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SYMBOL ERROR CORRECTION BY ERROR 
DETECTION AND LOGIC BASED SYMBOL 

RECONSTRUCTION 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation-in-part of US. patent 
application Ser. No. 11/680,719, ?led on Jan. 3, 2007, Which 
claims the bene?t of US. Provisional Patent Application No. 
60/779,068, ?led Mar. 3, 2006, Which are both incorporated 
herein by reference in their entirety. This application is a 
continuation-in-part of US. Non-Provisional patent applica 
tion Ser. No. 10/935,960, ?led on Sep. 8, 2004, entitled TER 
NARY AND MULTI-VALUE DIGITAL SCRAMBLERS, 
DESCRAMBLERS AND SEQUENCE GENERATORS, 
Which is incorporated herein in its entirety. This application 
also claims the bene?t of US. Provisional Application No. 
60/883,369, ?led Jan. 4, 2007, Which is incorporated herein 
by reference in its entirety. 

BACKGROUND OF THE INVENTION 

The present invention relates to correction of one or more 
symbols in error in a sequence of symbols. More speci?cally, 
it relates to error correction by ?rst identifying the location of 
possible errors, folloWed by reconstruction of the original 
symbols from the remaining symbols believed to be not in 
error. 

Error correction of symbols is Well known, especially in 
the ?eld of communications and information storage or trans 
fer. In general, a series of symbols that is being transferred 
may have experienced interference or noise on a transmission 
channel. Possibly the storage medium, such as an optical or 
magnetic disk, may have been damaged. As a consequence, a 
received sequence of symbols may be different from the 
sequence from Which it originated. The difference betWeen an 
original sequence of symbols and a received sequence may be 
considered to be errors. 

Error control measures can be applied to detect and to 
correct errors. These measures in general comprise adding 
additional symbols to a sequence, based on the existing sym 
bols in the original sequence. The redundancy of symbols 
alloWs for detection and sometimes correction of errors. 

It usually requires a greater number of redundant symbols 
to correct errors rather than to merely detect that symbols are 
in errors. For instance, in data communications, Wherein re 
sending of information is possible and not detrimental to the 
quality of data transfer, it may be su?icient to detect errors 
and request the transmitter to resend the symbols. HoWever, 
in many applications resending of symbols is impossible or 
undesirable. In such cases error correction is desirable. 

Error-correction techniques for symbols in a sequence 
attempt to achieve the best result With as feW redundant sym 
bols as possible, and With as limited processing requirements 
and memory or storage requirements as possible. Error cor 
recting redundancy is usually set to address some maximum 
or optimal expected symbol error ratio. If information is 
coded into codeWords, it is to be expected that many code 
Words are error-free and in error-free codeWords extra sym 
bols provided for error correction or detection are truly redun 
dant. 

Effective error correcting codes With a possibility to cor 
rect a limited number of symbols in a sequence of a greater 
number of symbols require signi?cant processing and/or 
memory capabilities. Maximum likelihood error correction 
may also require signi?cant memory or storage capabilities. 
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2 
Accordingly, novel and improved methods and apparatus pro 
viding improved error correcting performance With limited 
symbol redundancy and limited processing resources are 
required. 

SUMMARY OF THE INVENTION 

In accordance With one aspect of the present invention, 
presents a novel method and system are provided that Will 
correct errors in a sequence of symbols by detecting Which 
symbols are in error and then reconstructing the error symbol 
by reversible logic functions. An n-valued function herein 
means an n-valued logic function. 

In accordance With another aspect of the present invention, 
a method is provided for error correction of one or more 

n-valued symbols in a codeWord of a plurality of n-valued 
symbols With n>2, a codeWord having at least one check 
symbol calculated from data symbols, using a plurality of 
codeWords comprising recalculating a check symbol in a 
codeWord, evaluating if a codeWord has a symbol in error, 
determining a location of a symbol in error in a codeWord 
based on check symbols of at least tWo codeWords; and recon 
structing the symbol in error. 

In accordance With a further aspect of the present inven 
tion, the method has at least one check symbol generated by 
the n-valued logic expression using an n-valued non-adder 
function. 

In accordance With a further aspect of the present inven 
tion, a method is provided for calculating check symbols by 
using an n-valued Linear Feedback Shift Register (LFSR). 

In accordance With another aspect of the present invention 
a method is provided for the n-valued LFSR using an n-valued 
logic function de?ned in GF(n:2P) With p21. 

In accordance With a further aspect of the present invention 
a method is provided for calculating a symbol knoWn to be in 
error in a codeWord from equations for determining one or 
more check symbols of the codeWord. 

In accordance With another aspect of the present invention, 
a method is provided for creating codeWords comprising the 
steps of arranging the n-valued data symbols to be coded in a 
matrix; determining check symbols along the dimensions of 
the matrix; including the check symbols to codeWords in the 
matrix; and completing coding of the n-valued data symbols 
as a frame of codeWords. 

In accordance With a further aspect of the present inven 
tion, a method is provided for decoding a frame of codeWords 
comprising the steps of deconstructing the frame of code 
Words into a matrix; recalculating the check symbols as neW 
check symbols from the data symbols; and determining data 
symbols in error by comparing the check symbols With the 
neW check symbols. 

In accordance With another aspect of the present invention, 
a method is provided for solving equations for determining 
check symbols for a codeWord including data symbols in 
error, Wherein the symbols in error are treated as unknoWns 
for Which the equations can be solved. 

In accordance With a further aspect of the present inven 
tion, apparatus are provided that Will implement the methods 
Which are an aspect of the present invention. 

In accordance With another aspect of the present invention 
systems are disclosed that provide error correction coding at 
the source and error correction decoding at the target in accor 
dance With the methods of the present invention. 

In accordance With a further aspect of the present invention 
data storage systems are provided that Will correct symbol 
errors in symbols retrieved from a storage medium. 
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In accordance With another aspect of the present invention, 
a method is provided for error correction for a plurality of 
n-valued With n>2 data symbols, comprising associating the 
plurality of n-valued data symbols With a ?rst 2-dimensional 
matrix, providing each n-valued data symbol With a position 
in the ?rst matrix, generating a plurality of roW check symbols 
along each roW of data symbols in the ?rst matrix, a roW check 
symbol being generated by applying an n-valued logic 
expression Wherein data symbols in a roW of the ?rst matrix 
are variables, generating a plurality of column check symbols 
along each column of data symbols in the ?rst matrix, a 
column check symbol being generated by applying an n-val 
ued logic expression Wherein data symbols in a column in the 
?rst matrix are variables, and transmitting to a decoder the 
plurality of n-valued data symbols, and the pluralities of roW 
and column check symbols. 

In accordance With a further aspect of the present inven 
tion, the method has at least one check symbol generated by 
the n-valued logic expression using an n-valued logic func 
tion Which is not a modulo-n adder or an adder over GF(n). 

In accordance With a further aspect of the present inven 
tion, the method further comprises receiving by the decoder 
the plurality of n-valued data symbols as received n-valued 
data symbols, and the pluralities of roW and column check 
symbols as received roW and column check symbols, associ 
ating the plurality of received n-valued data symbols With the 
?rst matrix, providing each received n-valued data symbol 
With a position in the ?rst matrix, generating a plurality of 
recalculated roW check symbols along each roW of received 
data symbols in the ?rst matrix, a recalculated roW check 
symbol being generated by applying an n-valued logic 
expression Wherein received data symbols in a roW of the ?rst 
matrix are variables, generating a plurality of recalculated 
column check symbols along each column of received data 
symbols in the ?rst matrix, a recalculated column check sym 
bol being generated by applying an n-valued logic expression 
Wherein received data symbols in a column are variables, 
locating one or more symbols for error correction by applying 
only received and recalculated check symbols. 

In accordance With another aspect of the present invention, 
the method further comprises error-correcting a symbol for 
error correction by applying an n-valued logic expression 
having the symbol for error correction as an unknown. 

In accordance With a further aspect of the present inven 
tion, the method further comprises associating the plurality of 
n-valued symbols With a second 2-dimensional matrix, pro 
viding each symbol With a position in the second matrix, 
generating a plurality of roW check symbols along each roW of 
data symbols in the second matrix, a roW check symbol being 
generated by applying an n-valued logic expression Wherein 
data symbols in a roW of the second matrix are variables, 
generating a plurality of column check symbols along each 
column of data symbols in the second matrix, a column check 
symbol being generated by applying an n-valued logic 
expression Wherein data symbols in a column in the second 
matrix are variables, and adding to a transmission of symbols 
to the decoder the pluralities of roW and column check sym 
bols associated With the second matrix. 

In accordance With another aspect of the present invention, 
the method further comprises receiving by the decoder the 
pluralities of n-valued data symbols as received n-valued data 
symbols and the pluralities check symbols as received check 
symbols, locating symbols for error correction in accordance 
With the ?rst matrix, locating symbols for error correction in 
accordance With the second matrix, and determining symbols 
for error correction in accordance With the ?rst and the second 
matrix. 
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4 
In accordance With a further aspect of the present inven 

tion, the method further comprises applying check symbols 
generated in accordance With one or more additional matri 
ces. 

In accordance With another aspect of the present invention, 
the method is provided Wherein a check symbol is generated 
by using an n-valued Linear Feedback Shift Register (LFSR). 

In accordance With a further aspect of the present inven 
tion, the method further comprises generating one or more 
n-valued check symbols from the plurality of roW symbols. 

In accordance With a further aspect of the present inven 
tion, the method further comprises generating one or more 
n-valued check symbols from the plurality of column check 
symbols. 

In accordance With a further aspect of the present inven 
tion, a system for error correction in a plurality of n-valued 
data symbols With n>2 is provided, comprising a coding unit 
for generating a plurality of check symbols from the plurality 
of n-valued data symbols, a check symbol being calculated 
from an n-valued expression having n-valued data symbols of 
a codeWord as variables and Wherein a codeWord is formed by 
associating the plurality of n-valued data symbols With a ?rst 
matrix and the codeWord has n-valued data symbols of a roW 
or a column of the ?rst matrix, a decoding unit for generating 
a plurality of recalculated check symbols Which are recalcu 
lated in accordance With the ?rst matrix from the plurality of 
data symbols having one or more data symbols in error, an 
error locating unit for locating one or more symbols for error 
correction in the plurality of n-valued data symbols having 
one or more data symbols in error by using only check sym 
bols and recalculated check symbols, an error correcting unit 
for calculating a correct value for a symbol for error correc 
tion by solving an equation using a reversible n-valued logic 
function and having a symbol for error correction as an 
unknown. 

In accordance With a further aspect of the present inven 
tion, the system has at least one check symbol generated by 
the n-valued logic expression using an n-valued function 
Which is not a modulo-n adder or an adder over GF(n). 

In accordance With a further aspect of the present inven 
tion, the system for error correction comprises the coding unit 
generating a second plurality of check symbols from the 
plurality of n-valued data symbols, a check symbol being 
calculated from an n-valued expression having n-valued data 
symbols of a codeWord as variables and Wherein a codeWord 
is formed by associating the plurality of n-valued data sym 
bols With a second matrix and the codeWord has n-valued data 
symbols of a roW or a column of the second matrix. 

In accordance With a further aspect of the present inven 
tion, the system for error correction comprises the decoding 
unit generating a second plurality of recalculated check sym 
bols Which are recalculated in accordance With the second 
matrix from the plurality of data symbols having one or more 
data symbols in error. 

In accordance With a further aspect of the present inven 
tion, the system for error correction comprises generating an 
additional plurality of check symbols from the plurality of 
n-valued data symbols, a check symbol being calculated from 
an n-valued expression having n-valued data symbols of a 
codeWord as variables and Wherein a codeWord is formed by 
associating the plurality of n-valued data symbols With an 
additional matrix and the codeWord has n-valued data sym 
bols of a roW or a column of the additional matrix. 

In accordance With a further aspect of the present inven 
tion, the system for error correction comprises the coding unit 
generating additional check symbols from a plurality of 
check symbols. 
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In accordance With a further aspect of the present inven 
tion, the system for error correction comprises the decoder 
correcting errors in the check symbols. 

In accordance With a further aspect of the present inven 
tion, the system for error correction is provided Wherein the 
system is a data storage system. 

In accordance With a further aspect of the present inven 
tion, the system for error correction is provided Wherein the 
system is a communication system. 

In accordance With a further aspect of the present inven 
tion, the system for error correction is provided Wherein 
n-valued symbols are represented by binary symbols. 

In accordance With a further aspect of the present inven 
tion, a method for coding a plurality of n-valued With n>2 data 
symbols is provided, comprising selecting a ?rst plurality of 
n-valued symbols from the plurality of n-valued data sym 
bols, generating a ?rst n-valued check symbol from the ?rst 
plurality of data symbols by using an n-valued logic expres 
sion using an n-valued reversible logic function, selecting a 
second plurality of n-valued symbols from the plurality of 
n-valued data symbols, generating a second n-valued check 
symbol from the second plurality of data symbols by using an 
n-valued logic expression using an n-valued reversible logic 
function, and the ?rst and the second plurality of n-valued 
data symbols having at least one n-valued data symbol in 
common. 

In accordance With a further aspect of the present inven 
tion, the method for coding a plurality of n-valued With n>2 
data symbols comprises selecting an additional plurality of 
n-valued symbols from the plurality of n-valued data sym 
bols, generating an additional n-valued check symbol from 
the additional plurality of data symbols by using an n-valued 
logic expression using an n-valued reversible logic function, 
repeating the previous steps until each of the plurality of 
n-valued data symbols is associated With at least tWo check 
symbols. 

In accordance With a further aspect of the present inven 
tion, the method has at least one check symbol generated by 
the n-valued logic expression using an n-valued function 
Which is not a modulo-n adder or an adder over GF(n). 

DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a diagram of an n-valued LFSR circuit With 
multipliers and is prior art; 

FIG. 2 is a diagram equivalent to the LFSR circuit of FIG. 
1 having no multipliers; 

FIG. 3 is a matrix shoWing codeWords With data symbols 
and check symbols; 

FIG. 4 is another matrix shoWing codeWords With data 
symbols and check symbols; 

FIG. 5 is a diagram of an n-valued LFSR circuit for gen 
erating check symbols; 

FIG. 6 is another diagram of an n-valued LFSR circuit for 
generating check symbols; 

FIG. 7 is another diagram of an n-valued LFSR circuit for 
generating check symbols; 

FIG. 8 is a matrix shoWing codeWords With data symbols 
and check symbols; 

FIG. 9 is a diagram of an n-valued LFSR circuit for gen 
erating check symbols; 

FIG. 10 is a diagram of an equation solver in accordance 
With one aspect of the present invention; 

FIG. 11 is a How diagram for determining check symbols in 
accordance With a further aspect of the present invention; 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
FIG. 12 illustrates a system that is used to perform the steps 

described herein in accordance With another aspect of the 
present invention; 

FIG. 13 illustrates a storage system for Writing data to a 
storage medium in accordance With yet another aspect of the 
present invention; 

FIG. 14 illustrates a storage system for reading data from a 
storage medium in accordance With yet another aspect of the 
present invention; 

FIG. 15 illustrates detecting symbol errors in a coding 
matrix in accordance With an aspect of the present invention; 

FIG. 16 illustrates coding a plurality of n-valued symbols 
according to a matrix in accordance With an aspect of the 
present invention; 

FIG. 17 illustrates coding a plurality of n-valued symbols 
in accordance With another aspect of the present invention; 
and 

FIG. 18 illustrates coding a plurality of n-valued symbols 
in accordance With another aspect of the present invention. 

DESCRIPTION OF A PREFERRED 
EMBODIMENT 

According to one aspect of the present invention, several 
error detecting, check symbol generation and symbol recon 
struction approaches for sequences including sequences of 
n-valued symbols Will be combined. 

N-valued herein Will mean an integer equal to or greater 
than 3. It is distinguished from binary or 2-valued. 

Furthermore, the terms state or value and multi-state or 
multi-valued Will be used interchangeably. The logic func 
tions that are provided herein represent the sWitching of 
states. A state may be represented by a digit or a number. This 
may create the impression that an actual value is attached to a 
state. One may, to better visualiZe states, assign a value to a 
state. HoWever, that is not a requirement for a state. A name or 
designation of a state is just to indicate that it is different from 
states With different designations. Because some logic func 
tions herein represent an adder the names state and value may 
be used meaning the same. 

Furthermore, because of the practice in binary logic to 
represent a state by a physical level of a signal such as a 
voltage, one often assumes that different n-state signals have 
different levels of a signal, such as voltage or intensity. While 
such representations of a state are alloWed it is not limited to 
that. A state may be represented by independent phenomena. 
For instance, different states of a signal may be represented by 
different Wavelengths of an optical signal. A state may also be 
represented by a presence of a certain material, by a quantum 
mechanical phenomenon, or by any other phenomenon that 
can distinguish a state from another state. 

Furthermore, a symbol, Which is regarded herein as a single 
element, may also be represented by 2 or more p-state sym 
bols Wherein p<n. For instance, a 4-state symbol may be 
represented by 2 binary symbols. 
The generation of check symbols, especially in sequences 

of binary symbols, is known, and either a parity symbol or a 
combination of symbols representing a checksum is gener 
ated. One may also generate n-valued check symbols by 
applying n-valued symbols to one or more n-valued logic 
functions. 
As an illustrative example to describe one aspect of the 

present invention assume a set of codeWords of 5 n-valued 
symbols. All possible codeWords of 5 n-valued symbols have 
at most 4 symbols in common. Having symbols in common in 
codeWords is assumed to mean having symbols in common in 



US 8,046,661 B2 
7 

like positions. For instance the Word [0 1 2 3 4] and the Word 
[3 2 1 0 4] have only one symbol (the 4) in common in like 
positions. 
Assume that one can add to each codeword of 5 n-valued 

symbols 2 n-valued symbols in such a Way that each code 
Word (of noW 7 symbols) still have at most 4 symbols in 
common With another codeword. NoW assume that a code 
Word of 7 symbols is transmitted to a receiver. Before or 
during reception an error may have occurred in one of the 7 
symbols. This means that 6 symbols are correct and one 
symbol is in error. The received codeWord has then 6 symbols 
in common With the correct codeWord. Because each code 
Word has at most 4 symbols in common With each other 
codeWord and assuming that an error has occurred in one 
symbol the codeWord did not have in common With another 
codeWord, then a codeWord With one error has at most 5 
symbols in common With any other codeWord than the correct 
codeWord. A codeWord With 2 errors has at most 6 symbols in 
common With any other codeWord except the correct code 
Word. It may also have just 5 symbols in common With the 
correct codeWord. It should be clear that With 3 errors it Will 
be possible that a codeWord With errors may have 7 symbols 
in common With a codeWord not being the correct codeWord. 
One may then conclude that a set of codeWords of p+k 

symbols of Which each codeWord has at most q symbols in 
common With another codeWord has a difference of at least 
p+k—q symbols betWeen each codeWord. And at most p+k— 
q-1 symbols in errors can be detected. The problem is that 
one can usually only determine (detect) that up to (p+k—q—1) 
symbols are in error in a codeWord. In general one can not 
determine Which of the p+k symbols are in error. It is knoWn 
that tWice as many redundant symbols are required to also 
correct the symbols in error. 

In general, error correction also requires the application of 
some decoding scheme. For instance, one can apply convo 
lutional coding and attempt to create a maximum likelihood 
Trellis for decoding. One may also code the Words according 
to a Reed Solomon scheme and correct any errors by solving 
equations based on syndromes. 
A preferred embodiment as one aspect of the present inven 

tion, is to ?rst identify Which symbols in a sequence are in 
error, and based on a selected coding scheme reconstruct the 
symbols that Were detected as being in error by using revers 
ing equations. The advantage is that the decoding can be done 
in a fast and simple manner. 

Reconstruction of symbols (including n-valued symbols) 
in error based on knoWn correct symbols has been demon 
strated by the Applicant in U.S. patent application Ser. No. 
11/566,725, ?led on Dec. 5, 2006 entitled ERROR COR 
RECTING DECODING FOR CONVOLUTIONAL AND 
RECURSIVE SYSTEMATIC CONVOLUTIONAL 
ENCODED SEQUENCES, Which is incorporated herein in 
its entirety by reference. Reconstruction of symbols in error 
in Reed Solomon codes and in What the Applicant calls Reed 
Solomon like codes also are described in U.S. Non-provi 
sional patent application Ser. No. 11/739,189, ?led on Apr. 
24, 2007, Which claims the bene?t of U.S. Provisional Patent 
Application Ser. No. 60/807,087 ?led Jul. 12, 2006; U.S. 
Non-provisional patent application Ser. No. 11/743,893, ?led 
on May 3, 2007, Which claims the bene?t of U.S. Provisional 
Patent Application Ser. No. 60/821,980 ?led Aug. 10, 2006, 
Which are all four incorporated herein by reference in their 
entirety. 
A reconstruction approach Will be brie?y explained in this 

section. As an example a 4-valued Reed Solomon code Will be 
generated of 3 4-valued data symbols. A knoWn 4-valued 
Linear Feedback Shift Register (LFSR) con?guration that is 
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8 
able to generate the code is shoWn in FIG. 1. It shouldbe noted 
that the coder is shoWn in Fibonacci con?guration. An equiva 
lent LFSR coder in Galois con?guration can also be con 
structed. The rules for creating equivalent n-valued Fibonacci 
and Galois LFSR based con?gurations are disclosed by the 
Inventor in U.S. Non-provisional patent application Ser. No. 
11/696,261, ?led on Apr. 4, 2007, and Which claims the 
bene?t of U.S. Provisional Patent Application Ser. No. 
60/789,613, ?led onApr. 5,2006 Which are both incorporated 
herein in their entirety. It is understood for those skilled in the 
art that When a Fibonacci con?guration LFSR is shoWn, that 
an equivalent Galois con?guration of that LFSR is implicitly 
disclosed. Galois con?gurations of LFSRs can inherently be 
faster than Fibonacci con?gurations. 
The coder as shoWn in FIG. 1 is comprised of an LFSR With 

a 3 element shift register With elements 101, 102 and 103, 
each of Which can store a 4-valued symbol. Not shoWn, but 
assumed is a clock signal that Will advance or shift the content 
of each element one position to the right. The ?rst element 
101 Will assume the symbol that is also outputted on output 
109 on the occurrence of a clock pulse. The content of the last 
element 103 Will be lost after a clock pulse. The output of each 
shift register element is also provided to a 4-valued multi 
plier; that is: the output of 101 is also provided to a 4-valued 
multiplier factor 2 106, the output of 102 is also provided to a 
multiplier factor 1 107 and the output of 103 is provided to a 
4-valued multiplier 108 representing a factor 1. The signals 
outputted by the multipliers are inputted to 4-valued adding 
function sc1. 

In order to generate a 4-valued codeWord of 5 symbols, the 
shift register is initiated With the 3 data symbols and the coder 
Will be run for 2 clock pulses, generating 2 additional (redun 
dant) symbols that Will be joined With the three symbols to a 
codeWord of 5 4-valued symbols. 
The 4-valued multipliers and the 4-valued adder sc1 are 

de?ned over an extended binary Finite Field GF (22). The 
truth table of the adder and the multiplier are provided in the 
folloWing tables. 

For reconstruction purposes, one Would need to reverse the 
functions in the decoding process. The inventor has shoWn in 
U.S. patent application Ser. No. 10/935,960, ?led Sep. 8, 
2004, entitled TERNARY AND MULTI-VALUE DIGITAL 
SCRAMBLERS, DESCRAMBLERS AND SEQUENCE 
GENERATORS, Which is incorporated herein by reference in 
its entirety, hoW to create n-valued functions having no mul 
tipliers, equivalent to n-valued functions having n-valued 
multipliers or inverters at its inputs. For several reasons, it is 
easier to use n-valued functions using no multipliers. HoW 
ever, it may be easier to do calculations With adders and 
multipliers. In accordance With a further aspect of the present 
invention one may do all calculations With adders and multi 
pliers, but implement all functions in reduced form, using no 
multipliers. 
The con?guration equivalent to the one of FIG. 1 is shoWn 

in FIG. 2. Herein no multipliers are used. The generated 
redundant symbols are provided on output 209. There is still 
a shift register With elements 201, 202 and 203. HoWever, the 
multipliers and adders are combined into functions sc2 (204) 
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and adder sc1 (205). Because multipliers 107 and 108 in FIG. 
1 are a factor 1, the function 205 in FIG. 2 is identical to 
function 105 in FIG. 1. The function sc2 (204) in FIG. 2 is the 
adder sc1 modi?ed by a multiplier 2. The truth table of sc2 is 
provided in the following table. 

Accordingly, one can create a set of 64 different codewords 
of 5 4-valued symbols using the coder of FIG. 2 wherein each 
codeword has at most 2 symbols in common with another 
codeword from the set. The following table shows part (50%) 
of the generated set of codewords. 

p: a. 

wwwwNNNNHHHHOOOOE, 
p: H 0 
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The data symbols are in the columns under data. The redun 
dant symbols are in the columns under ‘redun’ in the table. It 
should be clear that combination of the redundant symbols 
with the data symbols is trivial. They can be put before or after 
(as in the table) the data symbols. The order of the symbols 
can be changed or the redundant symbols can be inserted 
between the data symbols. However, no matter how the 
redundant symbols are combined with the data symbols, it 
should be done in an identical fashion for all the codewords. 
One can arrange the data symbols of codewords in a matrix 

and calculate the redundant symbols over the dimensions of 
the matrix. An example is shown in FIG. 3 wherein the sym 
bols are arranged in a 2-dimensional matrix. For illustrative 
purposes, 2 dimensional matrices will be used. However, the 
matrices can also be arranged in three dimensional or higher 
dimensional matrices. Furthermore, the matrices do not have 
to be square or rectangular. For instance one may fold a 
sequence of n-valued symbols as a series of columns of a 
matrix, wherein a the end of a previous column is connected 
to the end of the next column, as for instance shown in FIG. 4 
by line 401. In that case errors may spill over from one 
column to the other (or from one row to another row) and one 
should perhaps use more redundant symbols at the end of a 
column or row than in the middle. 

FIG. 3 shows a matrix of codewords. The columns and 
rows comprise 3 data symbols, of which the columns have 2 
redundant or check symbols, while the rows have only one 
check symbol. Such an approach may be selected when 2 
consecutive errors can be expected to occur in at most one of 
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4 columns. This is equivalent to a symbol error ratio of 2* 10' 
2. One can then use the check symbols q1, q2, q3, q4 and q5 
to determine which of the rows has a single error. By recal 
culating the check symbols of the columns one can determine 
in which of the columns one or two errors have occurred 

(assuming for this example that only one of the 4 columns will 
have one or two errors). This determines which of the sym 
bols is in error. 

It should be understood that the number of check symbols 
and the siZe and dimension of the matrix depends on factors 
such as desired correction capability and expected symbol 
error ratio. For instance, if symbols are represented as true 
multi-valued signals one may want to focus on detecting and 
correcting single errors. However if n-valued symbols are 
represented by words of lower valued (such as binary) sym 
bols, one has to address the fact that errors may occur in two 
adjacent symbols. It should be clear that within the con 
straints of expected errors one can identify the location of a 
symbol in error. 
The technique of using parity or check bits in two dimen 

sional or multi-dimensional matrices comprising data bits 
and checkbits is known. For instance US. Pat. No. 3,831,144, 
issued on Aug. 20, 1974, inventor John En, entitled MULTI 
LEVEL ERROR DETECTION CODE, discloses a two-di 
mensional matrix with horiZontally and vertically determined 
check bits. The advantage of binary codes is that once the 
position of error is known one can determine the correct 
symbol, by ?ipping the symbol in error. 
Independent Equations for Determining Check Symbols 

Binary check symbols or parity bits are based on a limited 
relationship between the constituting bits. The relationship is 
commonly established by the binary XOR function. N-valued 
check symbols can have more varied reversible relationships 
as was explained in the earlier cited application Ser. No. 
1 1/ 680,719. For instance one may have a word of 4 n-valued 
symbols [a b c d]. One may create a ?rst n-valued check 
symbol c1:a (aGBbGBcGBd. One may also create a second 
check symbol c2:a®o ®c ®d®. If only one of the symbols a, 
b, c or d is in error one can reconstruct the symbol in error both 
from c1 or c2 if these are not in error and both 69 and ® are 
reversible operations. It should also be clear that two symbols 
in error can be reconstructed if the equations for c1 and c2 are 
independent and the operations are reversible. Calculation of 
c1 and c2 by 69 and ® may be independent because the 
operations are totally different. The equations for c1 and c2 
may be independent because the symbols a, b, c and d are 
processed with the same function but with for instance dif 
ferent n-valued inverters. For instance, c2:a€92b€93c€92d in 
an n-valued code. The advantage of using n-valued coders 
with LFSRs either in Galois or in Fibonacci con?guration is 
that each next generated check symbol has an independent 
equation from another check symbol in the code. That is a 
reason why Reed Solomon (RS) codes work as error correct 
ing codes. 
The advantage of using an LFSR is that one does not need 

to execute each expression or equation in full to generate a 
check symbol. The appropriate con?guration of the LFSR 
takes care of generating the check symbols in accordance 
with independent expressions or equations. The drawback of 
the RS code is that the location of an error ?rst has to be found 
by for instance solving an error correction polynomial. In 
order to be able to do that for each error there have to be 2 
check symbols. By knowing where the errors occur, for 
instance by using a matrix with error symbols derived from 
columns and rows, one may be able to use just one check 
symbol per error. 
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In accordance with a further aspect of the present inven 
tion, one can calculate the correct value of a symbol in error 
of which the location is determined. In general, one can not 
correct two errors occurring in a 7 4-valued codeword as 

generated by the coder of FIG. 2. However, this error correc 
tion becomes possible when one knows which symbols are in 
error. 

As an illustrative example assume 2 consecutive errors to 

occur in the code word [3 3 2 3 2]. The codeword is formed by 
the coder ofFIG. 2 as [sig 4 pl p2], wherein sig4 is a 4-valued 
data word sig4:[x2 x3><3]:[3 3 2] and [pl p2]:[0 0]. The 
equations that are used to generate [pl p2] are: p1:{x1 sc2 
(x2 sc1 x3)} and p2:{p1 sc2 (x1 sc1 x2)}. The function sc2 is 
non-commutative, so care should be taken with the order of 
execution. 

One needs to show that the data word can be recovered with 
any two consecutive errors. This means for received code 

words [e1 e2 2 0 0], [3 e1 e2 0 0], [3 3 e1 e2 0] and [3 3 2 e1 
e2]. The last codeword is of course the simplest to decode as 
only the check symbols [pl p2] are in error, but not the data 
symbols. Consequently, the correct data word is of course [3 
3 2]. 
Methods for Solving N-Valued Error Equations 

There are actually several slightly different methods to 
solve the n-valued error equations. Which method one applies 
may depend on the complexity of the equations, the proper 
ties of the functions and which of the symbols are in error. The 
complexity and properties of functions is directly related to 
the value of n. For instance, if n:2p then one can use a function 
sc1 which is an addition over GF(2P) and multipliers over 
GF(2P). In that case sc1 is self-reversing, commutative and 
associative. This makes solving equations much easier. An 
illustrative example will be provided. 
Under conditions where the position of an error symbol can 

be determined unambiguously, it is also possible to solve the 
equations unambiguously. If for some reason it is impossible 
or undesirable to solve equations in an algebraic fashion, one 
can solve the equations iteratively by using all possible values 
for the symbols in error. One will ?nd only one combination 
of values that solves all equations correctly. Illustrative 
examples will be provided. 
One method is to solve the equations in an algebraic fash 

ion. In order to solve equations it is useful to review the rules 
for reversible, non-commutative and non-associative n-val 
ued logic functions. Assume n-valued logic function ‘ sc’ to be 
reversible, non-commutative and non-associative. 

When (a sc b:c) then (b scT a:c), with the truth table of scT 
being the transposed of the truth table of sc. 

When (a sc b:c) then (c scrc b:a), with the function ‘scrc’ 
being the reverse of ‘sc’ over constant columns. 

When (a sc b:c) then (a scrr c:b), with the function ‘scrr’ 
being the reverse of ‘sc’ over constant rows. 

When (b scT a:c) then (b scTrr c:a), etc 
For the coder of FIG. 2 the following two equations apply 

for generating pl and p2: p1:{x1 sc2 (x2 sc1 x3)} and 
p2:{p1 sc2 (x1 sc1 x2)}. 

Algebraic method. As a ?rst example, assume that of [x1 
x2x3 pl p2] x3 and pl are in error. Clearly a ?rst simple step 
is to solve p2:{p1 sc2 (x1 sc1 x2)} which has pl as unknown. 
One can rewrite the equation as: {p2 sc2rc (x1 sc1 x2)}:p1. 
Herein the function sc2rc is the reverse of sc2 over constant 
columns. Its truth table is provided in the following table. 
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The assumption was that x3 and p1 were in error, so in the 
example the received codeword was [3 3x3 pl 0] using the 
earlier example. Filling in the values in the equation provides 
p1:{0 sc2rc (3 sc1 3)} or p1:0 sc2rc 0:0. 
From p1:{x1 sc2 (x2 sc1 x3)} wherein now only x3 is an 

unknown one can derive: (x2 sc1 x3):{x1 sc2rr p1} wherein 
sc2rr is the reverse of sc2 over constant rows. Keeping in mind 
that sc1 is self reversing: x3q2 sc1 (x1 sc2rr p1). The truth 
table of sc2rr is provided in the following table. 

Thus, x3q2 sc1 (x1 sc2rrp1) leads to: x3:3 sc1 (3 sc2rr 0) 
or x3:3 sc1:2. 
One may apply the same approach when x2 and x3 are in 

error. In that case, one may apply p2:{p1 sc2 (x1 sc1 x2)} to 
achieve (x1 sc1 x2):p1 sc2rr p2 and thus achieve x2q1 sc1 
(p1 sc2rr p2). This will provide x2:3. Etc. 
A more dif?cult situation occurs when x1 and x2 are deter 

mined to be in error. The equations will be fairly dif?cult to 
solve. Assume that x1:e1 and x2:e2. The equations will then 
be: 

The value of p1 and p2 are correct. So one way to solve the 
equation in an iterative manner is to solve the equations: 

for all values of el and e2, and determine for which values of 
(e1,e2) the value (p1-t1) and (p2-t2) are both 0. Not surpris 
ingly this will be the case for (e1,e2):(3,3). This is a time 
consuming and not very elegant way to solve the problem, 
and should be a solution of last resort. 

Fortunately for LFSRs de?ned within GF(2P), one can also 
use a different approach. Within GF(2P) the addition can be a 
self reversing, commutative and associative function. As is 
shown in FIG. 1, an LFSR in GF(2P) can be realiZed with 
functions which are a combination of adders with multipliers. 
One can reduce the functions by reduction of the truth tables 
according to the multipliers, as was shown in FIG. 2. This 
makes the execution of the coder quicker. In order to solve the 
equations one can revert back to associative adders with mul 
tipliers. 

This is shown in FIG. 5 wherein the coder of FIG. 2 is 
equivalent to the coder as shown in FIG. 5. The shift register 
has elements 501, 502 and 503 which will be initiated with (in 
this illustrative example) the 4-valued symbols [x1 x2 x3]. 
The functions 504 and 505 are both the adder sc1 over GF(2P). 
One input of 504 has a 4-valued multiplier 506 representing 
x2, which is equivalent to a 4-valued inverter inv2:[0 2 3 1] 
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according to the truth table of the multiplier over GF(2P). The 
input of 507 of function 504 is here a symbol Xt, Which is an 
inverted value of the content of 501. This is, of course, dif 
ferent from FIG. 2 Where the input to 204 is the value of 201. 

The equations noW become: 

Herein Xt1Iinv2(X1) and pt1Iinv2(p1). Because sc1 is com 
mutative, self-reversing and associative, one can change 
order of input, remove parentheses (or ignore order of eXecu 
tion) and move parts of the equation to the other side of the I 
Without changing the function. Consequently: plqtl sc1 X2 
sc1 X3 and p2Ipt1 sc1 X1 sc1 X2. 
Assume again that X1 and X2 are in error. So the equations 

have to be solved for X1 and X2 and Xt1. This leads to (Xt1 sc1 
X1)I(pt1 sc1 pl) sc1 (p2 sc1 X3). The parentheses are pro 
vided for the neXt step, but are not required When only using 
function sc1. It should be clear that (Xt1 sc1 X1) is in fact (X1 
sc2 X1), as a function sc1 With an inverter inv2 at the input can 
be reduced to sc2. One may also use (X1 sc1Xt1)I(X1 SC2TX1). 
Also (pt1 sc1 p1)I(p1 sc2 p1). Consequently: (X1 sc2 X1)I(p1 
sc2 p1)sc1(p2 sc1 X3). Or (X1 sc2 X1)I(0 sc2 0)sc1(0 sc12), 
Whichis (X1 sc2 X1)I0 sc1 2I2. The solution (X1 sc2 X1) is the 
diagonal [0 3 1 2] of the truth table of sc2. The solution for (X1 
sc2 X1)I2 belongs to X1I3, Which is of course correct. One 
can noW also determine X2 and calculate that X2I3. 

The need for solving errors of 2 symbols in a Word is 
because of the spill-over effect When one codes a symbol as 
for instance a binary Word. One can never be sure that only an 
error in one symbol has occurred, so one should be prepared 
to solve the equations for tWo adjacent symbols in error. It is 
also possible that tWo errors have occurred in non adjacent 
symbols in a Word. This assumes a different error behavior 
than for adjacent errors. Especially codeWords generated by 
LFSRs (Galois and Fibonacci) that can be created by addi 
tions (With or Without multipliers) over GF (21”), have easier to 
solve equations because of the associative properties of the 
addition function. 

For instance, assume using the current 4-valued illustrative 
eXample With a coder as illustrated by FIG. 5, that X1 and p1 
are found to be in error. Using again the equations p1I{Xt1 
sc1 (X2 sc1 X3)} and p2I{pt1 sc1 (X1 sc1 X2)}. Herein 
Xt1Iinv2(X1) and pt1Iinv2(p1) and sc1 is a commutative, 
self-reversing and associative function. The Way to approach 
this is to use arithmetic in GF(22). The folloWing rules apply 
using + and x in GF(22). 
Multiplication: 

For instance, in GF(22) under the earlier de?ned multiplica 
tion 2><2 X1I3X1, etc. 
Addition 

The distributive property applies to a><(b+c)Ia><b+a><c. 
Division is the inverse of multiplying. 
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Accordingly, division by 1 is multiplying by 1; division by 2 
is multiplying by 3; and division by 3 is multiplying by 2. 
One can then Write the equations as p1I2><X1+X2+X3 and 

p2I2><p1+X1+X2. 

As another eXample, one may assume that not adjacent 
symbols X1 and p1 are in error. One must solve the equations 
then for X1. This leads to 2><X1I3><X2><2><X3+p2; or X1I2>< 
X2+X3+3><p2I2><3+2+0I1+2I3. One achieves this result by 
applying the arithmetic rules in GF(22) as stated before. 

Galois ?eld arithmetic may be preferred for solving the 
equations for in error symbols. HoWever, these easy solutions 
may only be available for codeWords de?ned in eXtension 
binary ?elds. As an illustrative eXample, a 5 symbol 5-valued 
code Will be generated With 3 data symbols from a 5-valued 
LFSR as shoWn in FIG. 6 

The coder in FIG. 6 is a 5-valued LFSR With shift register 
elements 601, 602 and 603. The taps have functions sc5 at 604 
and 605. The end tap has a 5-valued multiplier factor 2, Which 
is a 5-valued inverter [0 2 4 1 3]. The functions sc5 is addition 
modulo-5 of Which its truth table is shoWn in the folloWing 
table. 

This coder Will generate 5-valued codeWords by providing 
the data symbols as initial shift register content and running 
the coder for tWo clock pulses. The check symbols Will be 
generated on 609. The codeWords thus generated have at mo st 
2 symbols With another codeWord in common. That means 
that 2 errors can be detected, and knoWing the position of tWo 
errors, tWo errors can also be corrected. The ?rst 25 code 
Words of this coder are provided in the folloWing table. 
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-continued 
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The coder of FIG. 6 Will be used for developing the equa 
tions to solve the errors. It should be clear that When a symbol 
X3 is in shift register element 603 a symbol value 2><X3 is 
provided to input 607 of function sc5 at 605. The 5-valued 
equations are then: p1:{X1 sc5 (X2 sc5 2><X3)} and p2:{p1 
sc5 (X1 sc5 2><X2)} to generate codeWord [X1 X2 X3 p1 p2]. 
Because sc5 is an addition (mod-5) one can Write the equa 
tions as: 

One can reduce the coder of FIG. 6 to the coder of FIG. 7. 
The coder of FIG. 7 has 5-valued shift register elements 701, 
702 and 703. The functions sc51 at 705 is the original function 
sc5 modi?ed according to the multiplier and function sc5 at 
704 remains sc5. The check symbols are generated on 707 and 
are identical to the ones generated on the coder of FIG. 6. 

For the 5-valued arithmetic the folloWing truth table need 
to be used for multiplication x and subtraction —, meaning 
(a-b) Wherein ‘a’ is the roW and ‘b’ is the column of the truth 
table. 

One should further keep in mind that dividing by 2 is 
multiplying With 3, dividing by 3 is multiplying by 2 and 
dividing by 4 is multiplying by 4. Further more 3><3I4 and 
4><4:1, etc. 

Accordingly one Will ?nd for X1: p2:2X1+3X2+2 X3 or 
3p2q1+4X2+X3 or X1:(3p2—4X2)—X3. Assume from the 
table that [X1 X2X3 p1 p2] Was [0 4 3 0 3] With X1 and p1 in 
error. The equation provides: X1:(3><3—4><4)—3:(4-1)—3:0. 
As another eXample assume from the codeWord table that the 
codeWord Was [0 2 3 3 2] With X1 and p1 in error, so X1 has to 
be calculated from (X2, X3 and p2). The equation then pro 
vides X1:(3><2—4><2)—3:(1—3)—3:0. The tables shoW that 
3><2:1 and 4><2:3 and 1—3:3 in modulo-5 arithmetic as 
de?ned by the tables. 

The methods here presented as different aspects of the 
present invention also apply to detection and correction of 
more than 2 errors, such as three errors. In order to detect k 
errors in a codeWord of n symbols, each codeWord in a set of 
codeWords must have at least k+1 different symbols in com 
mon positions from any other codeWord in the set. Or each 
codeWord may at most have (n-k-l) symbols in common 
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positions. The best one can do in a 7 symbol codeWord to 
detect 3 errors is having at most 3 symbols in common. Such 
a code Would require 8-valued symbols and is generally 
knoWn as an RS-code. It is possible to meet the error detection 
requirement in a loWer valued symbol codeWord. HoWever, 
that Would require a codeWord With more symbols. It is then 
understood that other and different eXamples of detection 3 
errors in a codeWord can be provided according to different 
aspects of the present invention. As an illustrative eXample, an 
8-valued 7 symbol codeWord With 3 check symbols Will be 
provided to demonstrate error correction When the position of 
errors is knoWn. 

One can identify the positions of the errors for instance by 
establishing a matriX as shoWn in FIG. 8. The data symbols 
occur sequentially as X1 . . . X4, y1 . . . y4, v1 ...v4, Z1 ...Z4. 

The symbols are broken up as 4 columns of 4 data symbols 
and horiZontal check symbols t and tt are generated as Well as 
vertical check symbols p, q, r and s. The assumption in the 
eXample is that errors Will occur as at most 3 adjacent errors 

in a column. One skilled in the art may, of course, design 2 or 
3 dimensional matrices for different (also non adjacent) errors 
and different symbol error ratios as Well as different code 
Word siZes. 

Assume that all symbols in the illustrative eXamples are 
8-valued. By running 8-valued coders on the received data 
symbols one can check the neWly generated check symbols 
against the received check symbols and determine Which 
roWs and columns are in error, thus determining the position 
of the errors. Based on the knoWn error positions and the 
coder one can reconstruct the correct symbols in the error 
positions. 
Assume that the 3 check symbols in the column of FIG. 8 

are generated by the 8-valued Fibonacci coder of FIG. 9. This 
is an 8-valued LFSR With 4 shift register elements 901, 902, 
903 and 904 With three identical 8-logic functions 905, 906 
and 907 Which is an addition sc1 over GF(23). Also included 
are 4 multipliers 908, 909, 910 and 911 Which are multipliers 
respectively of a factor 4, 1, 1 and 2 over GF(23). At each 
clock cycle a check symbol in generated on output 912. 
According to earlier disclosed methods, the coder can be 
reduced in number of elements by reducing the addition 
according to the multipliers. One can also modify the 
Fibonacci con?guration to a faster Galois con?guration. All 
providing the same check symbols. HoWever, for reconstruct 
ing the error symbols, especially applying GF(n) arithmetic, 
a Fibonacci con?guration With multipliers may be preferred 
for error correction, though probably not for generating check 
symbols. 
The truth tables of the addition sc1 and multiplier over 

GF(23) are provided in the folloWing truth tables. 
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The following table shows the division rule in GF(23). 

Or division by 2 is multiplying by 7, division by 3 is multi 
plying by 6, etc. 

The initial state of the shift register of the coder of FIG. 9 
is [X1 X2 X3 X4]; in three clock cycles the coder will generate 
3 check symbols [pl p2 p3]. The equations for generating the 
check symbols are: 

One can solve these equations for any of the 3 symbols to 
be unknown. As one eXample assume [X1 X2 X3] to be in error. 
One can solve the linear equations by matrices or by substi 
tution. Applying substitution one will ?nd: 

and thus with [X4 p1 p2 p3] known one can solve the equa 
tions. 
A partial set of 7 8-valued symbol codeword generated by 

the coder of FIG. 9 is shown in the following table. 

XlX2X3X4 l 2 

472 O 
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7 

One can easily check for the provided codewords using [X4 
p1 p2 p3] in the equations to determine [X1 X2 X3]. 
One can provide the solution set for any of 3 or less sym 

bols in a codeword being in error. 
One may also determine solutions for independent sets of 

unknowns by applying Cramer’s rule. As an eXample, the set 
of equations for the coder of FIG. 9 will be used. For appli 
cation of Cramer’s rule one should apply all additions and 
multiplications of in this eXample GF(8). When applying 
Cramer’s rule using for other radiX-n one should apply the 
appropriate arithmetic. In this eXample, one should apply 
addition and multiplication over GF(23) of which the truth 
tables are provided above. 
Assume that it is determined that X1, X2 and X4 are in error. 

The codeword in error is [X1 X2 X3 X4 p1 p2 p3]:[e1 e2 7 e4 
5 6 3]. One should the create three equations with unknowns 
X1, X2 and X4 from the known equations as: 
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18 
Cramer’s rule then solves the above equations as: 

d112 

d210 

3320 

4d12 

ldZO 

i1d30 
x2: 

41in 

11(12 

i12d3 
x4 : 

Herein 

:5, 

as the rules of GF(8) are used. 

Furthermore, 

Accordingly 

5 

This is in accordance with the elements in the word as gen 
erated by FIG. 9. 

One may also apply Cramer’s rule to other n-valued codes, 
such as the 5-valued coder of FIG. 6. Herein, one should use 
the rules of modulo-5 addition and modulo-5 subtraction in 
the provided eXample, as well as the multiplication. Assum 
ing that X2, p 1 and p2 are correct and X1 and X3 are in error the 
equations become: 

The determinant 

12 1):] 






















