT functions at the output of the detector.

In accordance with a further aspect of the present invention
one may use 2° scrambler as provided herein to scramble a 27
state sequence with p>q. In such a case one may provide the
g-bit word on q of the p inputs of a 27-state scrambler. One
may provide a state 0 or 1 or a mix of those states on the
remaining (p-q) inputs. Other ways to enter q-bit words, such
as inputting one or more of the q inputs multiple times on the
p inputs, are also fully contemplated.

As a further aspect of the present invention a combination
of an n-state LFSR based scrambler and descrambler that are
self-synchronizing and implemented in binary logic is pro-
vided. As an illustrative example an 8-state scrambler 9500 in
Galois configuration is provided in FIG. 95. The dotted line
9504 defines the output of the combined LFSR, or the outputs
of the individual LFSRs, of FIG. 95. The dotted line 9505
defines the input of the combined LFSR or the inputs of the
individual LFSRs of FIG. 95. Dot 9506 is a connection point
in the binary LFSR containing this point. All elements are
binary elements such as devices implementing binary XOR
and/or EQUIVALENT functions and binary shift registers
and binary state generators. While not shown, individual
binary inverters may also be used. All 8-state symbols are
processed as p-bit words with p=3. The p-bit words are input-
tedon 9501. The scrambled p-bit words are provided on 9502.

The corresponding self-synchronizing descrambler is
shown in FIG. 96, wherein p-bit words are inputted on 9601
and the descrambled p-bit words are provided on 9602. The
dotted line 9604 defines the output of the combined LFSR, or
the outputs of the individual LFSRs of FIG. 96. The dotted
line 9605 defines the input of the combined LFSR or the
inputs of the individual LFSRs of FIG. 96. Dot 9606 is a
connection point in the binary LFSR containing this point.

The scrambler and descrambler in self-synchronizing
Galois configuration may also be implemented not only using
binary inverters, but by using an inverter that is implemented
by a combinational circuit. This is shown as Galois config-
ured scrambler 9700 in FIG. 97 with input 9701, output 9702
and combinational circuit/inverter 9703. The corresponding
descrambler 9800 as shown in FIG. 98 with input 9801 and
output 9802 should then have the reversing inverter of 9803,
being the reverse of 9703.

US 8,345,873 B2

45

In summary LFSR based 27 state with p>2 or p=2 scram-
blers, descramblers, sequence generators and sequence detec-
tors in binary implementation have been provided. As one
aspect of the present invention these devices only apply
devices implementing binary XOR and EQUIVALENT func-
tions, binary shift registers and binary inverters and binary
state generators. In a further embodiment also 27 state invert-
ers using binary combinational logic are applied. In a further
embodiment also memory based binary 27 state inverters are
applied. Non-LFSR based n-state scramblers and descram-
blers in binary logic were also provided.

Throughout the present invention the use of sources gen-
erating a binary state have been disclosed. Such a state may be
aOoral. Forinstance FIG. 85 shows a source of state 1 8505
connected to a logic device. It is to be understood that the
combination of such a source and the logic device can be
replaced by an equivalent. For instance source 8505 is con-
nected to a device implementing a reversible binary function
(=or=)in LFSR 8502. The following equivalent rules may be
applied throughout and for all aspects of the present inven-
tion: (1) when the device implements an XOR (=) function,
and the source generates astate 1, then the XOR function may
be replaced by a binary inverter; (2) when the device imple-
ments an XOR (=) function, and the source generates a state
0, then the XOR function may be replaced by a connection
which is an identity inverter; (3) when the device implements
an EQUIVALENT (=) function, and the source generates a
state 1, then the EQUIVALENT function may be replaced by
a connection; (4) when the device implements an EQUIVA-
LENT (=) function, and the source generates a state 0, then
the EQUIVALENT function may be replaced by a binary
inverter.

Scramblers are herein provided to scramble what could be
called a plaintext or unscrambled series of symbols repre-
sented by binary or n-valued signals with n>2. A descrambler
restores the plaintext from the scrambled symbols by
descrambling the scrambled signals. Functionally, the role of
scramblers and descramblers may be interchanged. One usu-
ally does not do that because the self-synchronizing aspect of
descramblers will be lostif one makes a descrambler a scram-
bler. However, if one creates the means to provide the correct
initial conditions at the descrambling side, there is no reason
why scrambler cannot be used as descramblers and descram-
blers as scramblers.

It was shown how one may create n-state like LFSRs in
binary form by connecting one LFSR to another one in a
plurality of LFSRs. This allows a signal from one binary
LFSR to enter another parallel binary LFSR. The LFSRs can
be in Fibonacci or in Galois configuration. It is preferred that
in a plurality of LFSRs all LFSRs are either in Galois or in
Fibonacci configuration. The LFSRs may be applied as part
of'a scrambler, of a descrambler, of a sequence generator, an
encoder such as an BCH encoder, or in a GF(n) arithmetical
LFSR based device. Examples provided herein are focused
on scramblers, descramblers and sequence generators but are
not limited there to and other LFSR applications are fully
contemplated.

The examples herein show how two binary LFSRs are
connected through their taps. The invention is not limited to
such a connection. One may also connect the loops going into
the input first shift register element of an LFSR or the output
coming from the last shift register element of the LFSR in
such a way that inputs or outputs are connected to a loop not
being part of the LFSR that the shift register element belongs
to. This is illustrated for a set of 3 LFSRs 9901, 9902 and 9903
in FIG. 99.

20

25

30

35

40

45

50

55

60

65

46

The LFSR may be defined as the set of shift register ele-
ments connected directly to each other and the connection
from output ofthe last shift register element to the input of the
first shift register element. The dotted line 9907 defines the
output of the combined LFSR, or the outputs of the individual
LFSRs of FIG. 99. The dotted line 9906 defines the input of
the combined LFSR or the inputs of the individual LFSRs of
FIG. 99. Dot 9910 is a connection point in the binary LFSR
containing this point. In this case one may say that 9910 is in
one LFSR (though it is in both LFSRs that are connected
through 9910) that connects to an output of another LFSR.

FIG. 99 shows how the structure is modified by connecting
the loop that defines LFSR 9902 to the first shift register
element 9904 of LFSR 9901. A similar modification is shown
at the output of the last shift register element 9905 of LFSR
9901 being connected to LFSR 9903. In general one may
define in LFSRs inputs and outputs as they relate to inputs and
outputs of shift register elements or of devices that implement
the reversible logic functions and the like. It is shown that
outputs and inputs may be connected to the general loop of an
LFSR. One may define such points as “connection points of
the LFSR”. Such points are shown as black solid circles 9909.
One may say that 9909 is in one LFSR (though it is of course
in both LFSRs that are connected through this connection
point) that connects to an input of another LFSR.

Similar switching connections as shown for a Fibonacci
LFSR between different LFSRs can also be applied to Galois
LFSRs. This is shown in FIG. 100. The dotted line 10007
defines the output of the combined LFSR, or the outputs of the
individual LFSRs of FIG. 100. The dotted line 10006 defines
the input of the combined LFSR or the inputs of the individual
LFSRs of FIG. 100. Dot 10010 is a connection point in the
binary LFSR containing this point. One may say that 10010 is
in one LFSR (though it is of course in both LFSRs that are
connected through this connection point) that connects to an
input of another LFSR.

One can easily distinguish how 3 LFSRs 10001, 10002 and
10003 can be connected via inputs of first shift register ele-
ment 10004 or via outputs of last shift register element 10005.
It is useful to define point 10009 as a connection point in an
LFSR loop. Depending on the use of the Galois LFSR devices
may be positioned throughout the LFSR. The loop of the
Galois LFSR is the connection that would directly or through
an inverter connect the output of the last shift register element
in a binary LFSR with the input of the first shift register
element of the LFSR. The first and the last shift register
element being part of a Galois shift register.

It is known that LFSRs in either Fibonacci or in Galois
configuration can be used to generate systematic codes. Such
a code generates check symbols in addition to the to be
transmitted symbols. The decoder, for instance in CRC error
detection is essentially a repeat of the coder stage. Check
symbols are again generated from the systemic part of a block
of'symbols. If the generated check symbols in the decoder are
different from the check symbols that were included with a
codeword, an error has occurred in the codeword. Such an
error may have taken place in the check symbols. These
coders are block codes. Scramblers and descramblers as dis-
closed herein operate in a streaming or continuous mode.
Furthermore, scramblers herein scramble a symbol one-on-
one: each to be scrambled symbol is scrambled into a
scrambled symbol. That is generally not the case in BCH
coders. These codes are called (p.k) codes, indicating that a
certain number of symbols are generally provided with a
number of check symbols that is less than the number of to be
scrambled symbols. One may provide as a distinguishing
characteristic of a scrambler that can generate a number of

US 8,345,873 B2

47

scrambled symbols that exceeds the number of elements in
the LFSR. In a BCH code the number of check symbols is
equal to the number of LFSR elements. In a BCH coder for
each code-word the content of the LFSR has to be reset to a
fixed content, usually all Os. This is not required in scram-
blers/descramblers provided herein. Furthermore, a decoder
to the BCH coder is not a descrambler. A BCH decoder is
certainly not a self synchronizing descrambler.

Sequence generators in Galois form such as illustrated in
FIG. 31 may also provided in binary form such as illustrated
in FIG. 101. A sequence of binary symbols may be provided
on output 10101. The functions in the sequence generator are
shown as ‘+’, or the XOR function. It is to be understood that
these functions may also be the ‘=" or ‘EQUIVALENCE’
function. It may also be that one or more functions are ‘+” and
one or more functions are ‘=". The sequence as generated by
the generator of FIG. 101 may be detected by the detector of
FIG. 102 in Galois configuration. The sequence as generated
on 10101 is received on 10201 in FIG. 2. If the sequence that
is received on 10201 is identical to the one that was provided
on 10101, and the LFSR of FIG. 102 is identical to the LFSR
of FIG. 101, and the initial state of the LFSR of FIG. 101 is
identical to the initial state of the LFSR of FIG. 102 then the
output 10202 will generate a sequence of all ‘0s’. One may
change this particular function with output 10202, also to a
‘=" function. In that case output 10202 will generate a
sequence of all ‘1s’. Due to the Galois configuration the
detector as shown in FIG. 102 is phase sensitive to the
received sequence. An out-of-phase binary sequence will not
generate an ‘all=0’or ‘all-1’ sequence. This may be an advan-
tage over a Fibonacci configuration wherein phase-errors will
be flushed. It requires that one has the shift register of FIG.
102 filled with the correct content. In a further embodiment
one may calculate based on receiving a detectable sequence,
but having a wrong or out-of-phase initial shift register con-
tent, how large (or how many symbols) the out-of-phase is.
Such a calculation may be applied to binary as well as non-
binary sequence detectors in Galois configuration.

The detector of FIG. 102 may be considered the binary
descrambler in Galois configuration that corresponds to a
binary scrambler in Galois configuration as shown in FIG.
103. In such a scrambler a to be scrambled binary sequence is
received on input 10301 and a scrambled sequence of binary
symbols of equal length to the sequence received on the input
is provided on output 10302. The sequence of scrambled
binary symbols may be descrambled by the descrambler as
shown in FIG. 102. This requires that initial states of the
LFSR in scrambler and descrambler are identical. If not, the
descrambler will not generate the correct descrambled sym-
bols and errors may propagate.

One may apply the sequence generators in communication
systems using n-state symbols, such as for instance wireless
systems which may apply QPSK, QAM-27 or other multi-
valued symbols. A sequence may herein for instance repre-
sent a symbol. One may also apply the scramblers and
descramblers provided herein in communication systems.
The use of scramblers and descramblers provided herein
allow communication devices to scramble before modulation
and to descramble after demodulation, preventing to have to
use modulation techniques to perform the scrambling and
descrambling tasks. One may also use the sequence detectors
to detect n-state sequences. Furthermore, in accordance with
a further aspect of the present invention one may apply the
method for determining a correlation value provided herein in
a communication system. One may determine a correlation
value by adding a fixed value to a sum when two words of

20

25

30

35

40

45

50

55

60

65

48

p-bits are identical. One may subtract a fixed value, including
0, when two p-bit words are not identical.

A diagram of a communication system is shown in FIG.
104. A source 10401 generates a signal, which may be con-
verted in n-state symbols or signal representation thereof,
having one of n discrete states with n greater than 2. The
source may also provide binary signals, without word syn-
chronization. The signal from 10401 may be converted into
words of binary symbols or signals representing those sym-
bols or they may be binary signals with no word synchroni-
zation. The signal source 10401 may be other equipment or
systems, for instance multiplexing equipment or other equip-
ment. The signals may be scrambled in accordance with an
aspect of the present invention in scrambling unit 10402. This
unit may also provide line-coding facilities. A unit 10403 may
provide additional error control coding, including error cor-
rection or error detection. Line coding may take place in its
entirety in unit 10403 instead of 10402 or partially. It is
known that multiple coding schemes may be applied. Unit
10402 or 10403 may also provide signal interleaving. The
signal in scrambled and coded form may then be provided to
atransmitter 10404 which may provide further signal conver-
sion, modulation, signal shaping, including amplification and
transmission medium matching. It is then provided to a
medium converter such as an antenna 10405. At the receiving
end the process is reversed. A receiving transducer 10406,
which may be an antenna, receives a signal; the signal may be
optimized, amplified, demodulated, detected, and converted
into signals that are further processed by a unit 10407. Unit
10408 may provide error detection or correction, which may
be combined with de-interleaving. Unit 10409 may provide
detection or descrambling of a sequence in accordance with
an aspect of the present invention. Unit 10410 may be the
target of the system. This may be an end user such as a
receiving phone or tv set or computer. It may also be an
apparatus that is part of a communication system, such as a
demultiplexer or any other communication or storage appa-
ratus.

It is to be understood that additional functions may be
included in a system as shown in FIG. 104. This may include
additional coding steps, insertion of a pilot signal or a syn-
chronization signal or any other useful step. However, these
steps in general will not negate the step of scrambling,
descrambling or sequence detection as provided herein as
different aspects of the present invention. Unit 10411 may be
a communication device that can receive and that can process
a signal in accordance with at least one aspect of the present
invention. Such a device may be a tv-receiver, a computer that
is connected to a network for instance the Internet, a mobile
computing device, a wireless computing device, a radio
device, a wireless phone, a GPS device, or any device that can
receive a signal that can be processed in accordance with at
least one aspect of the present invention. The scrambling,
descrambling and sequence detection methods and apparatus
that are an aspect of the present invention may also be applied
to a data storage system. Such a system in general contains
two parts a writing part which is shown in diagram in FIG.
105 and a reading part which is shown in diagram in FIG. 106.

The writing part of a storage system as shown in FIG. 105
has units that provide several functions. A unit 10501 pro-
vides digital data. This may be data in the form of discrete
n-state signals. It may also be data in the form of binary
signals. The signal may be binary or non-binary signals with
no word synchronization. A unit 10502 may scramble the
signal as provided by 10501 in accordance with one or more
aspects of the present invention. A unit 10503 may provide
error control coding. A unit 10504 may provide signal con-

US 8,345,873 B2

49

version and/or shaping and/or modulation to prepare the sig-
nal for writing to a storage medium 10506. The signal as
generated by 10504 may be provided to a signal converter
10505 that converts the signal from 10504 to a signal that can
be written to a medium 10506 and may include a Digital/
Analog converter. For instance 10504 may be an electrical
signal that is converted to an optical signal by 10505 to be
written to a storage medium that is an optical disk 10506. A
storage medium 10506 may be an optical, electro-optical,
magneto-optical, magnetic or electronic medium or any
medium that can store binary signals and/or non-binary sig-
nals.

A storage system also has a reading part as shown in FIG.
106. Herein, a signal is read from the medium 10601 by a
transducer 10602 and processed by 10603, which may
include a demodulator, an Analog/Digital transducer or other
processing components. A unit 10604 may provide error cor-
recting decoding or error detection, de-interleaving and the
like. A unit 10605 may provide descrambling and/or
sequence detection in accordance with an aspect of the
present invention. The target for the detected and/or
descrambled signal is unit 10606. The order of units and
functions may in some instances be in a different order. Other
functions may also be provided, including insertion and/or
detection and/or removal of synchronization data. The device
as shown in FIG. 106 may be part of a storage device that is a
CD-player, a DVD-player, an MP3 player or any device that
is enabled to read and play a signal that can be processed in
accordance with at least one aspect of the present invention.

The device 10411 in FIG. 10 and the device as shown in
diagram in FIG. 106 may both be called a playing device that
processes a signal according to at least one aspect of the
present invention.

Scramblers and descramblers as provided herein may be
applied to storage devices. For instance one may scramble a
word of p-bits before writing it to a magnetic storage disk, an
optical storage disk or to an electronic storage device. One
may transfer a word of p-bits into a single 2¢ symbol. One may
modulate the signal with a modulation technique such as
QAM-2? before writing it to a storage medium. One may
reverse the operations for retrieving 2° symbols or p-bit words
from a storage medium: read the symbols from the medium,
if required demodulate the read signals, and descramble the
symbols or words with the descramblers herein provided.
One may also use sequence generators provided herein on
storage media, for instance for synchronization purposes. An
n-state sequence or a sequence of p-bit words may indicate a
point of significance on the storage medium. Either the pro-
vided correlation techniques or sequence detectors may be
applied to find those points of significance. Accordingly,
communication systems and apparatus and data storage appa-
ratus and systems using the scramblers, descramblers,
sequence generators and sequence detectors have also been
provided as an aspect of the present invention.

One may also store QAM signals on an optical disk. By
using a signal writer such as a light source and a light pick-up
as for reading the receiving antenna one may write a signal to
an optical disk and read the n-state optical signal from the
disk. Accordingly a storage system is provided that can apply
the scrambling and descrambling methods provided herein.
Optical herein includes purely optical, as well as electro-
optical and magneto-optical as well as any other phenomenon
that has an optical component. Data storage systems and
apparatus may also use magnetic materials. Such devices may
for instance store directly multi-state symbols with for

20

25

30

35

40

45

50

55

60

65

50

instance different magnetic states or orientations. They may
also be stored in a quasi-analog/digital manner for instance as
a QAM-n modulated signal.

In view of the above description of the present invention, it
will be appreciated by those skilled in the art that many
variations, modifications and changes can be made to the
present invention without departing from the spirit or scope of
the present invention as defined by the claims appended
hereto. All such variations, modifications or changes are fully
contemplated by the present invention.

The scrambling and descrambling methods and apparatus,
the sequence generating and detecting methods and appara-
tus, and the correlation methods and apparatus as provided
herein as an aspect of the present invention may be part of a
system. This may include: a communication system, a data
storage system or any other system for coding, or transmit-
ting, or storing, or receiving, or retrieving, or decoding or any
other system for processing data. The system may be a wired
or a wireless system. A data storage system may be a system
using an optical disk, or an electro-optical disk. It may also
use a magnetic medium. Symbols may be represented as
optical, electronic or any other valid representation that can
be processed, including magnetic. The n-valued symbols may
be represented as signals having physical properties of for
example different amplitude, phase, modulation, polarization
or any other quantifiable physical property. Switching tables
may be realized in electronic, optical, electro-optical, electro-
mechanical, quantum mechanical or any other way that can
implement an n-valued truth table. A symbol may also be
represented by a series of lower valued symbols such as
binary symbols. Switching and storage of symbols then take
effect on the series of symbols, often called words.

A binary or n-state function that is an inverter may be called
a one-place function. A device that implements such a func-
tion in general has only a functional input and a functional
output, though it may have inputs for power supply and the
like. Such one-place functions are determined by a 1 by n
truth table for an n-state inverter and a 1 by 2 truth table for a
binary inverter. An n-state or binary switching or logic func-
tion that can be defined by an n by m truth table with m=n and
nZ2 may be called a 2-place function as it has two inputs (and
one output). It may also be called a 2-place logic function, or
a 2-place n-state logic function. In the binary case such a
function may be called a 2-place binary logic function. XOR
and EQUIVALENCE are both reversible binary 2-place func-
tions.

A connection between two connection points herein may
be a straight connection. One may also say the connection is
formed by an Identity Inverter or an Identity one-place logic
function; for instance in the binary case [0 1]—=[0 1]. A
connection is herein also considered to be a connection that
includes a reversible one-place function that is not an Identity
Inverter; for instance in the binary case [0 1]—[1 0] is con-
sidered herein a connection. In a connection in the n-state
case with n>2 wherein the one-place logic function in a con-
nection is not reversible, but does not provide one constant
output, is also considered to be a connection. A one-place
logic function that provides one constant output, for instance
[0 1]—[0 0] is not considered to be a connection. For instance
in FIG. 70 tap 7005 which has no inverter and connects two
points is a connection herein. In FIG. 70 tap 7006 which
contains inverter 7004 is also a connection herein. In FIG. 66
the connection between the output of shift register element
6612 and input of device 6501 contains a device implement-
ing an inverter 6507. The output of 6612 and the input of 6501
are called connected herein. Mentioning of the inverter is not
required for this connecting aspect. In FIG. 66 the connection

US 8,345,873 B2

51

between the output 6605 and the output of device 6502 con-
tains a device implementing an inverter 6603. The output
6605 and the output of 6502 are called connected herein.
Mentioning of the inverter is not required for this connecting
aspect herein. It is pointed out that one may differentiate two
connections by the different inverter 2-place functions that
they may have. Accordingly an output that is connected to an
input, or an input that is connected to another input and the
like may contain an inverter; it may also contain not an
inverter.

The steps of the methods which are provided as aspects of
the present invention may be implemented in a processor;
such a processor may be a general purpose processor or for
instance a digital signal processor or a microprocessor. Such
a processor may process binary symbols or signals. It may
also process n-valued symbols. It may also process n-state
symbols as words of binary symbols or signals. They may use
A/Dand D/A converters to change n-valued symbols in words
oflower valued symbols and to convert words of lower valued
symbols into n-valued symbols. In case an n-valued symbol is
represented as a word of lower valued symbol a storage ele-
ment of a shift register is assumed to be able all elements of a
word representing an n-valued symbol. The n-valued symbols
may also be processed by dedicated or custom made switch-
ing and storage components. The methods and apparatus may
also be implemented in standard binary components, or in
programmable devices such as Field Programmable Gate
Arrays (FPGAs) or in any other device that will process
signals in accordance with one or more aspects of the present
invention. While electronic devices are common, aspects of
the present invention may also be processed by other type of
signals, including optical, chemical, bio-chemical, biological
and/or quantum mechanical representation of symbols.

It is pointed out that for convenience the terms scrambler
and descrambler are applied herein. A scrambler is generally
understood to be at the sending side and a descrambler at the
receiving side. This terminology is also applied herein, and
descramblers provided herein are self-synchronizing. It is
pointed out that one may scramble with apparatus that is
called herein a descrambler, and one may descramble with an
apparatus that is called herein a scrambler. The self-synchro-
nizing aspect of what is called a descrambler may be lost if
one uses a what is called herein a scrambler to descramble.
However, if one is able to provide corresponding initial con-
ditions as they relate to scramblers and descramblers, reversal
of'their roles should not be a problem. Reversal of those roles
is explicitly and fully contemplated as an aspect of the present
invention.

While the invention has been described with reference to
an illustrative embodiment, this description is not intended to
be construed in a limiting sense. For example, while the
disclosed embodiments utilize discrete devices, these devices
can be implemented using one or more appropriately pro-
grammed processors, special-purpose integrated circuits,
digital processors, or an analog or hybrid counterpart of any
of these devices.

The following patent applications, including the specifica-
tions, claims and drawings, are hereby incorporated by refer-
ence herein, as if they were fully set forth herein: (1) U.S.
Non-Provisional patent application Ser. No. 10/935,960, filed
on Sep. 8, 2004, entitled TERNARY AND MULTI-VALUE
DIGITAL SCRAMBLERS, DESCRAMBLERS AND
SEQUENCE GENERATORS; (2) U.S. Non-Provisional
patent application Ser. No. 10/936,181, filed Sep. 8, 2004,
entitted TERNARY AND HIGHER MULTI-VALUE
SCRAMBLERS/DESCRAMBLERS; (3) U.S. Non-Provi-
sional patent application Ser. No. 10/912,954, filed Aug. 6,

20

25

30

35

40

45

50

55

60

65

52

2004, entitled TERNARY AND HIGHER MULTI-VALUE
SCRAMBLERS/DESCRAMBLERS; (4) U.S. Non-Provi-
sional patent application Ser. No. 11/042,645, filed Jan. 25,
2005, entitled MULTI-VALUED SCRAMBLING AND
DESCRAMBLING OF DIGITAL DATA ON OPTICAL
DISKS AND OTHER STORAGE MEDIA; (5) U.S. Non-
Provisional patent application Ser. No. 11/000,218, filed Nov.
30, 2004, entitled SINGLE AND COMPOSITE BINARY
AND MULTI-VALUED LOGIC FUNCTIONS FROM
GATES AND INVERTERS; (6) U.S. Non-Provisional patent
application Ser. No. 11/065,836 filed Feb. 25, 2005, entitled
GENERATION AND DETECTION OF NON-BINARY
DIGITAL SEQUENCES; (7) U.S. Non-Provisional patent
application Ser. No. 11/139,835 filed May 27, 2005, entitled
Multi-Valued Digital Information Retaining Elements and
Memory Devices; (8) U.S. Non-Provisional patent applica-
tion Ser. No. 12/137,945 filed on Jun. 12, 2008, entitled
Methods and Systems for Processing of n-State Symbols with
XOR and EQUALITY Binary Functions; (9) U.S. Non-Pro-
visional patent application Ser. No. 11/679,316, filed on Feb.
27, 2007, entitted METHODS AND APPARATUS IN
FINITE FIELD POLYNOMIAL IMPLEMENTATIONS;
(10) U.S. Non-Provisional patent application Ser. No. 11/696,
261, filed on Apr. 4, 2007, entitled BINARY AND N-VAL-
UED LFSR AND LFCSR BASED SCRAMBLERS,
DESCRAMBLERS, SEQUENCE GENERATORS AND
DETECTORS IN GALOIS CONFIGURATION; (11) U.S.
Non-Provisional patent application Ser. No. 11/964,507 filed
on Dec. 26, 2007, entitled IMPLEMENTING LOGIC
FUNCTIONS WITH NON-MAGNITUDE BASED PHYSI-
CAL PHENOMENA; and (12) U.S. Provisional patent appli-
cation Ser. No. 61/078,606, filed on Jul. 7, 2008, entitled
Methods and Systems for N-state Symbol Processing with
Binary Devices.

While there have been shown, described and pointed out
fundamental novel features of the invention as applied to
preferred embodiments thereof, it will be understood that
various omissions and substitutions and changes in the form
and details of the device illustrated and in its operation may be
made by those skilled in the art without departing from the
spirit of the invention. It is the intention, therefore, to be
limited only as indicated by the scope of the claims appended
hereto.

The invention claimed is:
1. A method for scrambling with a scrambler a sequence of
p n-state symbols not generated by the scrambler with n equal
to or greater than 2 and with p>1, each n-state symbol able to
assume one of n states, into a sequence of p scrambled n-state
symbols, comprising:
inputting an n-state symbol in the sequence of p n-state
symbols on a first input of a reversible n-state logic
function;
receiving on a second input of the reversible n-state logic
function an n-state symbol provided by an output of an
n-state shift register that is part of an n-state Linear
Feedback Shift Register (LFSR) based scrambler in
Galois configuration with a shift register of k n-state
shift register elements with k<p;
providing on an input of the n-state shift register an n-state
symbol that is available on an output of the reversible
n-state logic function;
providing on a tap into the n-state shift register the n-state
symbol that is available on the output of the reversible
n-state logic function; and

US 8,345,873 B2

53

providing an n-state symbol in the sequence of p scrambled
n-state symbols on an output of the n-state Linear Feed-
back Shift Register (LFSR) based scrambler in Galois
configuration.

2. The method of claim 1, wherein n>2.

3. The method of claim 2, wherein an n-state symbol is
processed as a plurality of bits and the n-state shift register is
realized as a plurality of binary shift registers.

4. The method of claim 3, wherein the plurality of binary
shift registers form a plurality of cross-connected binary
LFSRs with a plurality of reversible binary logic functions.

5. The method of claim 2, wherein the n-state LFSR
includes at least one non-commutative n-state logic function.

6. The method of claim 1, further comprising a self-syn-
chronizing method of descrambling that descrambles the
sequence of p scrambled n-state symbols into a sequence of p
descrambled n-state symbols that is equivalent to the
sequence of p n-state symbols.

7. The method of claim 1, wherein the method is applied in
a communication system.

8. The method of claim 1, wherein the method is applied in
a storage system.

9. The method of claim 1, further comprising inverting an
n-state symbol in accordance with an n-state inverter before it
is provided to an input.

10. A descrambler for descrambling a sequence of p
scrambled n-state symbols with n equal to or greater than 2
not generated by the descrambler, each n-state symbol able to
assume one of n states, into a sequence of p descrambled
n-state symbols with p>1, comprising:

an n-state Linear Forward Connected Shift Register

(LFCSR) in Galois configuration having an n-state shift
register with an input and an output, the input of the
n-state shift register enabled to receive the sequence of p
scrambled n-state symbols and the input of the n-state
shift register being connected to at least one tap of the
n-state LFCSR;

afirst device implementing an n-state reversible logic func-

tion with a first input being connected to the output of the
n-state shift register, and a second input being connected
to the input of the n-state shift register; and

an output of the first device enabled to provide the

sequence of p descrambled n-state symbols.

20

25

30

35

40

54

11. The descrambler of claim 10, wherein a connection to
an input includes an n-state inverter.
12. The descrambler of claim 10, wherein n>2.
13. The descrambler of claim 12, wherein an n-state sym-
bol is processed as a plurality of bits and the n-state shift
register is realized as a plurality of binary shift registers.
14. The descrambler of claim 13, wherein the plurality of
binary shift registers form a plurality of cross-connected
binary LFCSRs with a plurality of reversible binary logic
functions.
15. The descrambler of claim 10, wherein the descrambler
is self-synchronizing.
16. The descrambler of claim 10, wherein the descrambler
is part of a communication system.
17. The descrambler of claim 10, wherein the descrambler
is part of a storage system.
18. The descrambler of claim 10, wherein the descrambler
is part of a media player.
19. A method for descrambling with a descrambler a
sequence of p scrambled n-state symbols with n equal to or
greater than 2 and with p>1, each n-state symbol able to
assume one of n states, into a sequence of p descrambled
n-state symbols, comprising:
inputting an n-state symbol in the sequence of p scrambled
n-state symbols on an input of an n-state shift register of
an n-state Linear Forward Connected Shift Register
(LFCSR) in Galois configuration and on an input of a
multi-input n-state logic function in a tap of the n-state
LFCSR;

receiving on a first input of a reversible n-state logic func-
tion an n-state symbol provided by an output of the
n-state shift register;

receiving on a second input of the reversible n-state logic

function the n-state symbol in the sequence of p
scrambled n-state symbols; and

providing on an output of the reversible n-state logic func-

tion a descrambled n-state symbol in the sequence of p
descrambled symbols.

20. The method of claim 19, wherein an n-state symbol is
received by an input through an n-state inverter.

