US008364977B2

a2 United States Patent 10) Patent No.: US 8,364,977 B2
Lablans 45) Date of Patent: Jan. 29, 2013
(54) METHODS AND SYSTEMS FOR 6,463,448 Bl 10/2002 Mo
PROCESSING OF N-STATE SYMBOLS WITH 6,510,228 B2 1;2003 Rose ’
XOR AND EQUALITY BINARY FUNCTIONS O Dy o003 TeMAEN v s
. . 6,785,389 Bl 8/2004 Sella et al.
(75) Inventor: Peter Lablans, Morris Township, NJ 7,046,803 B2 5/2006 Lee et al.
(as) 7,082,449 B2 7/2006 Rarick
7,227,949 B2 6/2007 Heegard et al.
(73) Assignee: ;l{igl;aryloglc LLC, Morristown, NJ OTHER PUBLICATIONS
Roth, Charles H. Jr, “Fundamentals of Logic Design,” Fourth Editi-
(*) Notice: Subject. to any disclaimer,. the term of this tion, pp. 27-29 and pp. 88-89. Copyright 1995 *
patent is extended or adjusted under 35 Benjamin, Arazi, “Self Synchronizing Digital Scramblers,” Dec.
U.S.C. 154(b) by 834 days. 1977, IEEE Transactions on Communications, vol. com-25, No. 12,
pp. 1505-1507.%
(21) Appl. No.: 12/137,945 Rogers, Derek P., “Non-Binary Spread-Spectrum Multiple-Access
Communications”, Thesis for the degree of Doctor of Philosophy,
(22) Filed: Jun. 12, 2008 The University of Adelaide, Faculty of Engineering, Department of
Electrical and FElectronic Engineering, Adelaide, Australia, Mar.
(65) Prior Publication Data 1995., 213 pages.
Clarke, C.K.P. “Reed-Solomon Error Correction”, BBC R&D White
US 2008/0244274 A1l Oct. 2, 2008 Paper, (Tul. 2002), 45 pp.
Related U.S. Application Data * cited by examiner
(63) Continuation-in-part of application No. 10/935,960,)) L
filed on Sep. 8, 2004, now Pat. No. 7,643,632. Primary Examiner — William Powers
(60) Provisional application No. 60/547.683, filed on Feb Assistant Examiner — Dant Shaifer Harriman
rovisional application No. ,683, filed on Feb. 74Y Att Agent. or Firm — Diehl Servilla LLC
25, 2004, provisional application No. 60/943,682, (74) Attorney, Agent, or Firm 1ent Servitia
filed on Jun. 13, 2007. (57) ABSTRACT
(51) Int.CL Multi-valued or n-state with n=27 Linear Feedback Shift Reg-
GO6F 1130 (2006.01) isters (LFSRs) in binary form are provided for scramblers,
GO6F 12/14 (2006.01) deslcr.arlr.lble?rs aﬁrid sequence gene.:re.ltors.ulzing e(ld;ﬁ'tio‘;l' and
52) US.CL et 713/189 multiplication functions over a Finite Field GF(n) in binary
E58§ Field of Classification Search 713/189 form. N-state switching functions in an LFSR are imple-
S lication file T let h history. mented by using implementations of reversible binary func-
c¢ apphication ftie for coffipiete search stoty tions. LFSRs may be in Fibonacci or in Galois configuration.
(56) References Cited N-state LFSR based sequence generators in binary form for

U.S. PATENT DOCUMENTS

5,412,665 A 5/1995 Gruodis

5,745,522 A * 4/1998 Heegard ..o 380/46
6,188,714 Bl 2/2001 Yamaguchi

6,430,246 Bl 8/2002 Ozluturk

208

generating an n-state maximum length sequence in binary
form are also provided. A method for simple correlation cal-
culation is provided. Communication systems and data stor-
age systems using the LFSRs are also disclosed.

19 Claims, 23 Drawing Sheets

U.S. Patent Jan. 29, 2013 Sheet 1 of 23

116 117 118
AL,

11
L

109

v/ 119 / 120

FIG. 1
PRIOR ART

&)

\ 122

102
<

US 8,364,977 B2

U.S. Patent Jan. 29, 2013 Sheet 2 of 23 US 8,364,977 B2

208
200 /
202 203
201 (sci) (scd)
204 205 206
sr1 sr2 sr3 sr4 srd
‘207
FIG. 2
*, 307
sri sr2 sr3 sr4 sr5
304 305 306
301 b 8¢
302 303

300 308

FIG. 3

U.S. Patent Jan. 29, 2013 Sheet 3 of 23 US 8,364,977 B2

O

FIG. 4
PRIOR ART

U.S. Patent Jan. 29, 2013 Sheet 4 of 23 US 8,364,977 B2

v
sr1 @— sr2 —@— sr3

FIG. 5

sr3

sr1 — ::)— sr2

- ®
(=)

FIG. 6

U.S. Patent Jan. 29, 2013 Sheet 5 of 23 US 8,364,977 B2

A

701 sig_in

v sig_line FIG. 7

sig_line >

"—{ srl H sr2
@

802

\

FIG. 8

U.S. Patent Jan. 29, 2013 Sheet 6 of 23 US 8,364,977 B2

(&@
Ko¥o

sr3 sr4 sr5

srl sr2

sré

FIG.9

srl sr2 sr3 sr4 srs sr6

iOr

det

DONeS
-6
(@

FIG. 10

U.S. Patent Jan. 29, 2013 Sheet 7 of 23 US 8,364,977 B2

1101 1102 1103
1105 1106
FIG. 11
1202 1203
1200 1204
1206
FIG. 12
1301 1302
1300
1305 1306

FIG. 13

U.S. Patent Jan. 29, 2013 Sheet 8 of 23 US 8,364,977 B2

1402
1400 1406
FIG. 14
ect) (scd)
sr1 sr2 sr3 ——inv sr4

1501

FIG. 15

U.S. Patent Jan. 29, 2013 Sheet 9 of 23 US 8,364,977 B2

- (sc2)
1601
sr1 sr2 sr3 - sr4
FIG. 16
c1) (sc2)
sr1 & sr2 sr3 - sr4
1701
FIG. 17
&c) (sc2)
1803
1801 1802 (inv)
sr1 sr2 sr3 . sr4

FIG. 18

U.S. Patent Jan. 29, 2013 Sheet 10 of 23 US 8,364,977 B2

(ol 2] 1900
1 7
2 —»| 6
3 5
4 0
5 3
6 2
7 1
< 1904 Lo04
1903 000 100
001 111
010 —> 110
1902
011 101
— 100 000
—> 101 011
\ \110 010
111 001
v vy 1905

FIG. 19

U.S. Patent Jan. 29, 2013 Sheet 11 of 23 US 8,364,977 B2

2000
f :
o | 2003
2001 c
2002 T B

2004 ~< "L # > c2

FIG. 20

2100

al—» L » c¢1
a2 ——» scC —» ¢2
a3 —» —* ¢3

111

b1 b2 b3

FIG. 21

U.S. Patent Jan. 29, 2013 Sheet 12 of 23 US 8,364,977 B2

2200
2201 2202 2203
2204 2205 2206 2207
—»
T T T 2208
2210 2209
—cT o
—_— > c3 —» > —p
N A A A
FIG. 22
2301 2302 2300
2303 2304 ()2305
|
\ 4 T T ~
2306 2307

FIG. 23

U.S. Patent Jan. 29, 2013 Sheet 13 of 23 US 8,364,977 B2

2401 2402 2400
N N
() ()
2403 2404 (: 2405
2406
A 4
2407
2408 —
2409 FIG. 24
2502 2500
TN
{ \
\ i
2504 2505
2506
Yyy
2507
2508 —
l2509

FIG. 26

U.S. Patent Jan. 29, 2013 Sheet 14 of 23 US 8,364,977 B2

x 10
1.35 T T T T T

13

1.25}F .

12} .

1.15

111 -

1.05

T
1

1 1 i 1 1
0 200 400 600 800 1000 1200
Fig. 26

1-35 L) T ¥ ¥]

1.3F 1

1.25

T
1

1.2} -

1)
1

1.15

11F .

1.05) ik it) . Wi .

0.95

T
1

0' 9 1 1 1 1 1
0 200 400 600 800 1000 1200

FIG. 27

U.S. Patent Jan. 29, 2013 Sheet 15 of 23 US 8,364,977 B2

550 . T T T T

500 .

450

T
[

400

350

300

250

T
1

200 .

150

T
1

100

50 1 1 1 [l 1
0 200 400 600 800 1000 1200

FIG. 28

800) !] 1]

500

T
A

T
1

400

300 .

200 .

100

T
1

P AP e b

0 200 400 600 800 1000 1200
FIG. 29

U.S. Patent Jan. 29, 2013 Sheet 16 of 23 US 8,364,977 B2

4500 . . — ; T

4000

T
i

3500

3000

2500

T
1

2000

T
|

1500

1000

T
1

500 .

o bR Ay

-500

1 1 1 1 !
0 200 400 600 800 1000 1200

FIG. 30

U.S. Patent Jan. 29, 2013 Sheet 17 of 23 US 8,364,977 B2

3103 3104
— 5
— TS0
' AND —*
3102 "9

FIG. 31

3101

3105

3200

O 3201 3202 3203
3220 —,

3204 3205 3206
3211 T

v 3230 32073509 3208 3549

FIG. 32

U.S. Patent

Jan. 29, 2013

Sheet 18 of 23

US 8,364,977 B2

™

3301

3302

20

1
40

60 80 100
FIG. 33

120

140

|

ALK

I~

3301

e

LI,

3302

|

i

i

20

40

I

60 100

FIG. 34

U.S. Patent

65

60

55

50

45

40

35

30

25

20

15

70

60

50

40

30

- - 20

10

FIG. 36

Jan. 29,2013 Sheet 19 of 23 US 8,364,977 B2
i +«———3501 i
! 3502 -
20 40 60 80 100 120 140
FIG. 35
- ‘\
3501]
3601 |
20 40 60 80 100 120 140

U.S. Patent Jan. 29, 2013 Sheet 20 of 23 US 8,364,977 B2

3703 3704

3701 M ST 3700
3702 3708 3709 37100 1
] 1 —
j L
3705 3706 3707
FIG. 37
3802¢
3801 (Do)
3803 ﬁ%j o1
1]
J | B
3804
FIG. 38
39024
3903 \%j i%i o1
L
3904 FIG. 39

>
)

Tgh
NS
—»

Mo
4003 O \%j
—_ 1 -]

4004
FIG. 40
4102
4101 (;)
4103 ¢ ﬁD 4 T
4104 . —

FIG. 41

U.S. Patent Jan. 29, 2013 Sheet 21 of 23 US 8,364,977 B2

a201 4208 4200
4209% 4210
4211 4212

R e SN

4205 4203 4206 4004 4207

FIG. 42
O
FIG. 43
O %
FIG. 44
O
\
T FIG. 45

O

FIG. 46

U.S. Patent

Jan. 29,2013 Sheet 22 of 23 US 8,364,977 B2

4701

4702

4703
4704

FIG. 47

4801

FIG. 48

U.S. Patent

1600

1500

1400

1300

1200

1100

1000

900

800

700
0

Jan. 29,2013 Sheet 23 of 23 US 8,364,977 B2
4904
___> >
4900
4905
4906 4907 4908
> —»
4910
FIG. 49

500

L. L 1
1000 1600 2000
FIG. 50

1 1
2500 3000 3500

US 8,364,977 B2

1
METHODS AND SYSTEMS FOR
PROCESSING OF N-STATE SYMBOLS WITH
XOR AND EQUALITY BINARY FUNCTIONS

STATEMENT OF RELATED CASES

This application is a continuation-in-part of U.S. patent
application Ser. No. 10/935,960, filed on Sep. 8, 2004,
entitted TERNARY AND MULTI-VALUE DIGITAL
SCRAMBLERS, DESCRAMBLERS AND SEQUENCE
GENERATORS, which claims priority to U.S. Provisional
Patent Application No. 60/547,683, filed Feb. 25, 2004, and
of U.S. patent application Ser. No. 11/042,645 filed on Jan.
25, 2005 which are all incorporated herein by reference in
their entirety. Furthermore, this application claims the benefit
of U.S. Provisional Patent Application No. 60/943,682 filed
on Jun. 13, 2007 which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

This invention relates to the processing of multi-valued or
n-state (non-binary) signals with n>2. More in particular it
relates to the scrambling, descrambling, generation and the
detection of multi-valued (non-binary) or n-state signals rep-
resenting sequences of multi-valued (non-binary) or n-state
symbols such as n-valued pseudo-noise sequences. Multi-
valued signals also referred to as n-valued or n-state signals,
can assume one of n states, wherein n is greater than or equal
to three.

The n-state scramblers and descramblers are implemented
by using a Linear Feedback Shift Register or LFSR. Well
known is the binary LFSR based scrambler and the corre-
sponding self synchronizing [.FSR based binary descrambler.

Its potential application is in telecommunication systems,
control systems and other applications. Specific examples of
utility where the invention can be used include spread-spec-
trum technologies, signal scrambling, CDMA, QAM-2*
modulation, multi-state symbol modulation, line-coding and
scrambling application in video and other signal modulation
and distribution.

LFSR based scramblers are used to change the appearance
of a digital signal in such a way that during transmission the
signal is different from the original signal. The original signal
can be recovered from the scrambled signal at the receiving
end by a descrambler. LFSR scramblers are one-to-one cod-
ers, coding one symbol on an input to one symbol on an
output. LFSR scramblers are commonly used as streaming
coders, which are different from word or block coders. Most
commonly in today’s telecommunications, the scramblers
relate to binary signals.

Scrambling of a binary signal can be achieved by combin-
ing the binary signal to be scrambled with a second known
binary signal through a digital circuit that has the character-
istics of a reversible function. A known signal is commonly
known as a key and may for instance be derived from a prime
number, which may be a large prime number.

In the case of scrambling with an LFSR scrambler there is
no real known signal. A second signal that is used for scram-
bling comes from the LFSR. Such a signal is essentially
unknown. However, the nature of the LFSR allows the signal
from the LFSR to be reconstructed at the receiving side.
Though the signal from the LFSR is still unknown, it can be
reconstructed and thus can be applied to recover the original
signal from a scrambled signal.

The inventor has provided the rule for an n-valued or
n-state LFSR based descrambler corresponding to an n-val-
ued LFSR based scrambler. This has been disclosed in U.S.

20

25

30

35

40

45

50

55

60

65

2

patent application Ser. No. 10/935,960 filed Sep. 8, 2004
entitled Ternary and multi-valued digital signal scramblers,
descramblers and sequence generators and in U.S. patent
application Ser. No. 10/912,954 filed Aug. 6, 2004 entitled
Ternary and higher multi-valued digital scramblers/descram-
blers, which are both incorporated herein by reference in their
entirety.

There are two known binary functions that can perform this
reversible function: the Exclusive Or (XOR) and the Equal or
EQUALITY function (=) in a binary scrambler and descram-
bler. However the XOR function is commonly used exclu-
sively in scramblers and coders. The XOR function is also
known as the modulo-2 adding function.

Telecommunication markets such as wireless communica-
tions and Internet communications demonstrate an ongoing
increase in demand for higher information transmission rates.
This demand in increased information transmission rates in
wireless communications is addressed by increasing band-
width of communication channels, by compression of the
information and by moving into much higher radio spectra
(such as Ultra Wide Band in the 5 GHz area). Eventually, new
technology has to be applied to obtain better performance
from existing bandwidth, starting with highly congested
spectrum areas. Current transmission technology predomi-
nantly uses digital binary signals. One technology that pro-
vides better bandwidth usage is the application of multi-
valued or n-state signals on a much broader scale.
Scrambling, descrambling and signal sequence generation is
an important element of signal processing technology, espe-
cially in wireless communications. Currently, very little tech-
nology exists that can perform multi-valued digital scram-
bling, descrambling and sequence generation. Most of
existing solutions in scrambling, descrambling and sequence
generation only performs binary functions, as previously dis-
cussed.

It is possible to generate non-binary signals with binary
switching means, by temporarily transferring non-binary sig-
nals or symbols into words or a plurality of binary symbols.
This allows the binary signals to be processed by involving
fairly standard binary circuitry in novel configurations. After
processing the binary signals or symbols one may then trans-
form the binary words or plurality of binary symbols into
non-binary symbols. However, there is currently no easy
method available to perform n-valued scrambling, descram-
bling, sequence generation and sequence detection with
n-valued technologies that are easy to perform with binary
means.

Accordingly, new and improved methods and apparatus for
LFSRs to perform n-state scrambling, descrambling,
sequence generation and sequence detection on multi-valued
or n-state signals with binary technologies are required.

SUMMARY OF THE INVENTION

In view of the more limited possibilities of the prior art in
binary and multi-valued scrambling and reversible logic
functions, the current invention offers an easier design as well
as a greater variety in multi-valued scramblers and in LFSR
based sequence generators. It also provides improved perfor-
mance.

The general purpose of the present invention, which will be
described subsequently in greater detail, is to provide new
scrambler/descrambler systems and LFSR based generators
of multi-valued signal sequences.

Before explaining at least one embodiment ofthe invention
in detail, it is to be understood that the invention is not limited
in its application to the details of construction and to the

US 8,364,977 B2

3

arrangements of the components set forth in the following
description or illustrated in the drawings. The invention is
capable of other embodiments and of being practiced and
carried out in various ways. Also, it is to be understood that
the phraseology and terminology employed herein are for the
purpose of the description and should not be regarded as
limiting.

Multi-valued, n-valued and n-state in the context of this
application mean a number n, with n being a positive integer
greater than two. As a matter of habit, one currently may use
the name multi-valued logic or multiple-valued logic for the
technology of non-binary logic. In binary logic technology
one applies signals which may assume one of two states.
These states are usually represented as 0 and 1. Furthermore,
in binary logic one logic state (usually the 0) is represented
physically by ‘absence-of-signal’. The binary 1 is usually
represented by a signal, for instance an electrical voltage, not
equal than 1. Such a representation of logic states by magni-
tude based signals is not a requirement for performing n-state
switching. For instance two logic states may be represented
by two optical signals of two different wavelengths, for
instance green and red. A state represented by a signal in that
case has to be determined by distinguishing between wave-
length of signals, and not by magnitude or intensity.

A state in an n-state signal may be represented by a mag-
nitude of a signal, such as a voltage or a light intensity. It may
also be represented by other characteristics of a signal, such
as wavelength, or a presence of a certain material. The
absence of signal may represent a state; it may also not rep-
resent a state. The term multi-valued, n-valued, multi-state or
n-state herein means that a signal may assume one of n states,
usually with n>2, without limiting the way how a state is
represented. While the term valued is used, it may not be the
actual value of a signal that determines a state represented by
the signal.

A primary object of the present invention is to provide new
multi-valued scrambler/descrambler systems that will over-
come the shortcomings of the prior art devices.

In accordance with an aspect of the present invention, a
method is provided for scrambling and descrambling a
sequence of n-valued symbols using LFSR methods using
reversible n-valued functions and n-valued reversible invert-
ers.

In accordance with a further aspect of the present inven-
tion, a method is provided for binary implementation of func-
tions and multipliers over an binary extension field GF(2™) in
n-valued LFSR based scramblers and descramblers.

In accordance with another aspect of the present invention
a method is provided for detecting n-valued sequences gen-
erated by an LFSR circuit using addition and multiplier func-
tions over GF(n).

In accordance with a further aspect of the present inven-
tion, apparatus is provided for scrambling and descrambling
a sequence of n-valued symbols using LFSR methods using
reversible n-valued functions and n-valued reversible invert-
ers.

In accordance with another aspect of the present invention,
apparatus is provided for binary implementation of functions
and multipliers over an binary extension field GF(2™) in
n-valued LFSR based scramblers and descramblers.

In accordance with another aspect of the present invention,
apparatus is provided for detecting n-valued sequences gen-
erated by an LFSR circuit using addition and multiplier func-
tions over GF(n).

In accordance with a further aspect of the present inven-
tion, systems are provided applying the scrambling and
descrambling methods of the present invention.

20

25

30

35

40

45

50

55

60

65

4

In accordance with another aspect of the present invention,
a method is provided for processing a sequence of n-state
symbols in binary form with a Linear Feedback Shift Register
(LFSR), the LFSR having a plurality of inputs and a plurality
of outputs, each input enabled to receive a signal representing
a bit, comprising applying the LFSR for processing the
sequence of n-state symbols in binary form, an n-state symbol
able to assume one of n states with n=2¢ and p=2 and an
n-state symbol being represented by at least p bits, the LFSR
having at least one device which implements an n-state truth
table with at least p reversible binary logic functions; and
selecting the processing from the group consisting of scram-
bling, descrambling and maximum length sequence genera-
tion.

In accordance with yet another aspect of the present inven-
tion, a method for processing a sequence of n-state symbols
with an LFSR is provided, wherein at least one of the at least
p reversible binary logic functions is an EQUIVALENT func-
tion.

In accordance with yet another aspect of the present inven-
tion, a method for processing a sequence of n-state symbols
for n=2% with an LFSR is provided, wherein p>2.

In accordance with yet another aspect of the present inven-
tion, a method for processing a sequence of n-state symbols
for n=27 with an LFSR is provided, the LFSR further com-
prising at least one device implementing in binary form a
multiplication with a constant over GF(n=2%).

In accordance with yet another aspect of the present inven-
tion, a method for processing a sequence of n-state symbols
for n=27 with an LFSR is provided, the LFSR further com-
prising at least one device implementing in binary form a
zero-based n-state reversible inverter in binary form.

In accordance with yet another aspect of the present inven-
tion, a method for processing a sequence of n-state symbols
for n=27 with an LFSR is provided, the LFSR further com-
prising at least one device implementing in binary form a
non-zero-based n-state reversible inverter in binary form.

In accordance with yet another aspect of the present inven-
tion, a method for processing a sequence of n-state symbols
for n=27 with an LFSR is provided, wherein the LFSR is an
LFSR in Fibonacci configuration.

In accordance with yet another aspect of the present inven-
tion, a method for processing a sequence of n-state symbols
for n=2¢ with an LFSR is provided, wherein the LFSR is an
LFSR in Galois configuration.

In accordance with yet another aspect of the present inven-
tion, a method for processing a sequence of n-state symbols
for n=27 with an LFSR is provided, wherein the LFSR is
applied for scrambling and further comprising applying a
second device implementing an n-state truth table with at
least p reversible binary logic functions and having a first
plurality of inputs each enabled to receive a bit from a plu-
rality of bits representing an n-state symbol and a second
plurality of inputs each enabled to receive a bit from a plu-
rality of bits representing an n-state symbol and a plurality of
outputs, receiving a plurality of bits representing an n-state
symbol on the first plurality of inputs of the second device,
connecting the second plurality of inputs of the second device
to the plurality of outputs of the LFSR, connecting the plu-
rality of outputs of the second device to the plurality of inputs
of'the LFSR and providing on the plurality of outputs of the
second device a scrambled n-state symbol represented by at
least p bits.

In accordance with yet another aspect of the present inven-
tion, a method for processing a sequence of n-state symbols
for n=27 with an LFSR is provided, further comprising con-
necting the plurality of outputs of the second device to the

US 8,364,977 B2

5

plurality of inputs of the LFSR with a device implementing in
binary form an n-state reversible inverter.

In accordance with yet another aspect of the present inven-
tion, a method for processing a sequence of n-state symbols
for n=2° with an LFSR is provided, further comprising trans-
forming the n-state symbol represented by at least p bits into
an n-state signal able to assume one of at least n states.

In accordance with yet another aspect of the present inven-
tion, a method for processing a sequence of n-state symbols
for n=2# with an LFSR is provided, wherein the LFSR is
applied for generating a maximum length sequence of n-state
symbols represented in binary form and the plurality of out-
puts of the LFSR is connected to the plurality of inputs of the
LFSR.

In accordance with yet another aspect of the present inven-
tion, a method for processing a sequence of n-state symbols
for n=2# with an LFSR is provided, wherein the plurality of
outputs of the LFSR is connected to the plurality of inputs of
the LFSR with an n-state reversible inverter in binary form.

In accordance with yet another aspect of the present inven-
tion, a method for processing a sequence of n-state symbols
for n=2¢ with an LFSR is provided, wherein a correlation of
the sequence with another sequence is determined by apply-
ing an n-state modified binary correlation method.

In accordance with a further aspect of the present inven-
tion, an n-state Linear Feedback Shift Register (LFSR) is
provided as a means for processing in binary form a sequence
of n-state symbols with n=27 and p=2, an n-state symbol
being able to assume one of n-states and each n-state symbol
being represented by at least p bits, the processing being
selected from the group consisting of scrambling, descram-
bling and maximum length sequence generation, comprising
a plurality of inputs, enabled to receive at least p bits, a
plurality of outputs, enabled to provide at least p bits, a shift
register with k shift register elements with k=2, each of the
shift register elements enabled to store at least p bits repre-
senting an n-state symbol, a shift register elements having a
plurality of at least p inputs and a plurality of at least p
outputs; and a device which implements an n-state truth table
with at least p reversible binary logic functions, the device
having a first plurality of at least p inputs, a second plurality
of at least p inputs, an input enabled to receive a bit, and a
plurality of at least p outputs, an output being enabled to
provide a bit, the first plurality of at least p inputs being
connected to the output of at least p outputs of a shift register
element of the shift register of the LFSR.

In accordance with another aspect of the present invention,
an n-state Linear Feedback Shift Register (LFSR) is provided
as ameans for processing in binary form a sequence of n-state
symbols with n=2¢ and pZ=2, wherein the LFSR has a struc-
ture in accordance with a Galois configuration.

In accordance with yet another aspect of the present inven-
tion, an n-state Linear Feedback Shift Register (LFSR) is
provided as a means for processing in binary form a sequence
of n-state symbols with n=2% and p=2, further comprising: a
second device which implements an n-state truth table with at
least p reversible binary logic functions, the device having a
first plurality of at least p inputs, a second plurality of at least
p inputs, an input enabled to receive a bit, and a plurality of at
least p outputs, an output being enabled to provide a bit,
wherein the first plurality of at least p inputs of the second
device is enabled to receive a sequence of n-state symbols in
binary form, the second plurality of at least p inputs of the
second device is connected to the plurality of at least p outputs
of the LFSR; and the plurality of at least p outputs of the
second device is connected to the plurality of at least p inputs
of the LFSR.

20

25

30

35

40

45

50

55

60

65

6

In accordance with yet another aspect of the present inven-
tion, an n-state Linear Feedback Shift Register (LFSR) is
provided as a means for processing in binary form a sequence
ofn-state symbols with n=2% and p=2, further comprising an
n-state reversible inverter implemented in binary form with a
plurality of at least p inputs and a plurality of at least p
outputs, the n-state reversible inverter connecting the plural-
ity of at least p outputs of the second device with the plurality
of at least p inputs of the LFSR.

In accordance with yet another aspect of the present inven-
tion, an n-state Linear Feedback Shift Register (LFSR) is
provided as a means for processing in binary form a sequence
of n-state symbols with n=2¢ and p=2, wherein the plurality
of at least p outputs of the LFSR and the plurality of at least p
inputs of the LFSR are directly connected.

In accordance with yet another aspect of the present inven-
tion, an n-state Linear Feedback Shift Register (LFSR) is
provided as a means for processing in binary form a sequence
ofn-state symbols with n=2% and p=2, further comprising an
n-state reversible inverter implemented in binary form with a
plurality of at least p inputs and a plurality of at least p
outputs, the n-state reversible inverter connecting the plural-
ity of at least p outputs of the LFSR with the plurality of at
least p inputs of the LFSR.

In accordance with yet another aspect of the present inven-
tion, a method for processing a sequence of n-state symbols in
binary form with a Linear Feedback Shift Register (LFSR),
the LFSR having a plurality of inputs and a plurality of
outputs, each input enabled to receive a signal representing a
bit, comprising applying the LFSR for processing the
sequence of n-state symbols in binary form, an n-state symbol
able to assume one of n states with n=27 and p=2 and an
n-state symbol being represented by at least p bits, the LFSR
having at least one device which implements an n-state truth
table with at least p reversible binary logic functions; and
selecting the processing from the group consisting of scram-
bling and descrambling.

BRIEF DESCRIPTION OF THE DRAWINGS

Various other objects, features and attendant advantages of
the present invention will become fully appreciated as the
same becomes better understood when considered in con-
junction with the accompanying drawings, and wherein:

FIG. 1 is a diagram showing a combination of a binary
LFSR based scrambler and descrambler;

FIG. 2 is a diagram showing an n-valued Linear Feedback
Shift Register (LFSR) based scrambler in accordance with an
aspect of the present invention;

FIG. 3 is a diagram showing an n-valued Linear Feedback
Shift Register (LFSR) based descrambler in accordance with
an aspect of the present invention;

FIG. 4 is a diagram of a binary LFSR implementing a
primitive polynomial;

FIG. 5 is a diagram showing an n-valued Linear Feedback
Shift Register (LFSR) based scrambler in accordance with an
aspect of the present invention;

FIG. 6 is a diagram showing an n-valued Linear Feedback
Shift Register (LFSR) based descrambler in accordance with
an aspect of the present invention;

FIG. 7 is a diagram showing another n-valued Linear Feed-
back Shift Register (LFSR) based scrambler in accordance
with an aspect of the present invention;

FIG. 8 is a diagram showing another n-valued Linear Feed-
back Shift Register (LFSR) based descrambler in accordance
with an aspect of the present invention;

US 8,364,977 B2

7

FIG. 9 is a diagram of an n-valued LFSR based sequence
generator,

FIG.10is adiagram of an n-valued LFSR based detector of
an n-valued sequence in accordance with an aspect of the
present invention;

FIGS. 11-14 show diagrams of a system in accordance with
an aspect of the present invention;

FIG. 15-18 show diagrams of a sequence generators in
different embodiments;

FIG. 19 illustrates a non-zero based reversible inverter;

FIGS. 20-21 illustrate an n-state device implemented in
binary form;

FIG. 22 illustrates an n-state shift register in binary form;

FIG. 23 illustrates an n-state sequence generator;

FIGS. 24-25 illustrate 8-state sequence generators in
binary form in accordance with an aspect of the present inven-
tion;

FIGS. 26-27 show a correlation graph;

FIGS. 28-30 show correlation graphs in accordance with
an aspect of the present invention;

FIG. 31 is a diagram of a device which may be applied in
determining a correlation in accordance with an aspect of the
present invention;

FIG. 32 is a diagram of a sequence generator in accordance
with an aspect of the present invention;

FIGS. 33-34 show correlation graphs;

FIGS. 35-36 show correlation graphs in accordance with
an aspect of the present invention;

FIGS. 37-46 illustrate LFSRs in accordance with an aspect
of the present invention;

FIG. 47 illustrates a scrambler in accordance with an aspect
of the present invention;

FIG. 48 illustrates a descrambler in accordance with an
aspect of the present invention;

FIG. 49 illustrates a communication system in accordance
with an aspect of the present invention; and

FIG. 50 shows an auto-correlation graph in accordance
with a further aspect of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Ann-valued or n-state symbol can have one of n-states with
n>2. An n-state symbol can be represented by a signal that can
assume one of n states. An n-state symbol can also be repre-
sented by a plurality of k-state symbols with k<n. A k-state
symbol can be represented by a signal that can assume one of
k states. Accordingly, an n-state symbol can be represented by
a plurality of k-state signals. For instance, an 8-state symbol
can be represented by at least 2-state symbols. The finite field
GF(n=2) may be an extension of the finite binary field GF(2).
Ifthe field GF(2) is defined in using 2-valued arithmetic, then
the field GF(n=27) may be defined using similar operations to
define elements in GF(n=2¢) wherein a symbol in GF(n=2?)
may be represented by a word of p bits.

An n-state symbol may be processed by an n-valued logic
function. Under certain circumstances an n-state symbol may
be represented by a plurality of k-state symbols with k<n and
the plurality of k-state symbols may be processed by a plu-
rality of k-valued logic functions. The result of such a pro-
cessing may be another plurality of k-state symbols repre-
senting an n-state symbol. Under certain conditions the
processing of a first plurality of k-state symbols representing
a first n-state symbol with a first plurality of k-state logic
functions will generate a second plurality of k-state symbols
representing a second n-state symbol. This processing by a
plurality of k-valued functions is equivalent to the processing

20

25

30

35

40

45

50

55

60

65

8

of the first n-state symbol by a first n-valued logic function
into the second n-state symbol when GF(k?) is an extension
field of GF(k).

Herein a field GF(n=27) will be called an extension field or
and extension finite field or an extended field of GF(2).
Because binary operations are currently the preferred switch-
ing technology at the time of the invention, the examples
provided herein use binary extension fields. It is to be under-
stood that extension fields for other values of'k may be created
and applied and are fully contemplated.

FIG. 1 shows a known LFSR based binary scrambler 100
and its corresponding descrambler 102 in Fibonacci configu-
ration. The scrambler 100 is comprised of an LFSR (the
diagram to the right of line 113 in FIG. 1) with shift register
elements 105, 106, 107, 108 and 109. It also has two binary
functions XOR 110 and 111. The output 114 of XOR 111 may
be considered an output of the LFSR. The input 115 to shift
register element 105 is an input to the LFSR. XOR function
112 is the scrambling function for this scrambler. The to be
scrambled signal is provided on input 127. The scrambled
signal is outputted on the output of 112 and is also provided
on 126.

The corresponding descrambler 102 may be considered a
mirror image of the scrambler. The LFSR of the descrambler
is to the right of the line 125. The LFSR has the shift register
elements 116,117, 118, 119 and 120 and the XOR functions
122 and 123. The descrambling function is XOR 124. The to
be descrambled signal is provided on 128 and the
descrambled signal is provided on 129. In accordance with
the rules for corresponding descramblers, the LFSR of the
n-valued descrambler (including n=2) should be the same as
the LFSR of the scrambler: same number of shift register
elements, same taps, same functions as in the corresponding
scrambler and the descrambling function in the descrambler
should be the reversing function to the scrambling function in
the scrambler. Because the scrambling function is a XOR,
which is self-reversing, the descrambling function is also a
XOR.

In the case of a binary LFSR, the shift register is able to
accept, retain and output binary signals. In the case of an
n-state scrambler or in case of another n-state processing
device, the shift register has memory elements that can
accept, save and output n-state signals.

An LFSR works under the control of a control signal such
as a clock signal to shift-and-store. Such a clock signal is
assumed in an LFSR, though not usually shown in figures
herein to keep diagrams less cluttered.

FIG. 2 shows a generic diagram of an n-valued LFSR based
scrambler. The LFSR has the shift register elements srl, sr2,
sr3, sr4 and sr5; each of which can shift and store an n-valued
symbol. The LFSR has also two n-valued reversible func-
tions: function scl in 202 and function sc2 in 203. In the
non-binary case a function is connected to an output of a shift
register element through an n-valued reversible inverter. As
was shown in cited patent application Ser. No. 10/935,960, an
n-valued function with an inverter at an input can be replaced
by another n-valued function which will be called an inverter
reduced function. The inverter reduced function should also
be a reversible function in order for the scrambler to be
reversible. Accordingly, the inverter has to be a reversible
inverter. The concept of n-valued reversible inverters has been
extensively explained in cited patent application Ser. No.
10/935,960.

N-valued multiplication modulo-n with a constant factor
when n is a prime number are reversible inverters. When n is
not prime then multipliers such as the ones over modulo-n
may not be reversible. For instance, for n=4 some multipliers

US 8,364,977 B2

9

are not reversible. Multiplication by 3 modulo-4 provides the
inverter [0 3 2 1] as: 0x3 mod-4=0; 1x3 mod-4=3; 2x3 mod-
4=2; and 3x3 mod-4=1, which is a reversible inverter. How-
ever multiplication by 2 modulo-4 is non reversible: as: 0x2
mod-4=0; 1x2 mod-4=2; 2x2 mod-4=0; and 3x2 mod-4=2,
which is [0 2 0 2] a non-reversible inverter.

It is known that one can create reversible additions and
multiplications by generating an extension field GF(p™),
wherein p is a prime number.

The n-valued scrambler of FIG. 2 has the LFSR to the right
of'line 208. The taps in the LFSR have the constant n-valued
multipliers i2 at 205 and i3 at 206, which are n-valued revers-
ible inverters. Furthermore, the scrambler has an n-valued
scrambling function S at 201, which receives a to be

10

inverters which are not multipliers over GF(4). For instance [0
2 1 3] is a zero-based 4-state reversible inverter which is not
a multiplier over GF(4). One may also apply non-zero-based
n-state reversible inverters, which can not be a multiplication
over GF(n). For instance [3 2 1 0] is a non-zero-based 4-state
reversible inverter. Its reverse is also [3 2 1 0], so this 4-state
inverter is self-reversing.
The 8-Valued or 8-State Case

As an example of a scrambler in a Galois Field GF(8) will
be used. The following tables provide the truth tables for an
addition ‘fp’ over GF(8), multiplication ‘mul’ over GF(8) and
the reverse of the multiplications ‘div’ over GF(8).

scrambled signal on input 200 of function S. The function Sis 15 b
also inputted with a signal from the LFSR. Furthermore, the
n-valued scrambling function S has a multiplier il at 204 ° P 0 1 2 3 45 6 7
which is a reversible inverter. A scrambled signal is outputted a 0 0 1 5 3 4 5 6 7
on 207. 1 1 0 4 7 2 6 5 3
FIG. 3 shows a diagram of the corresponding descrambler 20 2 2 4 0 5 1 3 7 6
of FIG. 2. Its LFSR is to the right of line 308, and is identical 3 3 7 3 o 6 2 4 !
. . . 4 4 2 1 6 0 7 3 5
to the LFSR of the scrambler with reversible functions scl 5 5 5 3 5 7 0 1 4
and sc2 at 302 and 303, inverter i2 at 305, and inverter i3 at 6 6 5 7 4 3 1 0 2
306, applying the same taps. The to be descrambled signal is 7 7 3 6 1 5 4 2 0
provided on input 307. The signal is inputted into the LFSR 25
and to an inverter ilr at 304, which is the reversing inverter of
il in FIG. 2. The signal from ilris inputted into descrambling
function D at 301, which is the reversing function of function
S of the scrambler. The LFSR also inputs into D and the b
descrambled signal is provided on output 300 of the descram- 30 |
bling function D. c m 0 ! 2 3 4 6 > !
The 4-Valued or 4-State Case a 0 0 0 0 0 0 0 0 0
A truth table of the addition over GF(4) is provided in the i 8 i g i ‘51 2 g Z
following table. 5 0 5 4 s p 7 . 5
33 4 o 4 5 6 7 1 23
5 0 5 6 7 1 2 3 4
6 0 6 7 1 2 3 4 5
+GF(4) 0 1 2 3 7 0 7 1 2 3 4 5 6
0 0 1 2 3
1 1 0 3 2 40
2 2 3 0 1
3 3 2 1 0
c div
A truth table of a multiplication over GF(4) is provided in a 0 0 0 0 0 0 0 0 0
the following table. 45 1 0 1 2 3 4 5 6 7
2 0 7 1 2 3 4 5 6
3 0 6 7 1 2 3 4 5
4 0 5 6 7 1 2 3 4
5 0 4 5 6 7 1 2 3
xGF@) 0 ! 2 3 6 o 3 4 s 6 7T 1 2
0 0 0 0 0 50 7 0 2 3 4 5 6 7 1
1 0 1 2 3
g 8 g i i Arithmetic over GF(8) has advantages that will be used.

One may apply the addition over GF(4) as functions S, scl
and sc2 in FIG. 2 if one implements a scrambler as provided
in FIG. 2 in 4-state logic in GF(4), which may be imple-
mented in binary form. A multipliers i1, 12 and i3 one may use
the multipliers as provided in the above table.

One may apply the addition over GF(4) then also as func-
tions D, sc1 and sc2 in the 4-state descrambler of FIG. 3. The
multipliers ilr, 12 and i3 may be selected from the multipli-
cation over GF(4).

The multipliers are what is called herein zero-based n-state
reversible inverters, as state 0 remains 0 after inversion or
multiplication. For instance [0 2 3 1] is a zero-based 4-state
reversible inverter. One may also apply other zero-based

55

60

65

The following will provide rules for arithmetic in GF(2%)
using the definition of ‘fp’ for addition and ‘mul” for multi-
plication as shown in the respective truth tables. There are
several rules that can be derived from the truth tables.

First rule: For every x (wherein X is a variable that can have
one of 8 states) ‘x fp x=0". Or fp(x,x)=0. Or, to use the
terms of +, * and +: x+x=0 in this GF(2?).

Second rule: The reverse of fp is the function itself. Or the
function fp is self-reversing. Or again in the terms of arith-
metic of this GF(2%): c=a+b—>a=c—b or a=c+b=b+c, as the
function is also commutative.

Third rule: Dividing by a factor o is identical to multiplying
by a factor (3. In fact multiplying a variable x by a constant
o in the GF(2?) is identical to inverting the variable x=[0 1
23 4 5 6 7] by the inverter representing the factor c.

US 8,364,977 B2

11

Assume that o=5. In the multiplier this means the row
representing a=5 in multiplier truth table ‘mul’; or the
inverter [0 5 6 7 1 2 3 4]. Dividing by 5 in the GF(2%) is
multiplying by f=57". Inthat case a.*p=5%*5"1=1. Or in terms
of inversion one may conclude that the inverter represent
B=5"" in GF(2*) should reverse the inverter representing a.=5.
One can easily check that the reversing inverter is then =4 or
[04567123]. The previous table shows the division table
div’ as the inverse to ‘mul’ in the GF(2), wherein only the
rows have significance for this case. The inversion rules are:
171=1; 271=7; 371=6; 471=5; 571=4; 671=3; 771=2.

Assume the scrambler of FIG. 2 to be an 8-valued scram-
bler wherein functions D, scl and sc2 are identical to the
8-valued addition fp over GF(8). Assume i2 to be a multiplier
2,13 to be a multiplier 3 and il a multiplier 4 over GF(8). The
8-valued descrambler of FIG. 3 then has of course sc1 and sc2
to be fp. Because “fp’ is self reversing and S=fp, then D=fp.
The inverter ilr is the reversing inverter for multiplication by
i1=41is ilr=5=[056 7123 4].

Take as an input sequence to the 8-valued scrambler of
FIG. 2 with [sr] sr2 sr3 sr4 sr5]=[0 1 2 3 4] and sigin=[1 2 3
450670123450677777]. This will generate a
scrambled sequence of 8-valued symbols: Line=[1304 54 6
67344077520135].

The 8-valued descrambler of FIG. 3 then has all the same
functions ‘fp’, as “fp’ is self reversing. The only change is that
i1r=5. One can demonstrate the self-synchronizing character
of'the descrambler of FIG. 3 by using for instance [1 111 1]
as the initial state. Providing the earlier determined output of
the scrambler to the descrambler will generate: Res=[12 6 6
60670123450677777]. This sequence only differs from
the unscrambled signal until the different initial state was
flushed.

There is a particular advantage to a multi-valued scram-
bler/descrambler combination over a binary extension field
GF(2™). First of all addition over GF(2™) can be achieved by
taking the binary representation of two n-valued symbols and
adding the individual bits representing an 8-valued symbol in
modulo-2 or by processing corresponding binary symbols of
binary word representation of n-valued symbols in GF(2?) by
using the binary XOR function. Assume as an illustrative
example again functions fp and mul over GF(8). Adding via
fp two 8-valued symbols al=[x11 x12 x13] and a2=[x21 x22
x23]is: al fp a2—=[(x11=x21) (x12=x22) (x13=x23)]. This is
fairly easy to realize.

In general, multiplication is a problematic operation,
accomplished by multiple shift and add operations. It may be
faster to use the actual multiplication truth table. However, a
good alternative that is easy to implement is to use the binary
equivalent.

A GF(2™) is usually defined by the elements of a primitive
polynomial. Multiplication of these elements is then defined
as adding the exponents of the multiplying components.
Because the primitive polynomial of GF(2™) can be
expressed in a binary LFSR of degree m, multiplication by a
factor p in GF(2™) means moving up in the state of the LFSR
by (p-1) states. In other words multiplying by 2 is moving up
one position (or 1 clock cycle) in the LFSR.

For instance, the states of GF(8) can be created by the
LFSR in Galois configuration of FIG. 4 starting with [1 0 0] as
state 1. The unit state e is then [0 1 0]. Multiplying by a factor
o is moving up one state. Multiplying by o* is moving up 4
states or having the LFSR run for 4 clock cycles. The product
x*a? is starting the LFSR in state x and moving up 4 clock
cycles.

20

25

30

35

40

45

50

55

60

65

12
The states of this GF(8) are provided in the following table

»
a
=3
@

N W R W N~ O
——, OO OO
O —,r O~ OO
—m P, O, OOO

RRRRRRR>

The above table of GF(8) is provided in the article by
Bernard Sklar: “Reed Solomon Codes” which is available on
the WWW from URL http://www.facweb.iitkgp.ernet.
in/~pallab/mob_com/art_sklar7_reed-solomon.pdf.

One can also determine the following states of an LFSR by
logic expressions starting from an initial state. For instance,
start the LFSR from an initial state [x1 x2 x3] and determine
the expressions for the following states. These following
states are provided for the example in the following table.

*1 x1 x2 x3

*2 X3 x1 X2 +%x3

*3 X2 +x3 x3 x1+x2+x3
*4 x1 +x2 +x3 X2 +X3 x1 +x2

*5 x1 +x2 x1+x2+%3 x1 +x3

*6 x1 +x3 x1 +x2 x2

*7 X2 x1 +x3 x1

*8 =*1 x1 x2 x3

The table shows how one can execute multiplication in
GF(8) by inputting the variable a=[x1 x2 x3] that one wants to
multiply by a constant into a binary expression that applies
the function ‘+’, which is of course the modulo-2 addition or
XOR function. Accordingly, one can execute all functions in
GF(2™) that are required to perform the functions of a scram-
bler or descrambler in GF(2™) by using binary logic functions
and in particular by using the binary XOR function.

The examples were provided in GF(8). To those skilled in
the art it should be clear that this can be applied to any
GF(2™). Implementation of adders and multiplications over
GF(n=2?) in n-valued processing devices such as scramblers
and descramblers is an aspect of the present invention. Those
n-valued or n-state processing devices can be implemented in
binary logic. A shift register in a binary implementation of a
device over GF(n=27) comprises for instance register ele-
ments that can input, hold and shift out plurality of words. For
instance, elements in a shift register over GF(8) can be input-
ted with words of 3 bits and can output words of 3 bits. An
LFSR over GF(32) for instance has elements that can hold
words of 5 bits. An adder function over GF(32) in binary form
processes 2 words of 5 bits as inputs and generates a word of
5-bits.

Bits in binary words in GF(n=2¢) can be processed inde-
pendently. This means that bits in binary words can be pro-
cessed sequentially, perhaps as one bit per clock pulse and
with a keeping of synchronization of words. In such an
embodiment resources such as switches may be shared. One
may also process bits in words in parallel, thus for instance
processing all bits in a word at the same time. This requires
more resources, but takes place faster.

In a further embodiment, an adder function and an LFSR
over GF(n=27) may also process n-state symbols, without
reducing an n-state symbol first to a binary word.

US 8,364,977 B2

13

The scrambler and descrambler of FIG. 2 and FIG. 3 are
shown in Fibonacci configuration. It should be appreciated
that the same approach applies to a scrambler and descram-
bler in Galois configuration be it in GF(2™) or any other value
of n>2.

As anillustrative example in FIG. 5 and FIG. 6, an 8-valued
scrambler and descrambler in Galois configuration with a
3-element shift register are provided. The scrambler uses
multipliers 2, 3, 4 and 5 and all functions in the scrambler and
descrambler are additions over GF(8). The descrambler of
FIG. 6 is almost a mirror image of the scrambler of FIG. 5.
The multiplier to an input of the descrambling functions ds3
is the reverse of 8-valued multiplier 2 over GF(8) in the
scrambler and is 7.

The Galois descrambler of FIG. 6 is not self synchronizing.
Synchronization between scrambler and descrambler is
required. For completeness in FIG. 7 and FIG. 8 a scrambler
and a self-synchronizing descrambler in Galois configuration
(forthe 8-valued case over GF(8)) are provided. The details of
self-synchronizing scramblers and descramblers are provided
in U.S. patent application Ser. No. 11/696,261, filed on Apr. 4,
2007, entitled Binary and N-Valued LFSR and LFCSR Based
Scramblers, Descramblers, Sequence Generators and Detec-
tors in Galois Configuration, which is incorporated herein by
reference in its entirety. It should be clear that the binary
methods for realizing the addition and multiplication over
GF(2™) can also be applied in those configurations.
Detection of N-Valued Sequences

It was shown by the inventor that n-valued sequences gen-
erated by an n-valued LFSR can be detected by a descrambler
like n-valued LFSR circuit in U.S. patent application Ser. No.
11/065,836, filed Feb. 25, 2005, entitled Generation and
Detection of Non-Binary Digital Sequences which is incor-
porated herein by reference in its entirety. For illustrative
purposes, a detector in Fibonacci configuration is provided.
Similar detectors may also be created for sequences gener-
ated by Galois configurations. However, it should be clear
that the non self-synchronizing detector in Galois configura-
tion requires complete synchronization with the correspond-
ing generator to correctly detect an n-state sequence.

FIG. 9 shows an n-valued LFSR sequence generator in
Fibonacci configuration. One may assume for illustrative pur-
poses, that n=8 and that sc1, sc2 and sc3 are all additions over
GF(8) while inverters 10, i1, 12 and i3 are all multipliers over
GF(8). One can detect a sequence generated by the sequence
generator of FIG. 9 by the LFSR based circuit of FIG. 10.
Herein, inverter i0r reverses i0. Furthermore, a detection
function ‘det’is used. If the sequence inputted on the circuit of
FIG. 10 was generated by the circuit of FIG. 9 then both
inputs to function ‘det’ after the shift register is flushed are
identical. Accordingly, if the truth table of “det” has a diagonal
with identical states, then the output of ‘det’ will generate a
sequence of identical symbols, this indicating a correct detec-
tion. The addition over GF(2™) has a diagonal with states 0,
and can serve as a detecting function. Accordingly, n-valued
sequence detectors as shown in FIG. 10 using inverters or
multipliers and addition function defined in GF(2™) can be
implemented using the binary XOR functions as described
earlier. This also applies to LFSR based sequence detectors in
Galois configuration.

The present invention provides different ways of realizing
LFSR based n-valued scramblers, descramblers and
sequence detectors using n-valued reversible inverters and
reversible n-valued functions. Binary methods for imple-
menting addition and multiplier functions over GF(2™) have
been applied. While Galois Field arithmetic is known and is
applied in LFSR based coders in for instance for Reed

20

25

30

35

40

45

50

55

60

65

14

Solomon coders, it is believed that applying binary imple-
mentation of GF arithmetic to n-valued scramblers, descram-
blers and sequence detectors is novel.

FIG. 11 is a diagram of a possible realization of a scram-
bler, descrambler or sequence detector as an aspect of the
present invention. A sequence of n-valued symbols is entered
on input 1100 to an analog/digital converter 1101 which
outputs words of binary symbols on 1105. These binary
words are inputted to 1102 which will perform in binary mode
the scrambling, descrambling or detection functions
described above. The result may be outputted as binary words
on 1106 to a digital/analog converter 1103 which outputs
n-valued symbols on 1104.

Different configurations of such a set-up are possible. For
instance, it is possible that n-valued symbols are used for
transmission but not for processing. This may be the case
wherein scrambling is among the final steps before transmis-
sion. This is shown in FIG. 12 wherein a binary signal is
provided on 1200 to a processing unit 1202 that for instance
performs the n-valued scrambling steps in binary form. This
processing unit will take each number of for instance p con-
secutive bits to represent an n-valued symbol. For instance
p=3 and n=8. After creating words of p bits which form a
sequence of scrambled n-valued symbols the binary words
may be provided on 1206 to a digital/analog converter 1203
that outputs n-valued symbols on 1204. For instance, a DSL
signal that uses a 4-valued line signal may apply this set-up.

A potential receiver for the system of FIG. 12 is shown in
FIG. 13. Herein, the n-valued symbols are provided on 1300
to an analog/digital converter 1301 that outputs binary words
on 1305 which will provide the binary words to a binary
processing unit 1302 which will perform for instance the
n-valued descrambling or detection operation in binary form.
A binary descrambled or detection signal is then provided on
1306 for further processing. This may take place in for
instance a receiving device of an n-valued transmission sys-
tem.

It should be clear that there are many ways to create an
n-valued or n-state signal. A state may be represented by an
intensity or level of a physical phenomenon such as a current.
A state may be represented by a position of a signal in time as
in pulse position coding. A state may be represented by a
phase of a signal, a color, polarization, amount of spin, spin
orientation or any other phenomenon that can assume difter-
ent states.

The n-valued scrambling, descrambling and detection
methods can also be performed exclusively in binary form as
is shown in FIG. 14. Herein, a sequence of binary symbols is
processed by a unit 1402 which will treat for instance a series
of p bits provided on 1400 as a binary word. The result is
provided on 1406. For the casual observer it will appear as if
an incoming sequence of bits is processed into an outgoing
stream of bits. The system of FIG. 14 requires that word
synchronization for the purpose of descrambling and detec-
tion is maintained. At the limited cost of synchronization a
substantial level of security may be added to the signal by
performing n-valued scrambling in binary form to binary
signals. In order to break up patterns that may exist in binary
words one may consider including a binary scrambling or
transposition step to the process. Again, for the casual
observer, it may be unclear how a received binary signal was
modified if n-valued scrambling was used, circumventing the
obvious cryptanalysis techniques.

It was shown above that a Linear Feedback Shift Register
(LFSR) can be provided in different configurations. It was
also shown that a combination of a function and inverters can
be consolidated into a single function. It should be clear that

US 8,364,977 B2

15

one may combine two or more inverters into one inverter. The
one configuration that may appear to be novel is the Fibonacci
configuration wherein an inverter is placed in the shift register
between two shift register elements. For illustrative purposes,
such situations will be analyzed by using an LFSR based
n-valued sequence generator. If one can find two different
configurations of the LFSR having the same number of shift
register elements and generating the same equivalent
sequence then one may call those two configurations equiva-
lent. A complete sequence generated by a sequence generator
having a first initial state is equivalent to a second sequence
generated by the same sequence generator but with a different
initial shift register. These equivalent sequences are then
shifted versions of each other. However, their generators are
identical.

FIG. 15 shows an LFSR based sequence generator with a 4
element shift register and two functions scl and sc2 in the
feedback taps. An inverter 1501 (inv) is placed just in front of
the 4” shift register element. It is easy to see that the function
receives from shift register element sr4 a value that is inverter
by an inverter ‘inv’. Accordingly, one may place the inverter
also after the shift register element ‘sr4’. This is shown in
FIG. 16 wherein the inverter ‘inv’ is now in position 1601.
Unfortunately, this situation is only correct after the initial
value of ‘sr4’ is flushed. By changing the initial state of the
shift register of the generator of FIG. 16 one may generate the
same sequence as generated by the generator of FIG. 15.

In an example one may apply a 4-state generator wherein
functions ‘scl” and ‘sc2’ are both adders over GF(4) and the
inverter is for instance a multiplication over GF(4) by a factor
3. It will turn out that the generator of FIG. 15 with initial state
[0 2 1 3] will generate the same sequence as the generator of
FIG. 16 with initial state [0 2 1 1].

One may create different configurations such as shown in
FIG. 17 with an inverter 1701 ‘inv’ in front of the tap to
function ‘sc1’ and the second element ‘sr2’ of the shift regis-
ter. This configuration is equivalent to the configuration of
FIG. 18 with inverters ‘inv’ at locations 1801, 1802 and 1803.
For instance the configuration of FIG. 17 with initial shift
register content [0 2 1 3] in 4-state mode is equivalent to the
generator of FIG. 18 with initial state [0 3 2 1]. Accordingly,
inclusion of inverters in the shift register is equivalent to
inclusion of inverters in taps and will not be distinguished as
special cases.

The application of n-valued inverters herein are based on
inverters related to multiplication by a term defined in
GF(n=27). This has as a result that such an inverter has as its
first element always a 0. For instance in GF(8) a multiplica-
tion by 7 may be inversion of a state by the inverter [07 123
45 6]. This is areversible inverter. Another reversible inverter
which may not be defined in GF(8) may be the reversible
inverter [7 6 54 3 21 0]. Such inverters may create a greater
variety in generators and scramblers of generated signals. In
general, one may prefer n-valued inverters being executed in
binary logic with binary circuits that are not too complicated
and do not take too many clock cycles. The inverter [7 6 54 3
21 0] is a relative simple inverter as it is the complement of [0
123456 7] which can be created by inverting each bit in a
word that represents an 8-state symbol. Inverters can also be
implemented by using translation tables.

An example is shown in FIG. 19. Table 1900 shows a direct
translation or inversion from [01234567]to[4765032
1]. This is a self-reversing 8-valued inverter. One may imple-
ment such an inverter in binary switching technology using a
translation table. This is shown in 1901. The purpose of 1901
is to translate a binary signal of 3 bits into another signal of 3
bits according to table 1900. The initial 3 bits are provided on

20

25

30

35

40

45

50

55

60

65

16

input 1902 to an address generator 1903. Based on the input
bits address translator 1903 will enable an address line in a
memory 1904 which has its content arranged according to
table 1900. When an address is enabled the memory will
provide the content of the memory on outputs 1905. The
example shows that when the input 1902 receives [0 1 0]
which is equivalent to state 2, the memory will generate [1 1
0] which is equivalent to state 6, which is in accordance with
inverter table 1900.

FIG. 20 shows in diagram how one may implement an
addition over GF(2%) by using XOR functions. As an illustra-
tive example, an 8-valued addition over GF(8) is used. An
8-valued implementation 2000 of the addition function has an
input 2001 which is enabled to receive an 8-state signal A, an
input 2002 which is enabled to receive an 8-state B and output
2003 which provides an 8-state signal C. It is known that the
8-state addition may be implemented by XOR functions. This
is shown in 2004 with three individual XOR functions each
with first binary input signal al, a2 and a3 respectively and
with second binary input signal b1, b2 and b3. Each XOR
device then outputs binary signal c1, ¢2 and ¢3. The relation
between the 8-state and binary signals is A=[al a2 a3]; B=[bl
b2 Db3]; and C=cl c¢2 3] wherein: (al=bl)—cl,
(a2=b2)—>c2; (a3=b3)—>c3. The arrow is used as the assign-
ment character. One may represent the circuit of FIG. 202000
by the diagram of FIG. 21 2100 as a possible implementation.

FIG. 22 shows a diagram of an n-state shift register. Herein,
2200 has elements 2201, 2202 and 2203. Each element can
store an n-state signal. Element 2201 is inputted with n-state
signal 2204 and outputs n-state signal 2205. Signal 2205 is
inputted to 2202 which outputs 2206. Signal 2206 is inputted
to 2203 which outputs 2207. The register 2200 in general
works under a clock signal 2208 which is assumed in all shift
registers though not always shown in diagrams to limit unnec-
essary details. Upon a certain state of the clock signal a shift
register element assumes the state that is provided on its input.
The input may be the output of the previous shift register.
Clearly during shifting the outputs have to remain unchanged
until the correct signal is stored in the register elements. After
the signals are stored they are then provided on the outputs of
the register elements. Under the shift register scheme here
provided as an illustrative example the content of the shift
register elements shifts from left to right at a clock pulse.

The above example may be implemented with for instance
n-valued latches. These latches were disclosed by the inven-
tor in U.S. patent Ser. No. 11/139,835 which was filed on May
27, 2005 and which is incorporated herein by reference.
When one applies signals and functions over GF(n=2%) all
n-state signals may be easily represented in binary form.
Diagram 2209 shows the binary equivalent of FIG. 22 2200
wherein the n-state signals are replaced by binary signals and
register element is a plurality of binary register elements. For
instance, if one deals with 8-state signals that are being pro-
cessed over GF(8) one may represent an 8 state signal by 3
binary signals. A shift register element such as 2210 may then
comprise 3 binary shift register elements, which may be par-
allel. In for instance the element 2210 the bits c1, ¢2 and ¢3 are
then stored in binary form and they are shifted individually on
a clock pulse to the next shift register element.

The n-state implementations either in true n-state imple-
mentation or in binary implementation apply to Fibonacci as
well as Galois configurations.

It should be pointed out that multi-valued LFSRs in binary
configuration over GF(n) may be known, for instance in gen-
erating Reed Solomon codewords in an error correcting code.
It is pointed out that the symbols generated in those LFSR
based coders generate additional symbols that are added to or

US 8,364,977 B2

17

combined with an input to create a codeword. The generated
symbols do not replace the input symbols as required in a
scrambler. Corresponding descramblers are not disclosed as
part of RS-coders or decoders. In fact an RS decoder has an
LFSR which is generally the same as the coder. Herein one
takes the received word and compares generated extra sym-
bols or check-symbols with the received check symbols. If
there is a difference an error may have occurred.

RS-coders thus are not scramblers, as they are not used in
a streaming mode but to generate codewords. An RS code
word generally contains more symbols than the original sym-
bols. Furthermore, an RS coder accepts a number of n-state
symbols let us say k and generates p check symbols. Accord-
ingly, an RS-coder generates p symbols more than it receives.
An RS coder requires word synchronization of words of k
n-state symbols, which a scrambler does not. An n-state
LFSR scrambler is a streaming coder and does not know
words of n-state symbols. N-state LFSR descramblers are
believed to be novel. N-state LFSR descramblers over GF(27)
implemented in binary logic are also believed to be novel. A
scrambler has a one-on-one relationship between a symbol
being inputted and a scrambled symbol being outputted.
Accordingly, k symbols being inputted for scrambling will be
outputted as k scrambled symbols. At each clock pulse a
symbol is being inputted and outputted. This is different from
an RS coder wherein k symbols may be inputted until for
instance a shift register is filled. An RS coder provides all the
inputted symbols plus the check symbols and thus provides
more symbols than were inputted. An RS code also is a
systematic code as it contains the to be coded symbols in a
codeword. A scrambler is clearly not a systematic code.

In accordance with a further aspect of the present inven-
tion, an n-state LFSR based sequence generator is provided
over GF(n=2%). A diagram is shown of a generator 2300 with
an LFSR with a 3 n-state shift register 2307, two devices 2301
and 2302 each implementing an addition over GF(2?). Fur-
thermore, multipliers 2303, 2304 and 2305 over GF(27) are
used in the taps. The multipliers may be any of the multipliers
including 0 and 1 over GF(2?). A clock signal is as always
assumed. A sequence of n-state symbols is generated on
2306. Under some conditions, the sequence may be a pseudo-
random sequence of 2°—1 n-state symbols. The generator is
shown in Fibonacci configuration. A Galois configuration is
also possible.

In a further embodiment, the multipliers 2303, 2304 and
2305 may be any n-state reversible inverter.

In a further embodiment the LFSR may be implemented in
binary form. This is shown in an illustrative example in FIG.
24. Assume n=8, so that each symbol can be represented by 3
bits. The generator 2400 has three parallel binary data
streams. The LFSR applies functions 2401 and 2402 imple-
mented each by 3 XOR functions. The multipliers 2403,2304
and 2305 may be implemented as was disclosed above or by
table translators. The shift register 2407 comprises 3 shift
register elements. Each shift register element can hold and
shift 3 parallel binary signals. An 8-state signal comprised of
three parallel binary signals is provided on 2406. One may
convert the three parallel binary signals by a converter 2408
into a true 8-state signal on out 2409. One should be aware
that in GF(8) the translation of 3 bits into an 8-state signal
should be done according to the GF(8) field and in general
may not be the normal D/A conversion.

FIGS. 23 and 24 are provided as illustrative examples.
Galois configurations are also contemplated. LFSRs with a
different length shift register and with different taps are also
contemplated. Other values for n=27 are also fully contem-
plated, such as n=256 for instance.

20

25

30

35

40

45

50

55

60

65

18

For instance, the generator configuration of FIG. 23 can
generate 12 different pseudo-random 4-state sequences if the
inverters 2303, 2304 and 2305 can be any of the 4 multipliers
over GF(4) (0, 1, 2 and 3). The sequences depend of course on
the initial state of the shift register. The 12 4-state PN
sequences are not shifted versions of each other. One may also
generate PN sequences by using for 2303, 2304 and 2305 any
of'the 24 reversible n-state inverters. In that case, the configu-
ration of FIG. 23 can generate over 1500 different PN
sequences, including the 12 earlier generated PN sequences.
These over 1500 4-state sequences are not all unique. Some
selections of the inverters will generate a shifted sequence of
another sequence which may be generated with a different set
of inverters but starting with the same initial state of the shift
register.

An 8-valued example will be provided. For instance in one
embodiment the inverter 2504 is a multiplier 1 [01 23456
7] and 2505 is [02 6 57 1 4 3]. In another embodiment 2504
is a multiplier 1 and 25051is[327 54 6 1 0]. In yet another
embodiment 2504 is[32754610] and 2505is[20563 4
1 7]. All three configurations can generate a sequence for
instance of 511 8-valued symbols in binary form.

In one embodiment, an n-valued sequence generator is
provided using at least one adder over GF(2?) with p>2. In a
further embodiment, at least one inverter is used not being a
multiplier over GF(27) with p>2. For instance, a configuration
is used as shown in FIG. 25 with a generator 2500 wherein all
devices are implemented in binary logic and the generator is
a sequence generator over GF(8) so that all devices have to
process 3 bits. The generator 2500 has a shift register 2507
wherein each element can hold 3 bits. Device 2502 is an adder
over GF(8) implemented in binary form with 3 XOR devices.
Both 2504 and 2505 are 8-valued inverter of which at least
one is not a multiplier over GF(8). In that case, an inverter
may be implemented by, for instance, a translation table of
which an example was provided in FIG. 19. A D/A converter
may be applied to generate a sequence of true 8-valued sym-
bols on 2509.

One may apply different ways to calculate an auto-corre-
lation and/or cross-correlation. A correlation for a sequence
of discrete elements is usually defined as

N-1

= E X jXji

R
=

wherein j+i is calculated as modulo-N. Basically each ele-
ment of R is calculated by shifting a sequence and multiplying
all symbols of the original sequence with the shifted
sequence. In general, a sequence is considered to be a maxi-
mum-length sequence if the auto-correlation has one single
peak. The cross correlation is a similar expression, though in
that case symbols of one sequence are multiplied with sym-
bols of a shifted version of another sequence. In the correla-
tion a symbol is then provided with a value. In the 8-valued
case one possibility is to provide a symbol with its corre-
sponding value in modulo-n to calculate a correlation.

FIG. 26 shows an auto-correlation graph calculated and
plotted in MatLab. Hereinthe values 1,2,3,4,5, 6,7 and 8 are
assigned to the symbols of a sequence. The sequence used is
the sequence of 511 8-valued symbols generated by the con-
figuration of FIG. 25 with 2505 is [02 6 5 7 1 4 3]. The graph
is different from a graph of a binary maximum length
sequence which usually has two values with one large peak.
This graph has several values. Furthermore, the graph has

US 8,364,977 B2

19

very large values, up to 13,000. This indicates that significant
processing takes place for calculating each correlation value,
including multiplication and addition. It also shows that the
minimum correlation value is about 1000.

FIG. 27 shows a cross-correlation graph of the earlier
sequence with a different 8-valued maximum length
sequence generated by the generator of FIG. 25.

In accordance with an aspect of the present invention, a
different way of calculating correlation and cross-correlation
is provided. Instead of calculating a product of two values,
two symbols are compared with each other. If they are the
same a value such as 1 may be added to a sum. If the symbols
are not identical the sum may remain unchanged or a value
may be subtracted. FIG. 28 and FIG. 29 show the autocorre-
lation and cross-correlation combined with the autocorrela-
tion of the earlier example calculated with this rule. It should
be clear that comparing symbols in modified binary form is
fairly simple. In the 8-valued case one may take 3 bits repre-
senting one symbol and compare these with the 3 bits of a
different symbol. If they are identical a 1 may be added by a
counter. The advantage is that one may compare multiple
symbols at the same time. Such an approach in accordance
with an aspect of the present invention, is shown in FIG. 31.
For instance, 2 8-valued symbols are stored in 2 3-bit memo-
ries 3101 and 3102. Their corresponding bits are provided to
a compare device of which one 3103 is identified. The out-
come is provided to an AND circuit 3104. The outcome of the
comparison is provided on output 3105. For instance, a 1
appears on 3105 when the two symbols are identical.

It should be clear that maximum length (ML) sequences of
n-state symbols have inherently better auto-correlation
graphs than binary maximum lengths sequences of the same
length when generated by an LFSR or LFSR like generator.
The reason for that is the statistics of the sequence. Maxim
length sequences are pseudo random with close to even dis-
tribution of symbols of the alphabet they are coded in. This
means that in binary ML sequences when sequences are not
aligned optimally there is a 50% chance that the symbols are
equal and contribute to a correlation value. By the nature of
the make-up of n-state ML, sequences such a chance is lower
and is in fact close to 1/n. That means that in not aligned
sequences symbols may minimize the correlation faster than
it may contribute to it.

Many operations one n-valued symbols processed in
binary fashion are performed on words, each word being p
bits when n=27. In accordance with another aspect of the
present invention, processing over GF(n) may also take place
on bits in a sequential fashion if that does not distort a result.
This means, for instance, that instead of processing in an
addition over GF(8) in one clock cycle 3 bits one may process
abit per clock cycle. Clearly this will take more time, however
it may save circuitry.

One may adapt the rule for determining a correlation value.
For instance one may add 8 when symbols are identical and
subtract 1 when symbols are different. A combined auto- and
cross-correlation graph of the earlier sequences using this
rule is provided in FIG. 30.

It is clear that calculating a correlation value by only an
up-counter (and no down-counter) is probably one of the
simplest ways to determine a correlation. By the nature of the
statistics of binary maximum length sequences the low value
in case of a binary maximum length sequence is about half of
the top value. The statistics improve with n-valued sequences.
For instance, in the binary case a maximum length sequence
has a top value of 511 and a minimum value of 255. An
8-valued maximum length sequence has of course also a
maximum value of 511, but a minimum value of 63, which is

20

25

30

35

40

45

50

55

60

65

20

about 511/8. Accordingly the correlation behavior of an
8-valued sequence is better with the same calculation effort.

The method as described in an illustrative example and
illustrated in FIGS. 28-31 for calculating a correlation value
herein will be called “an n-state binary modified correlation”
wherein the correlation may be an auto-correlation or a cross-
correlation. It distinguishes itself from a standard n-state cor-
relation calculation by applying adding or subtracting a fixed
value rather than a value related to the state of a symbol.

One may generate sequences over GF(2?), thus not using
any other inverters than multipliers over GF(2?). These mul-
tipliers can be implemented in binary form by using the
binary circuits as provided above. For instance, the generator
of FIG. 25 may generate a maximum length 8-valued
sequence of 511 8-valued symbols with inverters 2504 and
2505 both being [0 67 123 4 5].

The above LFSRs applied to sequence generators also
apply to scramblers and descramblers over GF(n).

One may also use generators over GF(n) wherein n is not
27, For instance, one may apply the configuration of FIG. 25
for the 7-valued case. The adder is then an adder over GF(7)
and the multipliers are also defined over GF(7). This means
that both addition and multiplication may be defined as
modulo-7. One can generate a maximum length sequence of
342 7-valued symbols with 2504 being [0 4 1 52 6 3] and
2505 being [0 53 16 4 2]. It should be clear that binary coding
is not optimal as only 7 of the 8 3 bits possibilities are used if
symbols have a straight 7-valued to binary conversion. It
should also be clear the implementation of the addition for
instance in this case can not be done by processing individual
bits with a single XOR function.

As was shown before one may also apply LFSRs in Galois
configuration. For the purpose of generating sequences over
GF(n) an example of such a generator is provided in FIG. 32.
The LFSR 3200 has a shift register with elements 3204, 3205
and 3206. Between the register elements are 2 devices 3209
and 3210 each implementing an adder over GF(n). Further-
more, inverters 3201, 3202, 3203, 3207 and 3208 are also
included. Each inverter may be a multiplier over GF(n). For
practical purposes inverters 3201, 3207 and 3208 are prefer-
ably not the multiplication with 0. A sequence of n-valued
symbols may be provided on an output 3211. A clock signal
for the LFSR is assumed though not shown in the diagram. In
accordance with an aspect of the present invention the
sequence generator may be implemented in binary logic. The
sequence generator for instance may be a sequence generator
over GF(8) so that all circuits and connections as in FIG. 25
may operate on words of’3 bits. One configuration wherein all
inverters are multipliers over GF(8) is for: 3207is[03456
712];3708is[02345671];3701is[04567123];,3702
is[07123456]; and 32031is[0567 123 4]. This
configuration will generate a maximum length sequence of
511 8-valued symbols.

The LFSR may be assigned an output for instance 3220 and
an input 3230. One may create a scrambler by inserting a
scrambling function, for instance, an adder over GF(8)
between the input and the output and input a sequence to be
scrambled on the inserted device.

All functions in the 8-valued example can be implemented
with earlier disclosed binary circuits. In addition one may use
inverters which are not multipliers over GF(8), especially the
case wherein state 0 is not inverted to state O, to generate
additional sequences, of which some are maximum length
sequences. For instance, the above example with 3203 is the
inverter [2 1 03 4 5 7 6] will generate an 8-valued maximum
length sequence of 511 symbols.

US 8,364,977 B2

21

One may use the configuration of FIG. 23 to create a 4-state
sequence generator. For instance one may use for 2301 and
2302 an implementation of an adder over GF(4). For 2303 one
may use [0 2 3 1] which is a multiplication with 2 over GF(4).
For 2304 and 2305 one may use [0 3 1 2] which is a multi-
plication with 3 over GF(4). The generator of FIG. 23 may
generate a 4-state maximum length or pseudo-noise sequence
of 63 4-state symbols. One may implement all elements in
binary elements wherein the adders can be realized with XOR
devices and the multiplications can be implemented with
binary combinational circuits all applying words of 2 bits.
One may also apply memory based transformations for
implementing inverters and/or multipliers.

One may generate a sequence of 63 4-state symbols and
determine a correlation graph and a cross-correlation graph
with a different 63 4-state symbol sequence. One may gener-
ate the 4-state sequences with a generator as shown in FIG. 23
which is in Fibonacci configuration. One may also generate
sequences by a3 element LFSR in Galois configuration. FIG.
33 is an auto-correlation graph of'a 63 4-state symbol maxi-
mum length sequence. The auto-correlation graph is created
by using a standard correlation calculation, with assigned
values being 1, 2, 3 and 4. This type of standard auto-corre-
lation graph shows a peak 3301 when sequences are aligned.
They also show in general one or more sub-peaks 3302. FIG.
34 is a graph of a cross correlation of the sequence of FIG. 33
with other maximum length sequences. The graph shows the
peak 3301 and sub-peak 3302 which are not part of the cross
correlation. The actual cross correlation is shown below line
3401.

A method for calculating a correlation for sequences of
n-state symbols was explained in U.S. patent application Ser.
No. 11/042,645, filed on Jan. 25, 2005, which is incorporated
herein by reference. The method includes: initiating a sum;
adding a fixed value a=0 when two symbols are identical; and
subtracting a fixed value b=0 when two symbols are differ-
ent. One may of course also add or subtract a fixed number
a<0 when symbols are equal and/or add or subtract a fixed
number b<0 when symbols are not equal. For a maximum
length sequence this provides an auto-correlation graph as
shown in FIG. 35. Such a graph does no longer show sub-
peaks. It looks like an auto-correlation graph of a binary
sequence. However, the auto-correlation graph as shown in
FIG. 35 has a better performance that the binary graph. The
graph is formed by adding 1 to a sum when symbols are
identical and nothing when symbols are different. This is
about the simplest manner of creating a correlation. The peak
is of course 63. However, the low value is 15, which is about
half it would be in the binary case.

A cross-correlation graph of the sequence of FIG. 35 with
other 4-state maximum length sequences is shown in FIG. 36.
The peak 3501 of FIG. 35 is also shown and is only provided
for reference as it is not part of the cross-correlation. The
cross-correlation values are all shown below the line 3601.
The method of FIG. 35 and FIG. 36 for calculating a corre-
lation value herein will be called “an n-state binary modified
correlation” wherein the correlation may be an auto-correla-
tion or a cross correlation. It distinguished itself from a stan-
dard n-state correlation calculation by applying adding or
subtracting a fixed value rather than a value related to the state
of'a symbol.

FIGS. 37-41 each show a Fibonacci LFSR in a different
state or application. FIG. 37 shows a diagram of basic
Fibonacci LFSR. Different length shift registers are possible
and different multipliers. In FIG. 37 an LFSR 3700 is shown
with an n-valued shift register of three n-valued register ele-
ments 3705, 3376 and 3707, each enabled to store and shift an

20

25

30

35

40

45

50

55

60

65

22

n-valued symbol. It may be that n=27. In that case the LFSR
can be implemented in binary form with each device process-
ing or storing p bits. A device may be connected to another
device by p parallel binary connections. The LFSR in this
illustrative example also has two n-valued or n-state devices
3703 and 3704 implementing an adder over GF(n). The LFSR
3700 also contains 4 n-state inverters 3708, 3709, 3710 and
3711. Other inverters may be applied. An inverter may be a
multiplier over GF(n). An inverter may also be a reversible
n-state inverter wherein input state O will remain state O on the
output. These inverters will be defined herein as zero-based
reversible n-state or n-valued inverters. Multipliers over
GF(n) for instance are always zero-based reversible n-state
inverters, as state 0 will always remain zero. For instance
multiplication with 3 in GF(4) is [0 3 1 2]. For instance in
GF(8) a multiplication by 7 may be inversion of a state by the
inverter [0 7 1 23 4 5 6]. An inverter may also be a reversible
n-state inverter wherein input state 0 is inverter into a different
state. The n-state LFSR has an output, for instance 3701 and
an input for instance 3702. In the binary case with n=2° the
inputs and outputs may be p binary inputs and p binary out-
puts. The LFSR 3700 may become functionally active when
output and input are connected, either directly, including or
without a reversible inverter or through a device implement-
ing an adder over GF(n), either with or without a reversible
inverter.

FIG. 38 shows the LFSR of FIG. 37 connected from output
3701 to input 3702 via an n-state logic device 3801 preferably
implementing an adder over GF(n) in binary form with two
inputs whereof the first input is connected to the output of the
LFSR. A second input 3802 of device 3801 is provided with
a sequence of n-state symbols, preferably coded in binary
words. An output of 3801 may be connected directly to the
input 3702 or it may be connected via an inverter 3804 to
input 3702 of the LFSR. An output 3804 may provide a
scrambled sequence of n-state symbols, which is a scrambled
version of the sequence entered on 3802. Accordingly, FIG.
38 shows the n-state LFSR of FIG. 37 being used as part of an
n-state scrambler.

FIG. 39 shows the LFSR of FIG. 37 connected from output
3701 to input 3702 via an n-state logic device 3901 preferably
implementing an adder over GF(n) in binary form with two
inputs whereof the first input is connected to the output 3701
of'the LFSR. A second input of device 3901 is connected to
input 3702 of the LFSR, either directly or via an n-state
inverter 3903 as shown in FIG. 39. The device 3901 also has
an output 3902. A sequence of n-state symbols, preferably
coded in binary words in provided on an input 3904 which is
connected to the input 3702 of the n-state LFSR. It is also
connected to inverter 3903 which may be the n-state identity.
Thus, when a sequence of n-state symbols is provided on
3904 then a sequence of n-state symbols will be generated on
output 3902. The sequence of n-state symbols provided on
3902 is a descrambled sequence if the input 3904 was input-
ted with a sequence scrambled by the scrambler of FIG. 38
and outputted on 3804. The descrambler is a self-synchroniz-
ing descrambler. For the descrambler to correspond to FIG.
38 the inverter 3903 has to be the reverse of 3703. Accord-
ingly, FIG. 39 shows the n-state LFSR of FIG. 37 being used
as part of an n-state descrambler.

FIG. 40 has output 3701 of the LFSR of FIG. 37 connected
to input 3702 via an n-state inverter 4003 which may be an
identity. The LFSR also has an output 4004 which will gen-
erate a sequence of n-state symbols. By applying the correct
inverters a sequence generated on 4004 may be maximum

US 8,364,977 B2

23

length sequence of n-state symbols. Accordingly, FIG. 40
shows the n-state LFSR of FIG. 37 being used as part of an
n-state sequence generator.

FIG. 41 shows the LFSR of FIG. 37 connected from output
3701 to input 3702 via an n-state logic device 4101 preferably
implementing an adder over GF(n) in binary form with two
inputs whereof the first input is connected to the output 3701
of'the LFSR. A second input of device 4101 is connected to
input 3702 of the LFSR, either directly or via an n-state
inverter 4103 as shown in FIG. 41. The device 4101 also has
an output 4102. A sequence of n-state symbols, preferably
coded in binary words and generated by the circuit of FIG. 40
is provided on an input 4104 which is connected to the input
3702 of the n-state LFSR. Itis also connected to inverter 4103
which may be the n-state identity. Thus when a correct
sequence of n-state symbols is provided on 4104 then a
sequence of n-state symbols all being 0 will be generated on
output 4102. If not a correct sequence is provided the output
sequence will not all be 0. Accordingly, FIG. 41 shows a
detector of maximum length sequence of n-state symbols.
When the initial state of the shift register is not correct but the
input sequence is, then after flushing the shift register the
detector will start generating all Os. One may modify the
function for detection 4101 by providing additional non-zero-
based inverters at the inputs of 4101.

FIG. 42 shows an n-valued LFSR in Galois configuration.
It contains devices implementing n-state logic functions 4203
and 4204 which are preferably adders over GF(n=27). It fur-
thermore contains shift register elements 4205, 4206 and
4207, indicated by the larger circles. It also contains n-valued
inverters 4208, 4209, 4210, 4211 and 4212 which may be
multipliers over GF(n=2¢) and are indicated by smaller
circles. The inverters may also be zero-based n-state revers-
ible inverters including identity or non-zero-based n-state
reversible inverters. The n-state LFSR has an output 4201 and
an input 4202. Another input output combination may be
selected. An n-state Galois LFSR as shown in FIG. 42 may
become functionally active when input and output are con-
nected, either directly, or by including a device which may be
aninverter and or a device implementing an adder over GF(n).

Noting that a large circle represents an adder over GF(n)
and a small circle represents an inverter, one can easily see
that: FIG. 43 is a diagram of a scrambler applying an LFSR in
Galois configuration; FIG. 44 is a diagram of a descrambler
applying an LFSR in Galois configuration; FIG. 45 is a dia-
gram of a sequence generator applying an LFSR in Galois
configuration; and FIG. 46 is a diagram of an n-state maxi-
mum length sequence detector applying an LFSR in Galois
configuration;

The detector in Galois configuration as shown in FIG. 46 is
not self-synchronizing and the initial state should correspond
with the initial state of the corresponding sequence generator.

The term scrambler and descrambler may be used in dif-
ferent contexts. A scrambler herein means the one-on-one
transforming of symbols of a to be scrambled sequence of
symbols into the same number of scrambled symbols in a
scrambled sequence. A logic based scrambler applies at least
one operation or a logic device that can be expressed as a logic
orn-state switching operation. A sequence generator herein is
an autonomous operation wherein a sequence of symbols is
generated by processing of internal states of the generator.
Unlike the scrambler and descrambler a sequence generator
does not require an external sequence to be processed, with
exception of external signals like clock signals. A sequence
detector is somewhat like a descrambler as it is inputted with
a sequence of symbols. However, the purpose of the detector
is to generate a fixed pattern of symbols, such as all 1s for

20

25

30

35

40

45

50

55

60

65

24

instance, or a pattern like 1 23 1 23 1 2 3 for instance when
a certain sequence is detected. Such a detection pattern may
generally not reflect the symbols of the detected sequence, but
reflects the diagonal of the detecting logic function with iden-
tical symbols on two inputs.

The circuits herein are illustrated by application of LFSRs.
It was shown by the inventor that one may use for instance
addressable memories instead of LFSRs to create binary and
n-state scramblers, descramblers, sequence generators and
sequence detectors. One may apply binary addressable
memories acting upon binary words, a binary word represent-
ing an n-state symbol. The processing of the n-state symbols
may take place over GF(n) applying binary circuits. The
LFSR alternatives are described in U.S. patent application
Ser. No. 11/427,498, filed on Jun. 29, 2006, U.S. patent appli-
cation Ser. No. 11/534,837, filed on Sep. 25, 2006, and U.S.
patent application Ser. No. 11/555,730, filed on Nov. 2, 2006,
which are all three incorporated herein by reference in their
entirety.

It was shown herein and elsewhere that n-state symbols
with n=27 may be represented by words of p bits. The same
applies when n<2?. By processing the n-state symbols with
operations defined over GF(n=27), for instance, by an adder
over GF(n) one may process a word by processing each indi-
vidual bit or pair of corresponding bits by a binary function
such as a XOR function. It is to be understood that p in case of
n=2% is the minimum size of a word. One may increase the
number of bits to p+q wherein q provides a redundancy.
Accordingly, when stating that n=2¢ and representing an
n-state symbol by p bits and processing an n-state symbol as
a word of p bits should be read as: representing an n-state
symbol by at least p bits and processing a word of at least p
bits unless it is specifically indicated that redundancy is
excluded.

For illustrative purposes, additions over GF(4) and GF(8)
are provided. It is an aspect of the present invention to provide
scramblers, descramblers, sequence generators, sequence
detectors, LFSRs and methods for calculating a correlation as
“an n-state binary modified correlation”, and inverters as
non-zero-based n-state reversible inverters and zero-based
n-state reversible inverters for n>8. How to create additions
and multiplications for GF(n=27) including p>3 is known and
is explained for instance in the White Paper WHP 031 entitled
“Reed Solomon error correction” by C. K. P. Clarke and
published in July 2002 by the British Broadcasting Corpora-
tion and made available on the World Wide Web. Accordingly,
operations such as multiplication and addition over GF(n) are
fully enabled.

The methods and apparatus disclosed herein as aspects of
the present invention may be applied in a whole range of
applications. They may, for instance, be applied in a commu-
nication system wherein a series of bits may be coded as
n-valued symbols and may be modulated accordingly. As a
further aspect of the present invention, these symbols may be
scrambled in accordance with an n-state scrambler in binary
form. For instance in wireless digital communication and
digital video signals one may use a modulation technique that
provides a carrier with a phase as an n-state signal or as part
of'an n-state signal. One may also use a modulation technique
wherein an amplitude indicates a state or part of a state. One
may also use a frequency to indicate a state or part of a state.
QAM, QAM-4, QAM-16, QAM-64, QAM-128, QAM-256,
QAM-512, QAM-1024, QAM-2048 and QAM-4096 are
examples wherein amplitude and a phase may indicate a state.
QPSK, MSK, are other examples of modulation techniques.
PAM, PDM, PPM, FM, MSK, DSPK, 4-PSK, 8-PSK, FSK,
DMT, OFDM, OFDMA and CDMA are also known as modu-

US 8,364,977 B2

25

lation techniques to create n-state signals. Logic scrambling
and descrambling can be applied to any of these technologies.
Logic scrambling is the scrambling of symbols before modu-
lation. Logic descrambling is the descrambling of symbols
after demodulation. Physical scrambling is the scrambling of
the modulated signal. In QAM this may be the addition of a
phase to a modulated signal. The addition is usually a real
addition or a modulo-n addition. In accordance with an aspect
of the present invention, physical scrambling is provided by
modifying a phase by applying at least one device not imple-
menting a modulo-n adder.

In accordance with an aspect of the present invention, the
scrambling and descrambling methods and apparatus as pro-
vided herein in accordance with one or more aspects of the
present invention can be applied to any communication sys-
tem that applies a modulation technique that can create
n-state symbols having one of 3 or more states and/or that
applies a modulation technique that can create a symbol hav-
ing one of n=27 states with p>1.

In accordance with a further aspect of the present inven-
tion, one may generate a sequence of n-state symbols which
may be represented in binary form and for instance as at least
p bits when n=27. One may then modulate a sequence of bits,
which may comprise a multiple of p bits in for instance a
QAM-M signal, wherein M=27 and q is a multiple of p. For
instance, one may code a sequence of 511 bits as a plurality of
QAM-4 signals. It may be required to include a null signal as
the number of bits does not match exactly. A null signal or
symbol or bit or series of bits may be recognized as not being
part of a dedicated information carrying signal. A null symbol
may be applied to indicate a start or a stop of a sequence. So
a ML sequence of 511 bits may be coded as 256 QAM-4
symbols. A null symbol may be used to complete the appro-
priate number of symbols. However, one may also generate a
ML sequence of 255 4-state symbols. This may generate
about the same number of bits and QAM-4 symbols. Rather
than analyzing the recovered binary sequence with a binary
correlation one may analyze the sequence as a 4-state symbol
sequence by applying an n-state binary modified correlation
as was provided herein as an aspect of the present invention.
In a further example, one may generate a 4095 ML sequence
of'bits. This may require for QAM-4096 transmission a single
symbol. One may also generate a 1024 8-state symbol ML.
This requires 3x1024=3072 bits, which may also be transmit-
ted in a single QAM-4096 symbol. In accordance with a
further aspect of the present invention one may thus generate
a ML sequence of t bits wherein each set of p bits represents
an n-state symbol and wherein one or more set of p bits may
be modulated to a QAM-2"? symbol wherein p>1 and m=1.

There are several reasons why a scrambler may be used.
One may use a scrambler for breaking up one or more patterns
of'a plurality of n-state symbols. For instance, a pattern of all
0s may be undesirable. The same may apply to other patterns.
Another reason may be to provide increased security of a
signal. Other reasons may apply also. One reason to use
n-state scramblers and descramblers in binary form as here
provided is that they are self-contained. That is, one does not
to have to generate a separate sequence to scramble against.

An additional advantage of the descrambler in Fibonacci
configuration is self synchronizing. The same applies to the
Galois configuration of which an example is shown in FIGS.
7 and 8. Herein the descrambler of FIG. 8 is self-synchroniz-
ing. For a binary implementation over GF(n=27) the functions
scl, sc2, sc3, sc4 and ds4 as shown in FIGS. 7 and 8 may be
adders over GF(n=2%). The multipliers may be multipliers
over GF(n=27) or any other multiplier that can be imple-
mented in binary form or with a binary transformation table.

20

25

30

35

40

45

50

55

60

65

26

The LFSR of scrambler and descrambler as shown in FIGS. 7
and 8 are of course in Galois configuration. However, their
input 801 and output 802 along cut lines 803 is in Forward
configuration rather than in Feedback. The Galois LFSR for
the descrambler herein is therefore called a Galois LFSR in
Forward configuration. The concept of this type of descram-
bler for any n-state is further explained in U.S. patent appli-
cation Ser. No. 11/696,261, filed on Apr. 4, 2007, which is
incorporated herein by reference in its entirety.

In accordance with a further aspect of the present inven-
tion, a scrambler and descrambler applying an implementa-
tion of an adder over GF(2?) and a sequence generator over
GF(27) are provided. Phase scramblers may be used in phase
scrambling in for instance QAM-4. Herein, a pseudo-random
phase may be added to an existing phase of a symbol repre-
sentation for instance. One may provide better scrambling by
using an adder over GF(2#) and multipliers over GF(27) and
other inverters which may be implemented in a binary fash-
ion.

A diagram of an illustrative example is provided in FIG. 47.
A sequence of n-state symbols in binary form is generated by
a sequence generator 4701. Each n-state symbol is repre-
sented and processed as at least p bits. An n-state symbol
which may be provided as a binary word may be inverted by
an n-state inverter 4702 which may include identity. The
inverted symbols are provided on an input to a device 4706
implementing an n-state logic function which may be imple-
mented in binary form and may be an adder over GF(27). A to
be scrambled sequence of n-state symbols, which may be
represented as binary words is provided on an input 4705 and
may be presented first to an n-state inverter 4703 before being
entered into the device 4706. A sequence of scrambled n-state
symbols which may be represented in binary form is provided
on output 4704. The sequence of scrambled symbols may
then be provided to a modulator wherein the symbols are
entered and a modulated symbol for instance in a QAM
format is generated. In this approach before modulation the
symbol in a modulated form did not exist. This is fundamen-
tally different from known approaches such as disclosed for
instance in U.S. Pat. No. 6,961,369 to Tzannes and issued on
Nov. 1, 2005 which is incorporated herein by reference,
wherein by way of modulation a phase is added to a signal
with a phase. One may call this physical or modulated scram-
bling. Scrambling and descrambling as disclosed herein takes
place in logical form before a symbol is created in its modu-
lated form and thus is called logical scrambling or n-state
logic scrambling.

Logic or n-state logical descrambling is illustrated by dia-
gram in FIG. 48. An incoming scrambled and modulated
n-state signal to be descrambled may be demodulated and
provided for instance in binary form on an input 4804 to a
device implementing an n-state descrambling function which
may be implemented in binary form and may be an adder over
GF(2%). A sequence of n-state symbols in binary form is
generated by a sequence generator 4801. Each n-state symbol
is represented and processed as at least p bits. An n-state
symbol which may be provided as a binary word may be
inverted by an n-state inverter 4802 which may include iden-
tity. The inverted symbols are provided on an input to the
device 4806. The device 4806 may output a sequence to an
n-state inverter 4803 which may output the correctly
descrambled sequence of n-state symbols on output 4805.
One should take care of selecting the correct inverters in the
descrambler to reverse the inverters in the scrambler. One
may insert an n-state inverter in the output 4704 of the scram-
bler in FIG. 47. In that case for correct descrambling one
should insert a corresponding inverter in the input 4804 of the

US 8,364,977 B2

27
descrambler of FIG. 48. An advantage of the scrambler/de-
scrambler of FIGS. 47-48 is that one may influence the sta-
tistical make-up of'the scrambled signal. A disadvantage may
be that herein one has to provide synchronization of the
sequence generators in the scrambler and descrambler.

Scrambling may be an important means to control peak-
to-average power-ratio (PAR) in a set of modulated symbols.
Accordingly, the scramblers provided herein as one or aspects
of the present invention may be applied to adjust the PAR in
a modulated signal.

The known art expresses addition over GF(n=2%) as an
execution of individual bits of a word with an XOR function.
This may be because the XOR function is equivalent to
modulo-2 addition which exists of course over GF(2). One
may then easily create a binary extension field GF(2?) by the
processing of words of bits by processing of individual sets of
corresponding bits in 2 words by the XOR function, which
may lead to a truth table of GF(27). A fundamental require-
ment for such an extension scheme to work may be explained
in terms of Galois or Finite Field Theory. From an m-state
switching point of view one may also say that an extension of
a 2-input/single output m-state switching function may be
created to operate on a word of p m-state symbols, wherein a
word of p m-state symbols represents an m state symbol if
the truth table of the m-state function is a reversible m-state
function. This applies certainly to the binary XOR function.
However, it also applies to the binary EQUALITY function. It
is known from the theory if adequate equivalents that all
binary logic functions may be implemented in binary NAND
functions and inverters.

Itisknown in the art such as for instance described in Gerrit
Blaauw “Digital System Implementation”, Prentice Hall,
1976 Englewood Cliff, N.J. pages 351-352 that the XOR
(or ‘#”) and EQUALITY (or ‘=) functions each requires the
same number of NANDs (3) and inverters (2). An EQUAL-
ITY function may also be created from an XOR by placing for
instance an inverter at the output of the XOR. An XOR func-
tion may also be created from an EQUALITY function by
placing for instance an inverter at the output of the EQUAL-
ITY. One may create in accordance with a further aspect of the
present invention an n=2 state function which may be imple-
mented in binary form, wherein an n=2¢ symbol is repre-
sented by at least p bits and 2 words of at least p bits may be
processed by processing the individually corresponding bits
by a device implementing a binary EQUALITY or ‘=" func-
tion.

The truth tables of the binary ‘=" function and of the 4-state
and 8-state extension are provided in the following tables.

= 0 1

0 1 0

1 0 1
GF(=?) 0 1 2 3
0 3 2 1 0
1 2 3 0 1
2 1 0 3 1
3 0 1 1 3

30

40

45

50

55

60

65

28
b
c GF(=%) 0 1 2 3 4 5 6 7
a 0 7 6 5 4 3 2 1 0
1 6 7 4 5 2 3 0 1
2 5 4 7 6 1 0 3 2
3 4 5 6 7 0 1 2 3
4 3 2 1 0 7 6 5 4
5 2 3 0 1 6 7 4 5
6 1 0 3 2 5 4 7 6
7 0 1 2 3 4 5 6 7

One may thus, in accordance with an aspect of the present
invention, create a scrambler, descrambler, sequence genera-
tor and sequence detector for n-state symbols wherein an
n-state symbol is represented by at least p bits by using a
device that implements either an adder over GF(27) or a
device that implements the function over GF(=*). GF(=) is
used herein to indicate the function that can be implemented
by using at least two binary ‘=" functions as was shown above.

As an example one may create a pseudo-random 4-state
symbol sequence of maximum length of 63 4-state symbols
by a 4-state sequence generator as shown in FIG. 23 wherein
2301 and 2302 are devices implementing GF(=?) and the
multipliers 2303, 2304 and 2305 are multipliers over GF(4)
being a factor 2, 1 and 3. One may also make 2302 implement
an adder over GF(4) 2301 implements GF(=2) and the invert-
ers implement multipliers 1, 1, 2. One may apply multipliers
over GF(4) implemented in binary form as inverters. One may
also apply zero-based 4-state reversible inverters or one may
apply any 4-state reversible inverter in binary form in a 4-state
sequence generator. A correlation graph for such a sequence
may be determined using the above provided “modified
binary n-state correlation” method. In accordance with a fur-
ther aspect of the present invention one may create a scram-
bler, descrambler, sequence generator and/or sequence detec-
tor for 4-state symbols wherein an n-state symbol is
represented by at least 2 bits by using at least one device that
implements an adder over GF(2?) and at least one device that
implements the function over GF(=?). GF(=?) is used herein
to indicate the function that can be implemented by using at
least two binary ‘=" functions as was shown above. One can
easily check the correct working of such a scrambler,
descrambler, sequence generator and/or sequence detector.

One may also easily check the generation of a maximum
length 511 8-state symbol sequence by using a device imple-
menting with 3 or more ‘=" functions the 8-state function
GF(=?). One may determine a correlation graph by using the
“n-state binary modified correlation” method. One may use as
inverters multipliers over GF(8), zero-based 8-state inverters
or any reversible 8-state inverter that may be implemented in
binary form. One may easily check that the above and other
8-state LFSRs applying at least one function GF(=") may be
applied to create at least one 8-state scrambler, descrambler,
sequence generator and/or sequence detector in binary form.

In accordance with a further aspect of the present inven-
tion, a plurality of n-state with n=2¢ scramblers, descram-
blers, sequence generators and/or sequence detectors are pro-
vided by using an LFSR applying at least one function GF(=")
which may be characterized by p ‘=" functions.

In accordance with a further aspect of the present inven-
tion, one may characterize an n=2? state with p>1 2 input
function by p binary functions which are one of the binary
XOR (#) or EQUALITY (=) function. One may also imple-
ment an n=27 state with p>1 2 input function by p binary
devices each of which implements one of the binary XOR (=)

US 8,364,977 B2

29

or EQUALITY (=) functions. This is shown in diagram in
FIG. 49. A 4-state function may be implemented by either
2 ‘=’ functions, by two ‘=’ functions, by a ‘= #’ combination,
orby a ‘= ="combination. Each implements a different 4-state
truth table. Assume that 2 4-state signals 4901 and 4902 are
provided. These may be converted for instance by A/D con-
verters 4903 and 4904 in two sets of two binary signals 4905
and 4907 and 4906 and 4908. Corresponding bits of the sets
are provided to an implementation 4909 and 4910 of either
the binary function ‘=’ or ‘=". Implementation 4909 provides
a binary signal 4911 and 4910 provides 4912. These two
binary signals may be combined in D/A converter 4913 into a
4-state signal 4914. One may or one may not apply 4-state
symbols or a signal that implements a 4-state symbol. It may
be beneficial to continue applying binary signals or symbols,
for instance until a moment that a modulated signal needs to
be generated.

By mixing ‘=’ and ‘=" functions one may implement one of
the following two 4-state truth tables.

GF(==) 0 1 2 3
0 1 0 3 2
1 0 1 2 3
2 3 2 1 0
3 2 3 0 1
GF(==) 0 1 2 3
0 2 3 0 1
1 3 2 1 0
2 0 1 2 3
3 1 0 3 2

One is again reminded that assignment of the n” states to a
word of p bits may depend on the definition of a field GF(n).
For instance in GF(8) consecutive 7 states may be defined or
represented as consecutive 7 states by a binary LFSR repre-
senting a primitive polynomial. State O may be defined as an
all 0 word. If one would like to transform states of an n-state
signal, for instance from a QAM signal into a binary repre-
sentation over GF(n) one should use an A/D converter that
reflects the correct representation. An A/D converter thus may
use a true A/D converter followed by a binary transformation
table that transforms one word into another word of bits
conforming with GF(n). The following 8-state examples may
clarify the issue. As was shown above the states in GF(8) were
represented by a specific set of 3 bits words. One may also
represent one of 8-state signals in for instance a straight
decimal representation. Both are provided in the following
table.

state GF(8) Decimal
0 0 0 0 0 0 0
1 1 0 0 0 0 1
2 0 1 0 0 1 0
3 0 0 1 0 1 1
4 1 1 0 1 0 0
5 0 1 1 1 0 1
6 1 1 1 1 1 0
7 1 0 1 1 1 1

20

25

30

35

40

45

50

55

60

65

30

It is clear that most of the states in both groups are repre-
sented different. An addition may be defined as applying the
XOR function on the individual bits. The following table
shows as an illustration for n=8 how the result of an addition
depends on the binary representation of the states.

1 in GF(8) 100 100 100 100 100 100 100 100
GF(8) 000 100 010 001 110 011 111 101
+ with = 100 000 110 101 010 111 011 001
1 in dec 001 001 001 001 001 001 001 001
decimal 000 001 010 011 100 101 110 111
+ with = 001 000 011 010 101 100 111 110

Multiplication over GF(n) may therefore also be a trans-
formation that requires the multiplication over GF(n) in
binary form as provided above. It should then also be clear
that one may create different addition tables and multiplica-
tion tables, based on the initial assignments of states. In
accordance with a further aspect of the present invention, one
may create amodified adder over GF(n=27) by using the same
representation of n-state symbols in GF(n) in binary form, but
one may modify the actual execution of the addition over
GF(n) in binary form by replacing one or more XOR func-
tions by an EQUIVALENT function. One may also use other
representations of n states in binary form that do not comply
with GF(n), such as the straight decimal to binary represen-
tations. This may not affect the scrambling or descrambling
methods. However, it may create different types of sequence
generators of which the performance may or may not provide
maximum length n-state sequences. One may thus create
processing functions which apply only XOR functions, only
EQUIVALENT functions, or a mixture of XOR and
EQUIVALENT functions. These functions may represent in
binary form an adder over GF(n), or a modified adder over
GF(n) or neither an adder nor a modified adder over GF(n).

The basic implementation of a function with only = or
XOR functions is the one shown for instance in FIG. 20 and
FIG. 21. Other functions may be defined by using inverters or
multipliers. The use of inverters may start defining the assign-
ment of the n states. The following table shows the binary
implementation of the multiplier 2 over GF(8) as used before
in a sequence generator according to FIG. 25. In GF(8) the
multiplier 2 may be represented as [02 6 57 1 4 3]. Which
state is assigned to a combination of 3 bits depends on the
GF(8) field. The multiplier 2 over GF(8) in binary form is
provided in the following table.

state GF(8) x2
0 0 0 0 0 0 0
1 1 0 0 0 1 0
2 0 1 0 1 1 1
3 0 0 1 0 1 1
4 1 1 0 1 0 1
5 0 1 1 1 0 0
6 1 1 1 1 1 0
7 1 0 1 0 0 1

The inventor has simulated the sequence generator of F1G.
25 with the implementation of the function as shown in FIGS.
20 and 21 and with the multiplier 2 over GF(8) in binary form,
generating a sequence of 511 symbols each represented by 3
bits, which is a sequence of 1533 bits. The auto-correlation
was determined using the n-state modified binary correlation
method and generating a graph as shown in FIG. 28. This

US 8,364,977 B2

31

graph was obtained by comparing the sequence with a shifted
version ofitself. The comparison was made between words of
3 bits. If corresponding 3 bits were not all identical nothing
was added to a sum. If all corresponding bits were equal in
two corresponding words a 1 was added to a sum. Other
correlation schemes are possible and contemplated. One may
also determine the auto-correlation on the basis of individual
bits using the same correlation scheme as for FIG. 28. The
correlation graph of the binary sequence is provided in FIG.
50.

It should be clear that for functions with higher values for
p in n=27 one has to provide an additional reversible binary
function or implementation of such function. For instance
two 8-state symbols of 3 bits marked as [al a2 a3] and [b1 b2
b3] are provided. Each set of corresponding symbols is pro-
cessed by a device implementing a logic or switching func-
tion scl, sc2 or sc3. The results are thus: c1—(al scl bl);
c2—(a2 sc2 b2); and c3—(a3 sc3 b3) resulting in an 8-state
symbol [c1 c2 c¢3] represented in binary form. One can easily
see how this may be expanded to higher values of n=2%. In
accordance with a further aspect of the present invention all
these functions may be applied in an n-state LFSR imple-
mented in binary form.

It should be clear that one may implement an n-state with
n=27 and p>1 logic or switching function in binary form with
p implementations of binary logic functions which may be all
XOR functions or all EQUIVALENT functions or a combi-
nation of both functions. The XOR and the EQUIVALENT
function are both the only binary reversible functions. In
accordance with an aspect of the present invention one may
implement an n-state with n=2? and p>1 logic or switching
function in binary form with p implementations of reversible
binary functions.

There is another benefit in using n-state LFSRs in gener-
ating maximum length sequences. In general, one will use an
LFSR to generate a maximum length sequence of n“~1 n-state
symbols. For instance, in order to generate a sequence of 255
bits with pseudo random properties, one will need an LFSR of
length 8. A novel way to generate binary sequences with
decent pseudo-random properties is to apply a short LFSR,
for instance having 2 elements, which may generate a pseudo
random sequence of length n®-1 n-state symbols. For
instance, a 4-state LFSR may generate a pseudo random
sequence of 15 4-state symbols. However, when one repre-
sents a 4-state symbol by 2 bits the 15 4-state symbol
sequence can be represented as a 30 bits sequence. An 8-state
LFSR with 2 shift register element can produce an m-se-
quence of 63 8-state symbols. This is equivalent to 63*3=189
bits. Both cases have been tested with the herein provided
generators and will produce maximum length n-state
sequences with an optimal auto-correlation when determined
by the n-state modified binary correlation method. A 16-state
generator of two elements will generate 255 16-state
sequences, having 255%4=1010 bits.

In accordance with an aspect of the present invention,
scramblers as provided herein may be used to scramble an
n-state signal, for instance an n-state signal that will be trans-
mitted as a QAM-n or QAM-27 signal wherein 2 may be a
multiple of n. The modulated QAM signal, which may be a
QAM-256 signal or any other n-state signal may be part of a
communication system, such as a wireless communication
system or a video transmission system. A sequence generated
according to methods herein provided may also be applied in
a communication system. In accordance with a further aspect
of'the present invention, a communication system is provided
that applies a scrambler, and/or a descrambler, and/or a
sequence generator which are herein provided in accordance

20

25

30

35

40

45

50

55

60

65

32

with one or more aspects of the present invention. FIG. 49
shows, in diagram, an example of a transmitter 4900 and a
receiver 4910, in accordance with an aspect of the present
invention. For instance a signal is n-state scrambled in a
binary fashion in n-state LFSR scrambler 4901. The
scrambled signal may be error correcting coded in a coder
4902 and then provider to a modulator 4903. A signal for
transmission may be provided to an antenna 4904. A diagram
of'a receiver is also provided in 4910 of FIG. 49. An antenna
4905 receives a modulated signal and provides a received
signal to a demodulator 4906. The demodulated signal may
be error corrected and decoded in 4907 and then provided to
a descrambler 4908.

One may also store QAM signals on an optical disk. By
replacing the antennas in FIG. 49 by a signal writer such as a
light source and a light pick-up as replacing the receiving
antenna one may write a signal to an optical disk and read the
n-state optical signal from the disk. Accordingly, a storage
system is provided that can apply the scrambling and
descrambling methods provided herein.

In view of the above description of the present invention, it
will be appreciated by those skilled in the art that many
variations, modifications and changes can be made to the
present invention without departing from the spirit or scope of
the present invention as defined by the claims appended
hereto. All such variations, modifications or changes are fully
contemplated by the present invention.

While the invention has been described with reference to
an illustrative embodiment, this description is not intended to
be construed in a limiting sense. For example, while the
disclosed embodiments utilize discrete devices, these devices
can be implemented using one or more appropriately pro-
grammed processors, special-purpose integrated circuits,
digital processors, or an analog or hybrid counterpart of any
of these devices.

The invention claimed is:

1. A method for processing a sequence of n-state symbols
in binary form with a Linear Feedback Shift Register (LFSR),
the LFSR including a plurality of outputs to provide an n-state
symbol in binary form, each output enabled to provide a
signal representing a bit, comprising:

performing the processing belonging to the group consist-

ing of scrambling, descrambling and sequence genera-
tion; and
as part of performing the processing belonging to the group
consisting of scrambling, descrambling and sequence
generation, applying the LFSR for processing the
sequence of n-state symbols in binary form, each n-state
symbol of the sequence able to assume one of n states
with n=27 and p equal to or greater than 2 and an n-state
symbol being represented by at least p bits, the LFSR
implements in binary form an n-state logic function
defined by an n-state truth table which determines an
n-state output state of the n-state logic function as a
result of a first and a second input of the n-state logic
function each enabled to assume each one of n states and
wherein the n-state logic function is implemented with
at least one reversible binary logic function which is an
EQUALITY (=) function, and

wherein application of the EQUALITY function by the
LFSR in performing the processing belonging to the
group consisting of scrambling, descrambling and
sequence generation affects an output sequence of
n-state symbols that is output by the LFSR.

US 8,364,977 B2

33

2. The method of claim 1, wherein p>2.

3. The method as claimed in claim 1, the LFSR further
comprising at least one device implementing in binary form a
multiplication with a constant over GF(n=2%).

4. The method as claimed in claim 1, the LFSR further
comprising at least one device implementing in binary form a
zero-based n-state reversible inverter in binary form.

5. The method as claimed in claim 1, the LFSR further
comprising at least one device implementing in binary form a
non-zero-based n-state reversible inverter in binary form.

6. The method as claimed in claim 1, wherein the LFSR is
an LFSR in Fibonacci configuration.

7. The method as claimed in claim 1, wherein the LFSR is
an LFSR in Galois configuration.

8. The method as claimed in claim 1, further comprising:

applying the LFSR for scrambling the sequence of n-state

symbols in binary form, including the steps:

applying a second n-state logic function implemented by a

plurality of binary reversible logic functions having a
first and second plurality of inputs and a plurality of
outputs
receiving from a source external to the LFSR a first plural-
ity of bits representing a first n-state symbol on the first
plurality of inputs of the second n-state logic function;

receiving on the second plurality of inputs of the second
n-state logic function a second plurality of bits from the
LFSR;

outputting on the plurality of outputs of the second n-state
logic function an n-state output symbol represented by a
plurality of bits;
inputting a third plurality of bits representing a third n-state
symbol based on the n-state output symbol into the
LFSR; and

providing on a plurality of outputs of the LFSR a sequence
of scrambled n-state symbols each represented by at
least p bits.

9. The method as claimed in claim 8, further comprising
connecting the plurality of outputs of the second n-state logic
function to a plurality of inputs of the LFSR via an n-state
reversible inverter in binary form.

10. The method as claimed in claim 8, further comprising
transforming the n-state symbol represented by at least p bits
into a single n-state signal able to assume one of at least n
states.

11. The method as claimed in claim 1, wherein the LFSR is
applied for generating a maximum length sequence of n-state
symbols represented in binary form.

12. The method as claimed in claim 11, wherein a correla-
tion of the sequence with another sequence is determined by
applying an n-state modified binary correlation method.

13. The method of claim 1, wherein the n-state truth table
represents a two input/single output n-state function, the truth
table including n different output states.

14. The method of claim 1, wherein the n-state function is
not an addition over GF(n).

10

25

30

35

40

45

50

55

34

15. A system for scrambling and descrambling a sequence
of k with k>2 n-state symbols each n-state symbol able to
assume one of n states with n>2 and n=2¢ and each symbol
being represented by at least p binary signals, comprising:

a scrambler Linear Feedback Shift Register (LFSR), the
LFSR enabled to process a word of at least p bits as a
single n-state symbol,

wherein the scrambler scrambles a first sequence of words
of at least p bits per word into a second sequence of
words of at least p bits per word, and

wherein the LFSR implements in binary form an n-state
logic function defined by an n-state truth table which
determines an n-state output state of the n-state logic
function as a result of a first and a second input of the
n-state logic function each input and output enabled to
assume each one of n states and wherein the n-state logic
function is implemented with at least one reversible
binary logic function which is an EQUALITY (=) func-
tion; and

a corresponding descrambler with a shift register in a for-
ward connected configuration wherein the correspond-
ing descrambler descrambles the second sequence of
words into the first sequence of words.

16. The system as claimed in claim 15, the first LFSR
comprising a shift register with a plurality of register ele-
ments, each element enabled to store at least p bits.

17. The system as claimed in claim 15, the first LFSR
further comprising an n-state inverter in binary form.

18. The system as claimed in claim 15, wherein the system
is applied in a communication system using QAM-2° modu-
lation with s equal to or greater than 2.

19. An n-state Linear Feedback Shift Register (n-state
LFSR) to provide a sequence of n-state symbols in binary
form, an n-state symbol enabled to assume one of n states
with n>2 and n=2¢ with p>1, comprising:

at least p binary Linear Feedback Shift Registers (binary
LFSRs), each binary LFSR including a binary output to
provide a binary signal, the binary outputs of the at least
p binary LFSRs enabled to provide a binary word rep-
resenting an n-state symbol in the sequence; and

an implementation in binary form of an n-state logic func-
tion defined by a state of a first input enabled to assume
any of n states, a state of a second input enabled to
assume any of n states and a state of an n-state output
enabled to assume any of n states, wherein an n-state
truth table determines the state of the n state output as a
result of the state of the first input and the state of the
second input, wherein

the n-state truth table is determined only by binary revers-
ible logic functions of which at least one is an EQUAL-
ITY (=) function, and

wherein the n-state LFSR applies the n-state logic function
to provide the sequence of n-state symbols in binary
form and the n-state LFSR is part of an implementation
of a scrambler, a descrambler and a sequence generator.

#* #* #* #* #*

