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METHODS AND APPARATUS IN ALTERNATE 
FINITE FIELD BASED CODERS AND 

DECODERS 

BACKGROUND OF THE INVENTION 

The present invention relates to apparatus and methods for 
coding and for decoding. In particular, it relates to methods 
and apparatus for coding and for decoding that apply an 
implementation of at least an n-state addition over an alter 
nate ?nite ?eld GF(n) and at least one n-state inverter de?ned 
by a multiplication over the alternate ?nite ?eld GF(n) or an 
implementation of a truth table de?ned by said addition and 
inverter, With n>2, With n>3 or With n>4. 

Finite ?elds GF(n), including classical extension ?elds are 
knoWn. Presently, certain type of coders apply additions and 
multiplications over a classical ?nite ?eld GF(n). This makes 
certain elements of an encoder and/ or decoder relatively pre 
dictable. It Would make a coded signal of n-state symbols With 
n>2, n>3 or n>4, including certain check symbols generated 
as part of a code Word less predictable if novel functions With 
attractive properties as de?ned in an alternate and currently 
unknown ?nite ?eld Would be used. 

Accordingly, novel and improved methods and apparatus 
for encoding and decoding n-state symbols With functions 
de?ned over an alternate ?nite ?eld are required. 

SUMMARY OF THE INVENTION 

As an aspect of the present invention methods and appara 
tus for encoding and decoding n-state symbols With n>l , n>2, 
n>3 and n>4 are provided Wherein a single truth table is 
implemented Which is a truth table of an addition over an 
alternate ?nite ?eld or a truth table of an addition over the 
alternate ?nite ?eld that is modi?ed in accordance With at 
least one inverter de?ned by a multiplication over an alternate 
?nite ?eld, Wherein an alternate ?nite ?eld has a neutral 
element that is not 0. 

In accordance With a further aspect of the present inven 
tion, an apparatus is provided for encoding a ?rst sequence of 
n-state symbols, each symbol being represented by a signal, 
comprising an input enabled to receive the ?rst sequence of 
n-state symbols, a device implementing an addition over an 
alternate ?nite ?eld GF(n) With n23, and an output that pro 
vides a second sequence of encoded symbols. 

In accordance With yet a further aspect of the present inven 
tion, the apparatus is provided, Wherein n>4. 

In accordance With yet a further aspect of the present inven 
tion, the apparatus is provided, further comprising an imple 
mentation of at least one inverter de?ned by a multiplication 
over the alternate ?nite ?eld. 

In accordance With yet a further aspect of the present inven 
tion, the apparatus is provided, further comprising an n-state 
shift register With at least tWo n-state shift register elements. 

In accordance With yet a further aspect of the present inven 
tion, the apparatus is provided, Wherein the apparatus is a 
Linear Feedback System Register based encoder. 

In accordance With yet a further aspect of the present inven 
tion, the apparatus is provided, Wherein the second sequence 
is applied in symbol error correction. 

In accordance With yet a further aspect of the present inven 
tion, the apparatus is provided, Wherein the device is part of a 
Feistel-like netWork. 

In accordance With yet a further aspect of the present inven 
tion, the apparatus is provided, Wherein the apparatus is an 
Advanced Encryption Standard (AES) encoder. 
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2 
In accordance With yet a further aspect of the present inven 

tion, the apparatus is provided, Wherein the apparatus is an 
Elliptic Curve Coding encoder. 

In accordance With yet a further aspect of the present inven 
tion, the apparatus is provided, Wherein the apparatus modi 
?es a statistical distribution of symbols in the ?rst sequence 
compared to the second sequence. 

In accordance With yet a further aspect of the present inven 
tion, the apparatus is provided, further comprising a corre 
sponding apparatus to decode the second sequence into the 
?rst sequence. 

In accordance With yet a further aspect of the present inven 
tion, the apparatus is provided, Wherein the second sequence 
includes at least one check symbol. 

In accordance With yet a further aspect of the present inven 
tion, the apparatus is provided, Wherein n is a prime number. 

In accordance With yet a further aspect of the present inven 
tion, the apparatus is provided, Wherein n:2’" With m>l. 

In accordance With yet a further aspect of the present inven 
tion, the apparatus is provided, Wherein the apparatus is a 
transposition encoder. 

In accordance With yet a further aspect of the present inven 
tion, the apparatus is provided, Wherein the apparatus per 
forms a Galois arithmetical operation for encoding. 

In accordance With yet a further aspect of the present inven 
tion, the apparatus is provided, Wherein the apparatus is part 
of the group consisting of a communication system and a data 
storage system. 

In accordance With another aspect of the present invention, 
an apparatus is provided for encoding a ?rst sequence of 
n-state symbols, each symbol being represented by a signal, 
comprising an input enabled to receive the ?rst sequence of 
n-state symbols, a device implementing a single truth table 
that is a truth table of an addition over an alternate ?nite ?eld 
GF(n) modi?ed by at least one n-state inverter de?ned by a 
multiplication over the alternate ?nite ?eld GF(n) With n24, 
and an output that provides a second sequence of encoded 
symbols. 

In accordance With yet another aspect of the present inven 
tion, the apparatus is provided, Wherein the apparatus is one 
of the group consisting of scramblers, convolutional coders, 
Reed-Solomon coders, Hamming coder, check-symbol based 
error correcting coders, transposition coders, hopping rule 
coders, Linear Feedback Shift Register based coders, Feistel 
like netWork based coders, Elliptic Curve Coding coders, 
symbol statistical distribution modifying coders, Galois 
arithmetic based coders, sequence generator based encoders, 
streaming coders, block coders and Advanced Encryption 
Standard (AES) coders. 

In accordance With a further aspect of the present inven 
tion, a method is provided for decoding a sequence of n-state 
symbols With n>3, each symbol being represented by a signal, 
comprising providing a plurality of signals representing the 
sequence of n-state symbols on an input of a processor, the 
processor processing the plurality of signals representing the 
sequence of n-state symbols by an implementation of a single 
truth table, Wherein the single truth table is a truth table of an 
addition over an alternate ?nite ?eld or a truth table of an 
addition over the alternate ?nite ?eld that is modi?ed in 
accordance With at least one inverter de?ned by a multiplica 
tion over an alternate ?nite ?eld, providing a plurality of 
signals representing a decoded sequence of symbols on an 
output; and Wherein the sequence of n-state symbols Was 
generated by an encoder in the group consisting of scram 
blers, convolutional encoders, Reed-Solomon encoders, 
Hamming coder, check-symbol based error correcting encod 
ers, transposition encoders, hopping rule encoders, Linear 
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Feedback Shift Register based encoders, streaming cipher 
encoders, block coders, Feistel-like network based encoders, 
Elliptic Curve Coding encoders, symbol statistical distribu 
tion modifying encoders, Galois arithmetic based encoders 
and Advanced Encryption Standard (AES) encoders. 

DESCRIPTION OF THE DRAWINGS 

FIGS. 1-7 illustrate Linear Feedback Shift Registers (LF 
SRs) representing a minimal polynomial to generate p state 
symbols representing states of a ?eld over p"; 

FIG. 8 illustrates reduction of an n-state truth table over at 
least one n-state inverter in accordance With an aspect of the 

present invention; 
FIGS. 9-10 illustrate a sequence generator in accordance 

With an aspect of the present invention; 
FIG. 11 illustrates a coder in accordance With an aspect of 

the present invention; 
FIG. 12 illustrates a coder in accordance With an aspect of 

the present invention; 
FIG. 13 illustrates a decoder in accordance With an aspect 

of the present invention; 
FIG. 14 illustrates a system that implements a truth table in 

accordance With an aspect of the present invention; 
FIG. 15 illustrates a scrambler in accordance With an aspect 

of the present invention; 
FIG. 16 illustrates a descrambler in accordance With an 

aspect of the present invention; 
FIG. 17 illustrates a sequence generator in accordance With 

an aspect of the present invention; 
FIGS. 18 and 19 illustrate a coder in accordance With an 

aspect of the present invention; 
FIG. 20 illustrates a decoder in accordance With an aspect 

of the present invention; 
FIGS. 21 and 22 illustrate coding matrices in accordance 

With an aspect of the present invention; 
FIG. 23 illustrates a coder in accordance With an aspect of 

the present invention; 
FIG. 24 illustrates another coder in accordance With an 

aspect of the present invention; 
FIG. 25 illustrates a device that implements a truth table in 

accordance With an aspect of the present invention; 
FIG. 26 illustrates another device that implements a truth 

table in accordance With an aspect of the present invention; 
FIG. 27 illustrates a coder in accordance With an aspect of 

the present invention; 
FIG. 28 illustrates a coder in reverse direction in accor 

dance With an aspect of the present invention; 
FIG. 29 illustrates a communication system in accordance 

With an aspect of the present invention; 
FIG. 30 illustrates part of a data storage system in accor 

dance With an aspect of the present invention; 
FIG. 31 illustrates another part of a data storage system in 

accordance With another aspect of the present invention; 
FIG. 32 illustrates a processor based system to perform 

coding and decoding steps in accordance With an aspect of the 
present invention; 

FIG. 33 illustrates a Linear Feedback Shift Register 
(LFSR) in accordance With an aspect of the present invention; 

FIGS. 34 and 35 illustrate a coder in accordance With an 
aspect of the present invention; 

FIG. 36 illustrates an n-state inverter With n:4 in accor 
dance With an aspect of the present invention; 

FIGS. 37-38 illustrate implementing an n-state logic func 
tion in accordance With an aspect of the present invention; and 

FIG. 39 illustrates an addressable memory. 
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4 
DESCRIPTION OF A PREFERRED 

EMBODIMENT 

The term n-valued or n-state herein is used generally as 
non-binary Wherein n>2, unless the binary case is included. 
Herein also the term n-state symbol is used. An n-state sym 
bol is a symbol that has one of n states. A symbol or an n-state 
symbol is a single entity. A symbol herein is being generated 
or processed as a signal by an apparatus. A symbol such as an 
n-state symbol can be represented by a single n-state signals 
that can have one of n states; it can also be represented and 
processed as a plurality of signals such as binary signals. 

Herein also the term check symbol is used. In binary appli 
cations one generally uses the term parity bit or symbol. 
Because the binary check function is the XOR function a 
check symbol generated by the XOR function is a 0 if there 
Was an even number of Is and a 1 if there Was an odd number 

of Is. Hence, the name parity. The name parity has no such 
meaning in n-valued functions. Accordingly, the name check 
symbols Will be used. 

Parity calculation in binary error correction is the process 
Wherein a number of bits in a codeWord or sequence or block 
have for instance an even parity or even number of Is, includ 
ing the parity bit. Assume one has an 8 bit code Word [a b c d 
e f g h] and a parity bit p is added. For instance, a rule for 
determining a parity symbol could be: the number of Is in [a 
b c d e fg h p] should alWays be even. 

This can be expressed in the equation a+b+c+d+e+f+g+h+ 
p:0. The operation ‘+’ in this equation is the modulo-2 addi 
tion or XOR function. 

It is one aspect of the present invention to create a check 
symbol for a codeword comprised of k n-valued symbols by 
using a reversible n-valued operation sc1. In n-valued logic 
one may use different Ways or functions to create a ‘parity’ or 
check symbol. One may use reversible and non-reversible 
operations. For instance, a non-reversible parity n-valued 
operation is one Wherein a l is added (modulo-n) to a sum 
When a symbol is not 0, and a 0 When a symbol is Zero. The 
reversibility is related to determining the original value of the 
symbols of Which a parity symbol is determined. 
One method as an aspect of the present invention is to apply 

reversible n-valued logic operations to calculate the ‘check’ 
or parity symbol of a sequence of n-valued symbols. The 
advantage of a reversible operation is that an equation can be 
solved. For instance, tWo n-valued symbols X1 and X2 com 
bined by a function sc1 Will generate a symbol p1 according 
to the equation: X1 sc1 X2:p1. 
Assume that sc1 is self reversing and commutative. In that 

case (as is for instance explained in US. patent application 
Ser. No. 10/912,954 ?led Aug. 6, 2004 entitled: Ternary and 
higher multi-value digital scramblers/descramblers, Which is 
incorporated herein in its entirety): X1:p1 sc1 X2. For calcu 
lation and notation purposes it is sometimes preferred to Write 
the parity symbol equations With a result 0. In that case (X1 
sc1 X2:0) canbe Written for instance as: (X1 sc1 X2 sc1 p1):0. 
This is the result of (X1 sc1 X2):(p1 sc1 0) again With sc1 
assumed to be a commutative self-reversing n-valued func 
tion. 

It should be clear that p1 can also be calculated in a differ 
ent fashion. For instance by: (X1 sc1 X2):(p1 sc2 0) so that 
((X1 sc1 X2) sc3 p1):0. Herein the function sc3 is the reverse 
of sc2. If sc2 is self-reversing then: ((X1 sc1 X2) sc2 p1):0. 
The n-valued self-reversing functions are in general not 

associative. This means that even though a function may be 
commutative, the order of variables in a multi-variable equa 
tion does matter. The eXpression (X1 sc1 X2 sc2 p1) should be 
evaluated as {(X1 sc1 X2) sc2 p1}. In Words: ?rst evaluate (X1 
























































