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Create n-valued check symbols by applying 
n-valued reversible logic functions so that: 
-each data symbol is a function of at least tWo n-valued 
check symbols, and if a the value of one data symbol is changed it 
affects at least two check symbols 
- not only one check symbol changes if one n-valued data symbol 
changes in value or state. 

Create an n-valued codeword by combining 
n-valued data symbols and check symbols. 

FIG. 3 



US. Patent Jan. 4, 2011 Sheet 4 of9 US 7,865,807 B2 

In a received codeword identify n-valued data symbols 
and check symbols. 

Apply the received data symbols to the relevant n-valued 
expressions With n-valued logic functions, and determine 
the re-calculated check symbols. 

Compare received and re-calculated check symbols. 

Determine if a data symbol 
Was in error. 

Calculate the correct value of the symbol 
in error. 

Provide the correct data symbols 

FIG. 4 
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MULTI-VALUED CHECK SYMBOL 
CALCULATION IN ERROR DETECTION AND 

CORRECTION 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application is a continuation-in-part of US. Non 
Provisional patent application Ser. No. 10/935,960, ?led on 
Sep. 8, 2004, entitled TERNARY AND MULTI-VALUE 
DIGITAL SCRAMBLERS, DESCRAMBLERS AND 
SEQUENCE GENERATORS, Which claims the bene?t of 
US. provisional Patent Application No. 60/547,683 ?led on 
Feb. 25, 2004. This application also claims the bene?t of US. 
Provisional Application No. 60/779,068, ?led Mar. 3, 2006, 
Which is incorporated herein by reference. 

BACKGROUND OF THE INVENTION 

The present invention relates to error correction coding. In 
particular it relates to error correction by using check symbols 
Which determine a relation betWeen data symbols, created by 
applying n-valued logic functions to data symbols. 
A check symbol over data bits is usually called a parity bit 

and is used in binary error correction or detection. It is cal 
culated by applying a binary logic function to a number of 
data bits is for instance a Word or sequence of bits. A parity bit 
is transmitted With the data bits. At the receiving side the 
parity bit is recalculated using the same function and data bits 
in identical positions in the codeWord or sequence of data bits. 
If the received parity bit and the calculated parity bit are 
different one may assume that an error has occurred in at least 
one bit, including the parity bit. 

The number of binary functions that can be applied to 
calculate a parity bit, and be used to correct errors, is limited 
to tWo functions, the binary XOR and EQUAL functions. As 
both functions are each others reverse, it does generally not 
make a difference if one uses one or the other. 

Because of the limited number of parity functions one has 
to increase the number of parity bits, and thus loWer the 
information transmission rate, to perform error correction. 

N-valued codes, such as Reed-Solomon codes are knoWn. 
Check symbols are generated by using in essence adders and 
multipliers in a Linear Feedback Shift Register. Also check 
sum approaches are knoWn. Essentially all these codes go 
back to using binary methods and intermediary steps are 
required in RS codes to determine a check symbol. Like in a 
RS code one may add symbols to an n-valued codeWord 
according to a coding scheme to improve the Hamming dis 
tance betWeen codeWords. HoWever detecting and correcting 
errors may become quite elaborate. 

Accordingly simple methods and apparatus providing a 
greater number of parity functions, loWering the number of 
check symbols and thus increasing the information transmis 
sion rate of error correcting codes or making error correction 
easier are required. 

SUMMARY OF THE INVENTION 

One aspect of the present invention presents a novel 
method and system that Will provide n-valued symbol correc 
tion in a plurality of n-valued data symbols. 

In accordance With another aspect of the present invention 
a method is provided for determining an n-valued check sym 
bol With n>2 from a plurality of n-valued data symbols, com 
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2 
prising using a reversible n-valued logic function in an n-val 
ued logic expression With the plurality of n-valued data 
symbols as variables. 

In accordance With a further aspect of the present invention 
a method is provided for determining an n-valued check sym 
bol using an n-valued function that is commutative, associa 
tive and self reversing. 

In accordance With another aspect of the present invention 
a method is provided for generating a plurality of n-valued 
check symbols, Wherein a ?rst n-valued check symbol is 
generated by a ?rst n-valued expression and a second n-val 
ued check symbol is generated by a second n-valued expres 
sion and the ?rst and second expression have at least one 
n-valued data symbol in common as variable. 

In accordance With a further aspect of the present invention 
a method is provided for multiplying at least one variable in 
an n-valued expression in GP (n) not leading to 0 or to identity 
and not using an LFSR. 

In accordance With another aspect of the present invention 
a method is provided for generating a plurality of n-valued 
check symbols, Wherein a ?rst n-valued check symbol is 
generated by a ?rst n-valued expression and a second n-val 
ued check symbol is generated by a second n-valued expres 
sion and the ?rst and second expression have at least one 
n-valued data symbol in common as variable. 

In accordance With a further aspect of the present invention 
a method is provided for Wherein n-valued check symbols are 
created according to a Hamming code. 

In accordance With another aspect of the present invention 
a method is provided for error correcting up to k errors in a 
codeWord having r n-valued data symbols, comprising the 
steps of creating k n-valued check symbols, each check sym 
bol generated by one of k n-valued expressions each With at 
least tWo of the r n-valued data symbols as variables and each 
expression applying a reversible n-valued logic function, 
Wherein the k n-valued expressions form an independent set 
of equations for solving k unknoWns; and creating a ?rst 
codeWord comprising r n-valued data symbols and k n-valued 
check symbols. 

In accordance With a further aspect of the present invention 
a method is provided for multiplying at least one of the r 
n-valued symbols in the n-valued expression in GF(n) not 
leading to 0 or to identity and not using an LFSR. 

In accordance With another aspect of the present invention 
a method is provided for creating at least r n-valued additional 
check symbols, each of the r additional check symbols 
depending on one of the r n-valued data symbols as a variable; 
and providing the at least r data symbols and the r+k check 
symbols on an output. 

In accordance With a further aspect of the present invention 
a method is provided for re-calculating check symbols. 

In accordance With another aspect of the present invention 
a method is provided for comparing transferred check sym 
bols With re-calculated check symbols; and identifying if an 
error has occurred in the ?rst codeWord. 

In accordance With a further aspect of the present invention 
a method is provided for identifying Which of up to k n-valued 
symbols in the ?rst codeWord are in error. 

In accordance With another aspect of the present invention 
a method is provided for making the up to k identi?ed sym 
bols in error in the ?rst codeWord unknoWns in k n-valued 
expressions for generating n-valued check symbols; and solv 
ing the set of k equations for the unknoWns. 

In accordance With a further aspect of the present invention 
a system is provided for implementing the methods herein 
provided as different aspects of the present invention. 
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In accordance With another aspect of the present invention 
the system herein provided as an aspect of the present inven 
tion is a communication system. 

In accordance With a further aspect of the present invention 
the system herein provided as an aspect of the present inven 
tion is a data storage system. 

In accordance With another aspect of the present invention 
a method is provided for creating and solving annoyance 
errors. 

DESCRIPTION OF THE DRAWINGS 

FIG. 1 shoWs a Venn diagram for a n-valued (7,4) Ham 
ming code. 

FIG. 2 shoWs a Venn diagram for a n-valued (11,7) Ham 
ming code. 

FIG. 3 illustrates in a How diagram a method of creating a 
n-valued codeWord. 

FIG. 4 illustrates in a How diagram a method for correcting 
n-valued symbols in error. 

FIG. 5 shoWs a matrix for arranging n-valued data symbols 
and check symbols. 

FIG. 6 shoWs another matrix for arranging n-valued data 
symbols and check symbols. 

FIG. 7 shoWs yet another matrix for arranging n-valued 
data symbols and check symbols. 

FIG. 8 shoWs yet another matrix for arranging n-valued 
data symbols and check symbols. 

FIG. 9 shoWs in diagram a relation betWeen data symbols 
and a check symbol. 

FIG. 10 is a How diagram illustrating a method for detect 
ing errors. 

FIG. 11 illustrates a communication system in accordance 
With an aspect of the present invention. 

FIG. 12 illustrates part of a data storage system in accor 
dance With an aspect of the present invention. 

FIG. 13 illustrates another part of a data storage system in 
accordance With another aspect of the present invention. 

DESCRIPTION OF A PREFERRED 
EMBODIMENT 

The term n-valued herein is used as non-binary Wherein 
n>2. Herein also the term check symbol is used. In binary 
applications one generally uses the term parity bit or symbol. 
Because the binary check function is the XOR function a 
check symbol generated by the XOR function is a 0 if there 
Was an even number of l s and a 1 if there Was an odd number 
of Is. Hence the name parity. The name parity has no such 
meaning in n-valued functions. Accordingly the name check 
symbols Will be used. 

Parity calculation in binary error correction is the process 
Wherein a number of bits in a codeWord or sequence or block 
have for instance an even parity or even number of Is, includ 
ing the parity bit. Assume one has an 8 bit code Word [a b c d 
e f g h] and a parity bit p is added. For instance a rule for 
determining a parity symbol could be: the number of Is in [a 
b c d e fg h p] should alWays be even. 

This can be expressed in the equation a+b+c+d+e+f+g+h+ 
p:0. The operation ‘+’ in this equation is the modulo-2 addi 
tion or XOR function. 

It is one aspect of the present invention to create a check 
symbol for a codeWord comprised of k n-valued symbols by 
using a reversible n-valued operation scl. In n-valued logic 
one may use different Ways or functions to create a ‘parity’ or 
check symbol. One may use reversible and non-reversible 
operations. For instance a non-reversible parity n-valued 
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4 
operation is one Wherein a l is added (modulo-n) to a sum 
When a symbol is not 0, and a 0 When a symbol is Zero. The 
reversibility is related to determining the original value of the 
symbols of Which a parity symbol is determined. 
One method as an aspect of the present invention is to apply 

reversible n-valued logic operations to calculate the ‘check’ 
or parity symbol of a sequence of n-valued symbols. The 
advantage of a reversible operation is that an equation can be 
solved. For instance tWo n-valued symbols x1 and x2 com 
bined by a function scl Will generate a symbol pl according 
to the equation: xl scl x2:pl. 
Assume that scl is self reversing and commutative. In that 

case (as is for instance explained in US. patent application 
Ser. No. 10/912,954 ?led Aug. 6, 2004 entitled: Ternary and 
higher multi-value digital scramblers/descramblers, Which is 
incorporated herein in its entirety): xlrpl scl x2. For calcu 
lation and notation purposes it is sometimes preferred to Write 
the parity symbol equations With a result 0. In that case (xl 
scl x2:0) canbe Written for instance as: (xl scl x2 scl pl):0. 
This is the result of (xl scl x2):(pl scl 0) again With scl 
assumed to be a commutative self-reversing n-valued func 
tion. 

It should be clear that pl can also be calculated in a differ 
ent fashion. For instance by: (xl scl x2):(pl sc2 0) so that 
((xl scl x2) sc3 pl):0. Herein the function sc3 is the reverse 
of sc2. If sc2 is self-reversing then: 

((xl scl x2) sc2 pl):0. 
It is important to note that the n-valued self-reversing func 

tions are in general not associative. This means that even 
though a function may be commutative, the order of variables 
in a multi-variable equation does matter. The expression (xl 
scl x2 sc2 pl) should be evaluated as {(xl scl x2) sc2 pl}l. 
In Words: ?rst evaluate (xl scl x2) as ‘term’ and then {term 
sc2 pl}. Assuming scl and sc2 being commutative one Will 
get the same results by evaluation {pl sc2 (xl scl x2)} or {pl 
sc2 (x2 scl xl)} or {(x2 scl xl) sc2 pl}. 
To demonstrate the above one may apply tWo functions: 

scl and sc2, Which are self-reversing and commutative. For 
instance one can use tWo 4-valued sWitching functions scl 
and sc2 of Which the truth tables are provided beloW. 

scl 0 l 2 3 

0 3 2 l 0 
l 2 l 0 3 
2 l 0 3 2 
3 0 3 2 1 

S02 0 l 2 3 

0 l 0 3 2 
l 0 3 2 l 
2 3 2 l 0 
3 2 l 0 3 

Assume XIII and x2:2. Then (xl scl x2):0 according to 
the truth table of scl. If one Wants (xl scl x2) (pl scl 0) then 
pl:3. Or (xl scl x2 scl pl):0. For instance (xl scl pl) in this 
case is (l scl 3):3. And (x2 scl 3):(2 scl 3):2 Which is 
different from 0. So the expression is not associative. HoW 
ever the expression is reversible When one observes the order 
of the variables. 
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For illustrative purposes the associative 4-valued function 
sc3 is also provided in the following truth table. 

5 scl 0 1 2 

S03 0 1 2 3 

0 0 1 2 3 0 0 1 2 

1 1 0 3 2 1 1 2 0 
2 2 3 0 1 
3 3 2 1 0 10 2 2 0 1 

It is easy to check that (X1 sc3 X2 sc3 p1):0 will apply if (X1 
sc3 X2):p1. 

Error-Correction 15 S02 0 1 2 

Two different functions allow for error correction of at least 
one symbol after transmission of a block of 4 symbols of 1i 1i a i 
which 2 symbols are ‘check’ or parity symbols. The ‘check’ 2 2 1 0 
symbols are created by applying different n-valued functions 
to two n-valued information symbols. For instance in the 20 
4-Valued Case the following iS applied. Assume IWO infOIma- The following table provides all possible check symbols pl 
tion symbols X1 and X2. From these symbols two 4-valued and p2 as a result Of X1 and X2 
‘check’ symbols are created: pl and p2 according to the two 
n-valued functions sc1 and sc2 with: 

p1:(X1 sc1 X2) and 25 p1 p2 X1 X2 

p2:(X1 sc2X2). 0 0 0 0 
One can then transmit the 4 symbols word [X1 X2 pl p2] 1 2 0 1 

and identify and correct one transmission error. The critical 2 1 0 2 
issue here is to select sc1 and sc2 in such a way that a 30 1 1 1 0 
combination of (p1, p2) completely determines the generat- a g i 5 
ing information symbols X1 and X2. This can be done in the 2 2 2 0 
following way: 0 1 2 1 

1 0 2 2 
1 . Before transmission of the information symbols, pl and p2 
are calculated from symbols X1 and X2 and added to the 35 
transmitted symbols into a 4 symbol word [X1 X2 pl p2]. 
Consequently the information transmission rate has been 
halved. 

2. One will receive the 4 symbol word [X1r X2r p1r p2r]. At 
reception the check symbols are recalculated from X1r and 
X2r using the known functions. The symbols X1r and X2r are 
the received information symbol, of which one may contain 
an error. One can then calculate p1r and p2r according to: 

3. If p1r:p1 and p2r:p2 it may be assumed that no error has 
occurred (again under the assumption that only one error may 
have occurred). 

4. If p1r¢p1 or p2r¢p2 then an error has occurred during 
transmission in eitherp1 orp2. Because the assumption is that 
only one error occurs in [X1 X2 p1 p2], combined with how p1 
and p2 are calculated, the only way that only p1 or p2 has an 
error can be that only one of these check symbols has eXpe 
rienced a transmission error. If either X1 or X2 had eXperi 
enced a transmission error then both p1r and p2r would be 
different from p1 and p2. So X1r and X2r may in that case be 
assumed to be identical to X1 and X2. 

5 . If both p 1r and p2r calculated from X 1 r and X2r are different 
from p1 and p2 then it is clear that either X1r¢X1 or that 
X2I‘#X2. In this case plrrpl and pr2:p2, because only one 
error is assumed to have occurred. And that error took place in 
one of the information symbols. 
As an illustrative eXample sc1 is selected to be the 

modulo-3 addition and sc2 a modulo-3 subtraction. 
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From the above table one can see that each combination of 

(p1, p2) maps into a unique combination of (X1, X2). Assume 
that the sequence [X1r X2r p1r p2r]:[1 2 2 1] was received. 
When one calculates p1:(X1r sc1 X2r) one gets p1:0. From 
p2:(X1r sc2 X2r) one gets p2:2. Clearly that is different from 
p 1r:2 and p2r:1 . With two check symbols in error (assuming 
maXimum a single error) it means that either X1r or X2r is in 
error, but that p1r and p2r may assumed to be correct. The 
correct information symbols according to the matching table 
is [X1 X2]:[0 2]. This means that X1r was in error. The under 
lying requirement for this method of error-correcting coding 
to work is that each combination of (X1, X2) generates by 
using sc1 an output p1 and by using sc2 an output p2 in such 
a way that each combination (X1, X2) in fact generates a 
unique combination of (p1, p2). In fact (X1, X2) are reversible 
combinations: when (p1, p2) is known then (X1, X2) is known. 
And when (X1, X2) is known then (p1, p2) is known. 

Another requirement is that the creation of p1 and p2 
applies functions in such a way that when either X1 or X2 
change then both p1 and p2 have to change. If that is not the 
case then under the condition of one symbol error it may not 

be possible to correct the occurring error. This condition 
applies to all n-valued symbols. The underlying reason is that 
for n>2 each word of 4 symbols has only 1 symbol in common 
with another word of 4 symbols. The positive side of this 
condition is that one can apply shifted versions of the truth 
tables of sc1 or sc2 for creating the functions to generate the 
n-valued check symbols. For instance in the ternary case one 
can shift all rows in the truth table of the modulo-3 add 
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function scl one position up and put the top roW of the 
modulo-3 add function on the bottom of the neW truth table. 
One may leave the truth table of sc2 unchanged. 

The result is shoWn in the neW truth tables of scl and sc2. 

8 
manner for n-valued logic Wherein n is a prime number except 
n:2. It should be appreciated that addition and subtraction 
functions in binary and extended binary ?nite ?elds are iden 
tical. For example one can create the n-valued symbol error 
correction method for a 5-valued logic and 5-valued symbols. 
The functions scl and sc2 in 5 -valued form are provided in the 
folloWing truth tables. 

scl 0 l 2 

0 1 2 0 
1 2 0 1 10 

2 0 1 2 S01 0 1 2 3 4 

0 0 1 2 3 4 
1 1 2 3 4 0 
2 2 3 4 0 1 

15 3 3 4 0 1 2 

S02 0 1 2 4 4 0 1 2 3 

0 0 2 1 
1 1 0 2 
2 2 1 0 

20 
S02 0 1 2 3 4 

The table of (x1, x2) and (pl, p2) under plql scl x2 and 
. . . . 0 0 4 3 2 1 

p2ql sc2 x2 1s prov1ded 1n the following table: 1 1 0 4 3 2 
2 2 1 0 4 3 
3 3 2 1 0 4 

25 4 4 3 2 1 0 

pl p2 x1 x2 

1 0 0 0 
2 2 0 1 

2 1 1 a 30 
0 0 1 1 pl p2 x1 x2 

1 2 1 2 0 0 0 0 
0 2 2 0 1 4 0 1 
1 1 2 1 2 3 0 2 
2 0 2 2 3 2 0 3 

35 4 1 0 4 

1 1 1 0 

One should take care in determining pl andp2 as both scl and 2 0 1 1 
sc2 are non-commutative and the input order of x1 and x2 3 ‘31 i i 
does make a difference When sWitched. HoWever the neW 0 2 1 4 
function scl also can serve as a function to determine a check 40 2 2 2 0 

symbol pl and alloWs for error correction. 3 1 2 1 
Other examples Will also be provided. It should be clear 3 2 i i 

that any Word [x1 x2 pl p2] in the above table only has 1 1 3 2 4 
symbol in common in a similar position With any other code- 3 3 3 0 
Word. In one Way the use of symbols is inef?cient. Only 9 45 4 2 3 1 
codeWords are created While 81 codeWords are possible. If an 1; 5 g 5 
error occurs in a codeWord, the Word With an error has at most 2 4 3 4 

2 symbols in common With any other codeWord. HoWever a 4 4 4 0 
codeWord With one error still has 3 symbols in common With 0 3 4 1 

its error free codeWord. Accordingly a Maximum Likelihood 50 i i i ; 
detection scheme can be created. Rather than check a received 3 0 4 4 
codeWord against all possible codeWords, it is easier to 
execute functions on symbols to ?nd if errors have occurred 
and then determine the correct Word by using deterministic From the tab1e one can See that each Combination of 5'Va1' 
expressions 55 ued check symbols maps uniquely into a combination of 

In the folloWing examples other n-valued functions Will be 5'Va1ued information 5ymb015- Sim?ar eXamP1e5 can be Pro‘ 
demonstrated that can be used to create and recalculate check V1f1ed for n'vahled Sequences [X1 X2 131 P2] wherein n 15 a 
symbols. Itis required that the n-valued functions scl and sc2 Pnme number and P1 and P2 are Panty or Check 5ymb015 
as provided in the example and applied to tWo n-valued vari- generated by aPP1y1ng n'vahled functions to X1 and X2~ 
ables x1 and x2 Will generate the check symbols in suchaWay 60 A problem may arise When n is not prime. For instance 
that: When n:4. In that case the combination of scl is modulo-4 

each combination of (x1, x2) Will generate a unique com- addition and sc2 is a modulo-4 subtraction Will not generate 
bination (pl, p2); combinations of (pl, p2) that map uniquely into (x1, x2). The 

if only either xl or x2 changes in (x1, x2) then both pl and case of n:4 and for instance n:8 are important because it may 
p2 change in value. 65 then be possible to consider combinations of multiple bits 
One may use the modulo-n addition and a modulo-n sub 

traction function for determining error symbols in the above 
representing an n-valued symbol. For instance 2 bits repre 
sent a 4-valued symbol and 3 bits an 8-valued symbol, etc. 
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Though one can apply the same approach of coding an n-sym 
bol by bits wherein n is prime, it does not fully use the coding 
capacity of a channel. The solution to the problem of q” 
valued symbols Wherein q is prime and n is an integer, is to 
consider scl and sc2 as operations in the extended Galois 
Field GF(q”). 
As example 4-valued symbols Will be considered ?rst. The 

function scl is the addition is the extended ?eld GF(22). Its 
truth table is provided in the folloWing table. 

scl 0 l 2 3 

0 0 l 2 3 
l l 0 3 2 
2 2 3 0 l 
3 3 2 l 0 

The function sc2 has to be constructed in such a Way that an 
input (x1, x2) to scl generates a value pl:(xl scl x2) and 
inputted to sc2 Will generate p2:(xl sc2 x2) so that each 
combination of (pl, p2) points uniquely to an input (x1, x2). 

S02 0 l 2 3 

0 0 2 3 l 
l l 3 2 0 
2 2 0 l 3 
3 3 l 0 2 

It should be clear that sc2 is not commutative. 

The mapping of pl and p2 into x1 and x2 is provided in the 
folloWing table, using again the expressions: plql scl x2; 
and p2ql sc2 x2. 

P1 P2 

0 0 0 0 
1 2 0 1 
2 3 0 2 
3 1 0 3 
1 1 1 0 
0 3 1 1 
3 2 1 2 
2 0 1 3 
2 2 2 0 
3 0 2 1 
0 1 2 2 
1 3 2 3 
3 3 3 0 
2 1 3 1 
1 0 3 2 
0 2 3 3 

As an example of this 4-valued method assume that [xlr 
x2rplr p2r]:[l 0 3 2] Was received. The information symbols 
[xlr x2r]:[l 0] Would generate [pl p2]:[l 1]. Clearly that is 
not the case and tWo check symbols are in error. That means 
(assuming that only one of the 4 received symbols can be in 
error) that the combination [plr p2r]:[3 2] is correct and that 
[x1 x2] Was [1 2]. So x2r Was received in error. 

Because both scl and sc2 are reversible functions and only 
one error can occur one can of course also correct the error by 

calculating x1 and x2 from p lr and p2r. It Was determined that 
the parity symbols are correct, but one of the data symbols is 
in error. Because (xlr scl x21:plr) and (xlr sc2 x23:p2r) one 
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10 
can restate the equations as: XIFXZI‘ scl plr and x21:xlr scl 
plr; and xlrq2r sc3 p2r and x21:xlr sc4 p2r. The function 
scl is self reversing, commutative and associative. The func 
tion sc2 is not associative, non-commutative and only self 
reversing as p2r sc2 x2rqlr. In general there are no easy 
algebraic solutions to solve equations Where the functions are 
de?ned by truth tables. 
One Way to solve this by truth tables is to compare the 

relevant columns and roWs. For instance: xlr:p2r sc2 x2r; or 
(xl1:2 sc2 x2r). Also (xlrq2r scl plr) or (xlrq2r scl 3). 
This means that (x2r scl 3):(2 sc2 x2r). One should be aWare 
that the expression (a sc b:c) based on a truth table of function 
‘sc’ means that the result ‘c’ can be found by selecting roW ‘a’ 
and column ‘b’ in the truth table. (x2r scl 3) then means the 
column oftruth table scl under 3, Which is [3 2 l 0]. x2r is the 
position of a symbol in this vector. Though it is a column it is 
here shoWn as a roW. (2 sc2 x2r) indicates the roW in the truth 
table ofsc2 for roW number is 2; this is [2 0 l 3]. The equation 
requires ?nding a position in both vectors for Which the 
symbol in both vectors have the same symbol. This is the 
position 2, or x21:2, for Which the symbol Will be 1. Because 
of the equations When p2r:2 and x21:2 then xlr:l. 

In accordance With a further aspect of the present invention 
in the error correcting approach symbols may be represented 
in binary form by bits. It is fully conceivable that even though 
an error Will only affect the number of bits representing one 
symbol that bit errors Will spill over from one symbol into 
another. In other Words, part of the bit errors affect one sym 
bol and the other part affect an adjacent symbol. There are 
different methods to correct multiple symbol errors. HoWever 
one approach can be to interleave tWo error correcting 
sequences. 

For instance assume that one sequence is [x1 x2 pl p2] 
Wherein x1 and x2 are information symbols and pl and p2 are 
check symbols. One can code a second sequence [yl y2 ql 
q2] Wherein yl and y2 are information symbols and ql and q2 
are check symbols. One can then interleave the tWo sequences 
as [x1 yl x2 y2 pl ql p2 q2]. When the symbols are coded as 
bits, errors that affect tWo neighboring symbols can still be 
corrected, assuming that no more than tWo neighboring sym 
bols can contain an error. 

In accordance With a further aspect of the present invention 
the method of creating multi-valued check symbols can also 
be applied to multi-valued Hamming codes. Binary Ham 
ming codes are knoWn and q-ary Hamming codes With q>2 
are knoWn. HoWever q-ary Hamming codes are commonly 
developed in the context of independency properties of their 
parity matrix. An example of this is provided in The Ham 
ming Codes and Delsarte’s Linear Programming Bound, by 
Sky McKinley, the Master of Science in Mathematics Thesis, 
Portland University, May, 2003. This approach makes design 
ing q-ary Hamming codes fairly dif?cult especially for higher 
values of q and for codes With a signi?cant number of sym 
bols. 
The Way to construct a binary Hamming code is knoWn and 

Well documented. It applies using poWers of 2 to determine 
data and parity bits in a codeWord. In a related knoWn method 
a Venn-diagram is created, from Which one visually can deter 
mine relations betWeen parity bits and data bits. Instead of 
using bits, the Venn diagram Will be used to determine n-val 
ued check symbol. A check symbol in the context of the 
present invention is broader than a parity symbol. A parity 
symbol assumes some relation betWeen symbols such as bits 
(for instance polarity). A check symbol is considered a result 
of an n-valued expression Which depends from data symbols. 
In an additional limitation for n-valued Hamming codes one 
may limit the expression to create the check symbol to not 
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involving n-valued multipliers or n-valued inverters. N-val 
ued check symbols are known to be created in Reed Solomon 
codes, using Linear Feedback Shift Registers. Because these 
check symbols are created in a recursive fashion, they Will 
comprise multipliers and fall outside one of the previous 
de?nitions here provided for a check symbol. 

FIG. 1 shoWs aVenn diagram for creating an n-valued (7,4) 
Hamming code, involving four data symbols [X1 X2 X3 X4] 
and three check symbols [pl p2 p3]. The Venn diagram pro 
vides the folloWing relations: p1:f(X1, X2, X3), p2:g(X1, X3, 
X4) and p3:h(X2, X3, X4). The functions f, g and h represent 
n-valued eXpressions. While for simplicity one may use the 
same function for determining each check symbol it is not 
required. One requirement that has to be met by each function 
as an aspect of the present invention is that every eXpression 
should be reversible so that X1:fI‘1 (p 1, p2, p3), X2 fr2(p 1, p2, 
p3), X3:fr3(p1, p2, p3) and X4:fr4(p1, p2, p3). 

The functions fr1, fr2, fr3 and fr4 can be derived from 
reversible functions f, g and h. An eXample Will be provided. 

In general manipulating n-valued functions that are de?ned 
by truth tables, rather than for instance arithmetical functions 
in analytical form, can be more complicated and care should 
be taken With order of variables, order of eXecution and deter 
mining the reverse of such a function. One of the eXceptions 
to this rule is using an addition de?ned over a ?nite ?eld 
GF(2P) Which is an eXtended binary ?eld. An eXample of such 
a function is the modulo-2 addition over GF(2). This function 
is commutative, associative and self-reversing. As such 
sc:sc_l; scIscTand (a sc b) sc c:a sc (b sc c). 
Assuming the advantageous properties do not eXist, one 

has then to carefully observe the rules for manipulating 
eXpressions. For instance in case of a non-commutative func 
tion: (a sc b):(b scT a). In the non-commutative case sc is 
different from scT. The difference shoWs itself in the truth 
table of a function. Determining scT from sc is easily done by 
eXchanging roWs and columns. Determining sc'l from sc is a 
bit more dif?cult. Each eXpression (a sc b):c has tWo inverse 
eXpressions. In order to create a common rule, it is assumed 
that the eXpression (a sc b) is described by a truth table of 
Which the variable ‘a’ is determined by the roWs of the truth 
table and variable ‘b ’ is determined by the columns. The value 
‘c’ is the value at a position in the truth table determined by 
roW and column. 
As a simple eXample the truth table of the ternary addition 

modulo-3 is provided in the folloWing table. 

so 0 1 2 

0 0 1 2 
1 1 2 0 
2 2 0 1 

This function is commutative. There are hoWever tWo invert 
ing functions to sc. In arithmetical form (a+b):c. Its ?rst 
reverse is (a scr-l c):b, and its second reverse is (c scc‘l b):a. 
The ?rst reversing function is created by keeping ‘a’ (or the 
roWs) constant, While reversing the columns. In other Words: 
the roWs of sc Will be replaced by the inverter of those roWs. 
This provides the folloWing truth table: 

scr’l 0 1 2 

0 0 1 2 
1 2 0 1 
2 1 2 0 
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One can easily check that the ?rst roW of scr'l is the reverse 

of the ?rst roW of sc ([0 1 2] inverts itself). The reverse of the 
second roW ofsc [1 2 0] is [2 0 1] Which is noW the second roW 
of scr_l. And the reverse of [2 0 1] is [1 2 0]. One can check 
the result by applying the eXpressions. 
The truth table of scc'l can be determined by reversing the 

truth table over constant columns. This means that one can 

create the truth table of scc‘l by reversing the columns of sc. 
This provides the folloWing truth table: 

scr l 0 1 2 

0 0 2 1 
1 1 0 2 
2 2 1 0 

For instance to solve an eXpression p1:(X1 sc1 X2) sc2 X3 
for X1 to be unknoWn Wherein n-valued logic functions are 
non-commutative, non-associative and non self reversing: 

As an eXample the folloWing rules based on a ternary 
Hamming code according to the Venn diagram of FIG. 1 are 
provided: 

The function sc here is the ternary mod-3 addition. The 
folloWing rules apply for a single error detection: (p1, p2, 
~p3) then symbol X1 is error; (p1, ~p2, p3) then symbol X2 in 
error; (p1, p2, p3) then symbol X3 in error; and (~p1, p2, p3) 
then symbol X4 is in error. herein p1 means p1 received and p1 
recalculated are different and (~p1) means p1 received and p1 
recalculated are identical. If only one of p 1, p2 orp3 is in error 
then only the check symbol is in error and all other symbols 
are correct. All of the above is under the assumption that only 
one error occurs. 

Assume [X1 X2 X3 X4]:[0 1 2 2] then [p1 p2 p3]:[0 1 2]. 
Assume further that [X1r X2r X3r X4r p1r p2r p3r]:[2 1 2 2 0 
1 2] Wherein the r indicates a received symbol. Accordingly 
one can calculate the check symbols p 1 cqlr sc X2r sc X3F2; 
p2c:0 and p3c:2. Clearly this is the situation (p1, p2, ~p3) 
and accordingly symbol X1 is in error. For that situation one 
can determine X1:p1 scc'l (X2 sc X3):0 scc'l 0:0. 
One can make the calculations a bit easier by using a self 

reversing, commutative ternary function sc3 of Which the 
truth table is provided in the folloWing table. 

S03 0 1 2 

0 2 1 0 
1 1 0 2 
2 0 2 1 

While commutative and self reversing the function sc3 is 
not associative. So one should be careful With order of eXecu 
tion of the terms of an eXpression. Using self reversing func 
tions is especially bene?cial in longer eXpressions. 
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An example is provided using the ternary function sc3 and 
the following relations in a (7,4) ternary Hamming code: 

p3:(X2 sc X3) sc X4. The function sc3 is not associative. 

Assume [X1 X2 X3 X4]:[0 1 2 2] then [pl p2 p3] [2 0 1]. 
Assume further, as in a previous eXample that [X1r X2r X3rX4r 
p1r p2r p3r]:[2 1 2 2 2 0 1] Wherein the r indicates a received 
symbol. Accordingly one can calculate the check symbols 
plcqlr sc X2r sc X3Fl; p2c:2 and p3c:1. This is the situ 
ation (p1c, p2c, ~p3c) Wherein p1c means p1c in error and 
~p3c means p3c not in error. Accordingly symbol X1 is in 
error. One can determine X1 from for instance p1:(X1 sc3 X2) 
sc X3. Because (pl sc3 X3) (X1 sc3 X2)Q(p1 sc3 X3) sc3 
X2q1 or aX1:(2 sc3 2) sc3 1 or Xl:0. 

Because only one symbol can be in error, it really does not 
matter Which reversible function one uses. The requirements 
for an n-valued (n,k) code then may be: each of the k data 
symbols in a n-valued Hamming codeWord should be a func 
tion of at least 2 check symbols. There are (n-k) check sym 
bols. One check symbol in error should mean just that: only 
one check symbol and no data symbol is in error. No check 
symbol in error means that no single error has occurred. What 
one does With a Hamming code is mapping each state of a 
codeWord into a unique Word formed by check symbols. For 
a (7,4) n-valued Hamming code: 

pl in error:p1, ~p2, ~p3 

p2 in error:~p1, p2, ~p3 

p3 in error:~p1, ~p2, p3 

Accordingly all 8 combinations of pl, p2 and p3 are used. 
As another illustrative eXample an 8-valued (11,7) Ham 

ming code Will be provided. Herein an addition over GF(8) 
sc8 Will be used as the 8-valued function to determine the 4 
check symbols pl, p2, p3 and p4 from the 7 8-valued data 
symbols [X1 X2 X3 X4 X5 X6 X7]. The truth table of sc8 is 
provided in the folloWing table. 

The function sc8 is commutative, self-reversing and associa 
tive. The check symbols are created from: 
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The dependency of data symbols on check symbols is then: 

X1:function of (p1, p2, ~p3, ~p4) 

X2:function of (p1, ~p2, p3, ~p4) 

X3:function of (~p1, p2, p3, ~p4) 

X4:function of (p1, p2, p3, ~p4) 

X5:function of (p1, ~p2, ~p3, p4) 

X6:function of (~p1, p2, ~p3, p4) 

X7:function of (p1, p2, ~p3, p4) 

no errors (p1, p2, p3, p4) 

and individual errors of p1, p2, p3 and p4. Only 12 of 16 
possible Words of check symbols are used. No parentheses are 
required in the eXpressions because sc8 is associative. The 
Venn-diagram for creating a possible (11,7) n-valued Ham 
ming code is provided in FIG. 2. While creating a (11,7) 
binary Hamming code is known, creating a 911,7) 8-valued 
Hamming code is believed to be novel to the inventor. 
As an eXample assume the data Word [X1 X2 X3 X4 X5 X6 

X7]:[0 1 2 3 4 5 7]. This Will create a Word of check symbols 
[p1 p2 p3 p4]:[4 7 6 0]. Assume a received Word is [0 1 2 5 4 
5 7 4 7 6 0]. Using the data symbols it Will generate check 
symbols generated from received symbols [p1r p2r p3r p4r]: 
[1 6 7 0]. Comparing [p1r p2r p3r p4r] With [4 7 6 0] shoWs 
that only p4r is correct. That is the situation (p1, p2, p3, ~p4), 
Which means X4 is in error. This data symbol canbe calculated 
from X4:p3 sc8 X2 sc8 X3, Which Will generate X4:3. 

It should be clear from the eXpression plql sc8 X2 sc8 X4 
sc8 X5 sc8 X7 Why associative functions are preferred. It is 
much easier for reversing the eXpression to calculate X1 for 
instance. 

FIG. 3 provides a How diagram for creating an n-valued 
Hamming code. FIG. 4 provides a How diagram for analyZing 
a received n-valued Hamming coded codeWord and correct 
ing up to one n-valued symbol in error. 

While a Hamming code like the (7,4) or the (11,7) code 
fully use their check symbols, and they are very easy to code 
and decode, they are not very e?icient codes in use of their 
overhead. For detecting more than 1 n-valued symbol in error 
it is easier and more e?icient to interleave tWo or more Ham 
ming codeWords than adding overhead check symbols. For 
error correcting tWo or more errors directly in a single code 
Word for instance Reed Solomon (RS) codes may be more 
e?icient. Unfortunately creating and solving RS-codes 
involve Linear Feedback Shift Registers (LFSRs) and fairly 
compleX circuitry. If for instance a relatively loW symbol error 
ratio is eXpected it may be too eXpensive to create short 
codeWords With error correcting capabilities for 2 or more 
errors. It Would mean that each codeWord has to be analyZed, 
While in actuality just 1 in 100 codeWords Will have an error. 
One may for instance code n-valued symbols into binary 

Words of bits. An 8-valued symbol has then 3 bits. Even if an 
error occurs in just one symbol (and does not eXceed 3 bits) it 
may fall into 2 adjacent 8-valued symbols. In that case using 
an interleaved n-valued Hamming code may be a good solu 
tion. Assume tWo (11,7) Hamming codeWords [X1 X2 X3 X4 
X5 X6 X7 p1 p2 p3 p4] and [y1 y2 y3 y4 y5 y6 y7 r1 r2 r3 r4], 
Wherein p1, p2, p3, p4, r1, r2, r3 and r4 are n-valued check 
symbols. Creating an interleaved codeWord [X1 y1 X2 y2 X3 
y3 X4 y4 X5 y5 X6 y6 X7 y7 p1 r1 p2 r2 p3 r3 p4 r4] addresses 
the issue of tWo symbols in error. It should be clear that 
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different arrangements of data symbols and check symbols 
can be bene?cial. Because a single check symbol in error 
requires no data symbol recalculation, one can ?nd arrange 
ments of order of data symbols that require the feWest calcu 
lations and recalculations. Different order of position of data 
symbols and check symbols is fully contemplated as one 
aspect of the present invention. 

If more adjacent errors are expected one can use more 

interleaved single codeWords to create a combined inter 
leaved codeWord. 

In some communication channels errors occur in bursts. 

For instance if it is knoWn that errors occur in bursts of never 
more than 8 adjacent bits, it may be bene?cial to create 
Hamming codeWords of l6-valued symbols, interleave tWo 
codeWords, and represent each symbol by 4-bits Words. Some 
costs of this simple error correcting method involve the over 
head cost of check symbols and cost of synchronization of 
Words. Especially if a loW symbol error ratio is expected one 
may loWer the relative overhead rate by increasing the Word 
siZe of the n-valued Hamming code. 

In accordance With a further aspect of the present invention 
a method and apparatus Will be provided to further simplify 
error detection and error correction by using n-valued logic 
functions and ordering n-valued data symbols in a matrix. As 
illustrative examples 2-dimensional matrices Will be used. It 
should be appreciated that using 3-dimensional and higher 
dimensional matrices are also possible. Further more rectan 
gular matrices Will be used. Depending on the ordering of 
symbols one may use non-rectangular matrices. This Will not 
materially affect the principles of the method and apparatus 
provided. 

TWo-dimensional binary parity check matrices are knoWn. 
In some cases GF(2P) symbols in binary form are created 
Wherein binary parity check symbols of individual bits are 
created for error detection and error correction purposes. It is 
believed that using tWo and multi dimensional matrices com 
prising n-valued data symbols and check symbols from data 
symbols by applying n-valued logic functions is novel. Also 
?rst identifying symbols in error and then correcting symbols 
by reversing check symbol expressions is believed to be 
novel. 

FIG. 5 shoWs one Way to organiZe n-valued data symbols 
for single error detection and correction. Assume a series of 
18 n-valued data symbols dll to d63. It should be clear that 
this is merely an illustrative example and that many different 
data symbols and their organiZation may be selected. The 
purpose is to ?nd and correct a single error in these 18 data 
symbols for Which check symbols Will be generated. The 
symbols are organiZed in a matrix having 2 dimensions in this 
example, Wherein a column has 6 data symbols and a roW has 
3 data symbols. Each roW and each column has added a check 
symbol. The check symbols added to a roW are named q and 
to a column are named p. The columns are provided With 6 
symbols to illustrate the possible complexity of calculating an 
error corrected symbol if the applied logic functions are not 
associative. FIG. 6 illustrates one Way hoW the data symbols 
can be organiZed in a matrix, starting at the top of the ?rst 
column and going from the bottom of the next column back to 
the top and so on. If multiple adjacent errors are possible these 
errors may spill over into the next column. In that case orga 
niZing symbols as shoWn in FIG. 7 may be preferable, as 
adjacent errors Will appears in different roWs. The position of 
the check symbols p and q may be put anyWhere in betWeen 
the data symbols to break up adjacent errors. HoWever they 
are put in the matrix in roWs and columns to shoW hoW they 
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are calculated. Additional check symbols like q4 Which Will 
provide a check on check symbols. (either on a roW or on a 

column). 
Assume that a column has n-valued data symbols [x1 x2 x3 

x4 x5 x6]. Assume that one check symbol p is generated from 
the n-valued symbols. The simplest Way to do this is if n is a 
poWer of 2 and one can use a self reversing, associative and 
commutative functions sc. In that case pql sc x2 sc x3 sc x4 

sc x5 sc x6. So ifany ofthe symbols is in error it can easily be 
reconstructed. Assume in the matrix of FIG. 7 that p2 and q3 
Were in error. That means that x3 (d32) Was in error in the 
column. One can recalculate x3 from x3ql sc x2 sc x4 sc x5 

sc x6 sc p2. It appears to be easier to calculate x3 from feWer 
terms, using q3:(d3l scl d32) sc2 d33. HoWever if scl and 
sc2 are non-associative, non-commutative logic functions, 
then order of execution is important and determining d32 may 
be a bit more involved. and look like: 

d32:d3l sclr'l (q3 sc2c'l d33). Herein sclr'l is the inverse 
of scl over constant roWs and sc2c_l is the inverse of scl over 
constants columns. 

HoW complicated the resolving expressions can become 
can be demonstrated With calculating check symbol p from 6 
symbols. One can use of course other functions than an asso 
ciative function. One expression then may be p:[{(xl scl x2) 
sc2 (x3 sc4 x4)} sc5 (x5 sc6 x6)]. Even if one uses a single 
non-associative function sc there are different Ways to calcu 
late p. One Way is: pl{([{(xl sc x2) sc x3} sc x4] sc x5) sc 
x6}. Another Way is p:[{(xl sc x2) sc (x3 sc x4)} sc (x5 sc 
x6)]. For instance assume the self reversing non-associative 
8-valued function sc of Which the folloWing truth table is 
provided. 

so 0 l 2 3 4 5 6 7 

0 7 6 5 4 3 2 l 0 
l 6 5 4 3 2 l 0 7 
2 5 4 3 2 l 0 7 6 
3 4 3 2 l 0 7 6 5 
4 3 2 l 0 7 6 5 4 
5 2 l 0 7 6 5 4 3 
6 l 0 7 6 5 4 3 2 
7 0 7 6 5 4 3 2 1 

Further assume 8-valued data symbols [x1 x2 x3 x4 x5 x6]:[0 
l2 3 4 5]. The expressionpl l:{([{(xl sc x2) sc x3} sc x4] sc 
x5) sc x6} Will generate pl 1:4. The expression p22:[{(xl sc 
x2) sc (x3 sc x4)} sc (x5 sc x6)] Will generate p22:2. It should 
be clear that for error detection it does not matter hoW expres 
sions are structured. The main requirement for error detection 
is that a changed data symbol generates a changed check 
symbol. Both expressions comply With that requirement. 
HoWever re-calculating a symbol When its error position is 
knoWn in both situations is different. 

As an illustrative example assume x3 is knoWn to be in 
error. To calculate x3 from pl 1 Will provide: x3:[{(pll sc x6) 
sc x5} sc x4] sc (xl sc x2):2. Using pl 1:2 instead ofpl 1:4 
Would provide x3:0, Which of course is Wrong. 

To calculate x3 from p22 Will provide: x3:[{p22 sc (x5 sc 
x6)} sc (xl sc x2)] sc x4 With x3:2. Using p22:4 instead of 
p22:2 Would provide x3:0 Which is Wrong. 

Accordingly one may select as part of the error detecting an 
expression for determining a check symbol that applies one or 
more identical or different logic functions. Determining if an 
error has occurred requires recalculating the check symbol. 
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Determining the correct value of a symbol in error requires 
?rst determining the expression for calculating the data sym 
bol. That expression depends on the properties of the func 
tions and may become quite elaborate, especially if functions 
are non-commutative and not self reversing and if the expres 
sion involves a substantial number of data symbols. In the 
8-valued case there are 8!:40,320 reversible inverters. Each 
reversible logic function has 8 columns and roWs Wherein a 
column or a roW is a reversible inverter as explained by the 
inventor in Us. patent application Ser. No. 10/ 935,960, ?led 
Sep. 8, 2004, entitled TERNARY AND MULTI-VALUE 
DIGITAL SCRAMBLERS, DESCRAMBLERS AND 
SEQUENCE GENERATORS, Which is incorporated herein 
by reference in its entirety. It Will be appreciated that deter 
mining the actual expressions, Whereby possibly no order x1, 
x2, x3, x4, . . . is maintained, from the check symbols Will 
become quite involved. 

In accordance With a further aspect of the present invention 
one may provide security to data by not publicly disclosing 
the expression for check symbol creation and by inserting one 
error into a data symbol after a check symbol has been cre 
ated. If one does this at a fairly high symbol error ratio then 
the received data, for instance if it represents a video signal 
can still be vieWed, but Will demonstrate signi?cant quality 
deterioration. In such situations one can have somebody vieW 
the video at loW quality. HoWever Without the proper error 
correction expression one can not correct the occurring 
errors. This annoyance factor may be high especially in for 
instance high de?nition video, Where errors may shoW up as 
having severely numbers of faulty pixels in a screen. It is 
contemplated that a user can obtain or doWnload the error 

correcting expression from an authorized provider. Other 
types of signals using protected errors as annoyance to dis 
courage unauthoriZed use, such as digital audio and music 
?les as Well as other data ?les are fully contemplated. A 
condition Wouldbe that the error correction of a code has to be 
able to address the arti?cially inserted errors as Well as errors 
experienced during transmission and receiving. 

Insertion of annoyance errors should take place after cal 
culating the check symbols and before experiencing ‘real’ 
errors. Errors may be introduced at the same position. Also 
multiple errors may be introduced. In order to have deliberate 
annoyance errors not corrected the decoder should have a 
deliberately not matching decoder. This means that an annoy 
ance error Will not be corrected appropriately. By providing 
the correct solver or decoder for errors in a speci?c position 
one may alloW correction of the annoyance errors. 

FIG. 8 shoWs a method of coding Wherein tWo adjacent 
errors may be detected. The data Word comprising n-valued 
data symbols is [d1 ml d2 m2 d3 m3 . . . d12 m12]. The data 
Word is ordered into 3 columns, each column comprising 8 
data symbols. The data symbols are identi?ed in such a Way 
that the symbols ‘d’ in odd positions are assigned to a ?rst 
check symbol, for instance ‘p’, While the even position sym 
bols ‘m’ are assigned to a second check symbol ‘r’. Each roW 
of the matrix is assigned to a check symbol ‘q’. Additional 
check symbols may be used to check the check symbols. The 
illustrative scheme as shoWn in FIG. 8 alloWs detecting more 
than 1 error in a dataWord by using simple check symbol 
expressions. It is easy to see that 2 or more errors using simple 
check symbol expressions may cancel each other out. It 
should also be clear that the same approach of creating addi 
tional check symbols by symbol interleaving can be used for 
the roWs in a matrix, or along any other dimension of a matrix. 

As an example one can detect the location of tWo adjacent 
errors in the Word [d5 m5 d6 m6 d7 m7 d8 m8] by using check 
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symbols r2, p2, q3 and q4. It should be clear that non adjacent 
errors, for instance in d5 and d6 may not be detected in this 
manner. 

FIG. 9 shoWs hoW a symbol in error may be corrected. 
Assume the matrix of FIG. 7, Wherein p2 and q3 Were 
assumed to be detected in error. FIG. 9 shoWs hoW for every 

roW in a coding matrix, depending on the column, as shoWn in 
FIG. 9 as 900, a solution comprised of a solving n-valued 
expression is available in 901. The solver 901 may for 
instance be a series of instructions in a processor representing 
the execution of an appropriate expression. This series of 
instructions is provided as input With n-valued symbols d31, 
d33 and q3, Which Will generate d32, Which Was in error. 

FIG. 10 shoWs a How diagram of checking all columns and 
roWs on errors and providing the identi?cation of error posi 

tion to the solver, together With appropriate data to solve an 
expression. 
The methods provided here apply n-valued expressions 

using one or more equal or different n-valued logic functions 
on n-valued symbols. In a ?rst check symbol expression an 
n-valued symbol only appears once. One could articulate this 
as: in the expression p:ax1 sc bx2 sc cx3 . . . sc gx4 all 

coef?cients a, b . . . g have the value 1 or the equivalent in 

n-valued logic, being an identity inverter. 
In a second expression the coef?cients may not all be 1, but 

none is 0. HoWever a restriction has to be that ax1 is unique 
(ax1 means a><x1). This means that if x1:e1 or x1:e2 that 
axe1 is never identical to axe2. For instance if one is consid 

ering 8-valued symbols and one is using 2><x1 as a term in an 
8-valued expression Wherein 2 is the modulo-8 multiplication 
by 2, then 2><2:4 modulo-8 but 2><6 modulo-8 is also 4. This 
means that an error in x1 Wherein x1 Was 2 but is replaced by 
6 Will not be detected. This is the fundamental problem for 
detecting 2 or more errors in sequences of binary symbols 
using just single check symbols. Adding a parity symbol 
based on the same data symbols Will not alWays extend error 
detection. It is a further aspect of the present invention to 
increase detection of symbols in error in a sequence of n-val 
ued data symbols by increasing the number of check symbols, 
Wherein each check symbol is created from an expression 
applying the same number of data symbols, but in each 
expression related to a check symbol a data symbol may be 
multiplied by a different coe?icient. In order to prevent unde 
tectable errors multiplication should exist Within GF(n). In 
order to be able to correct tWo or more errors one should 

create at least tWo independent expressions for the 
‘unknowns’ Which are the to be solved errors. The problem 
With binary expressions of course is that a binary coef?cient 
multiplier can only be 1 as non-Zero multiplier. This effect 
ultimately then also explains Why in Reed Solomon codes one 
needs an LFSR Wherein the n-valued logic is preferably 
greater than the number of shift register elements. 

Because one Will Work With multipliers in n-valued expres 
sions, it is likely that one also is required to apply n-valued 
division in order to solve expressions. From a n-valued logi 
cal point of vieW division in n-valued logic is the inverter that 
reverses a n-valued multiplication. For illustrative purposes 
8-valued examples Will be provided. It should be clear that 
similar approaches in GF(n) can also be created. 

First addition and multiplication in GF(8) Will be estab 
lished. The folloWing tables provide the truth tables of the tWo 
required functions. 










