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SYMBOL ERROR CORRECTION BY ERROR
DETECTION AND LOGIC BASED SYMBOL
RECONSTRUCTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of U.S. patent
application Ser. No. 11/680,719, filed on Jan. 3, 2007, which
claims the benefit of U.S. Provisional Patent Application No.
60/779,068, filed Mar. 3, 2006, which are both incorporated
herein by reference in their entirety. This application is a
continuation-in-part of U.S. Non-Provisional patent applica-
tion Ser. No. 10/935,960, filed on Sep. 8, 2004, entitled TER-
NARY AND MULTI-VALUE DIGITAL SCRAMBLERS,
DESCRAMBLERS AND SEQUENCE GENERATORS,
which is incorporated herein in its entirety. This application
also claims the benefit of U.S. Provisional Application No.
60/883,369, filed Jan. 4, 2007, which is incorporated herein
by reference in its entirety.

BACKGROUND OF THE INVENTION

The present invention relates to correction of one or more
symbols in error in a sequence of symbols. More specifically,
it relates to error correction by first identifying the location of
possible errors, followed by reconstruction of the original
symbols from the remaining symbols believed to be not in
error.

Error correction of symbols is well known, especially in
the field of communications and information storage or trans-
fer. In general, a series of symbols that is being transferred
may have experienced interference or noise on a transmission
channel. Possibly the storage medium, such as an optical or
magnetic disk, may have been damaged. As a consequence, a
received sequence of symbols may be different from the
sequence from which it originated. The difference between an
original sequence of symbols and a received sequence may be
considered to be errors.

Error control measures can be applied to detect and to
correct errors. These measures in general comprise adding
additional symbols to a sequence, based on the existing sym-
bols in the original sequence. The redundancy of symbols
allows for detection and sometimes correction of errors.

It usually requires a greater number of redundant symbols
to correct errors rather than to merely detect that symbols are
in errors. For instance, in data communications, wherein re-
sending of information is possible and not detrimental to the
quality of data transfer, it may be sufficient to detect errors
and request the transmitter to resend the symbols. However,
in many applications resending of symbols is impossible or
undesirable. In such cases error correction is desirable.

Error-correction techniques for symbols in a sequence
attempt to achieve the best result with as few redundant sym-
bols as possible, and with as limited processing requirements
and memory or storage requirements as possible. Error cor-
recting redundancy is usually set to address some maximum
or optimal expected symbol error ratio. If information is
coded into codewords, it is to be expected that many code-
words are error-free and in error-free codewords extra sym-
bols provided for error correction or detection are truly redun-
dant.

Effective error correcting codes with a possibility to cor-
rect a limited number of symbols in a sequence of a greater
number of symbols require significant processing and/or
memory capabilities. Maximum likelihood error correction
may also require significant memory or storage capabilities.
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Accordingly, novel and improved methods and apparatus pro-
viding improved error correcting performance with limited
symbol redundancy and limited processing resources are
required.

SUMMARY OF THE INVENTION

In accordance with one aspect of the present invention,
presents a novel method and system are provided that will
correct errors in a sequence of symbols by detecting which
symbols are in error and then reconstructing the error symbol
by reversible logic functions. An n-valued function herein
means an n-valued logic function.

In accordance with another aspect of the present invention,
a method is provided for error correction of one or more
n-valued symbols in a codeword of a plurality of n-valued
symbols with n>2, a codeword having at least one check
symbol calculated from data symbols, using a plurality of
codewords comprising recalculating a check symbol in a
codeword, evaluating if a codeword has a symbol in error,
determining a location of a symbol in error in a codeword
based on check symbols of at least two codewords; and recon-
structing the symbol in error.

In accordance with a further aspect of the present inven-
tion, the method has at least one check symbol generated by
the n-valued logic expression using an n-valued non-adder
function.

In accordance with a further aspect of the present inven-
tion, a method is provided for calculating check symbols by
using an n-valued Linear Feedback Shift Register (LFSR).

In accordance with another aspect of the present invention
amethod is provided for the n-valued LFSR using an n-valued
logic function defined in GF(n=27) with p=1.

In accordance with a further aspect of the present invention
a method is provided for calculating a symbol known to be in
error in a codeword from equations for determining one or
more check symbols of the codeword.

In accordance with another aspect of the present invention,
a method is provided for creating codewords comprising the
steps of arranging the n-valued data symbols to be coded in a
matrix; determining check symbols along the dimensions of
the matrix; including the check symbols to codewords in the
matrix; and completing coding of the n-valued data symbols
as a frame of codewords.

In accordance with a further aspect of the present inven-
tion, a method is provided for decoding a frame of codewords
comprising the steps of deconstructing the frame of code-
words into a matrix; recalculating the check symbols as new
check symbols from the data symbols; and determining data
symbols in error by comparing the check symbols with the
new check symbols.

In accordance with another aspect of the present invention,
a method is provided for solving equations for determining
check symbols for a codeword including data symbols in
error, wherein the symbols in error are treated as unknowns
for which the equations can be solved.

In accordance with a further aspect of the present inven-
tion, apparatus are provided that will implement the methods
which are an aspect of the present invention.

In accordance with another aspect of the present invention
systems are disclosed that provide error correction coding at
the source and error correction decoding at the target in accor-
dance with the methods of the present invention.

In accordance with a further aspect of the present invention
data storage systems are provided that will correct symbol
errors in symbols retrieved from a storage medium.
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In accordance with another aspect of the present invention,
a method is provided for error correction for a plurality of
n-valued with n>2 data symbols, comprising associating the
plurality of n-valued data symbols with a first 2-dimensional
matrix, providing each n-valued data symbol with a position
in the first matrix, generating a plurality of row check symbols
along each row of data symbols in the first matrix, a row check
symbol being generated by applying an n-valued logic
expression wherein data symbols in a row of the first matrix
are variables, generating a plurality of column check symbols
along each column of data symbols in the first matrix, a
column check symbol being generated by applying an n-val-
ued logic expression wherein data symbols in a column in the
first matrix are variables, and transmitting to a decoder the
plurality of n-valued data symbols, and the pluralities of row
and column check symbols.

In accordance with a further aspect of the present inven-
tion, the method has at least one check symbol generated by
the n-valued logic expression using an n-valued logic func-
tion which is not a modulo-n adder or an adder over GF(n).

In accordance with a further aspect of the present inven-
tion, the method further comprises receiving by the decoder
the plurality of n-valued data symbols as received n-valued
data symbols, and the pluralities of row and column check
symbols as received row and column check symbols, associ-
ating the plurality of received n-valued data symbols with the
first matrix, providing each received n-valued data symbol
with a position in the first matrix, generating a plurality of
recalculated row check symbols along each row of received
data symbols in the first matrix, a recalculated row check
symbol being generated by applying an n-valued logic
expression wherein received data symbols in a row of the first
matrix are variables, generating a plurality of recalculated
column check symbols along each column of received data
symbols in the first matrix, a recalculated column check sym-
bol being generated by applying an n-valued logic expression
wherein received data symbols in a column are variables,
locating one or more symbols for error correction by applying
only received and recalculated check symbols.

In accordance with another aspect of the present invention,
the method further comprises error-correcting a symbol for
error correction by applying an n-valued logic expression
having the symbol for error correction as an unknown.

In accordance with a further aspect of the present inven-
tion, the method further comprises associating the plurality of
n-valued symbols with a second 2-dimensional matrix, pro-
viding each symbol with a position in the second matrix,
generating a plurality of row check symbols along each row of
data symbols in the second matrix, a row check symbol being
generated by applying an n-valued logic expression wherein
data symbols in a row of the second matrix are variables,
generating a plurality of column check symbols along each
column of data symbols in the second matrix, a column check
symbol being generated by applying an n-valued logic
expression wherein data symbols in a column in the second
matrix are variables, and adding to a transmission of symbols
to the decoder the pluralities of row and column check sym-
bols associated with the second matrix.

In accordance with another aspect of the present invention,
the method further comprises receiving by the decoder the
pluralities of n-valued data symbols as received n-valued data
symbols and the pluralities check symbols as received check
symbols, locating symbols for error correction in accordance
with the first matrix, locating symbols for error correction in
accordance with the second matrix, and determining symbols
for error correction in accordance with the first and the second
matrix.
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In accordance with a further aspect of the present inven-
tion, the method further comprises applying check symbols
generated in accordance with one or more additional matri-
ces.

In accordance with another aspect of the present invention,
the method is provided wherein a check symbol is generated
by using an n-valued Linear Feedback Shift Register (LFSR).

In accordance with a further aspect of the present inven-
tion, the method further comprises generating one or more
n-valued check symbols from the plurality of row symbols.

In accordance with a further aspect of the present inven-
tion, the method further comprises generating one or more
n-valued check symbols from the plurality of column check
symbols.

In accordance with a further aspect of the present inven-
tion, a system for error correction in a plurality of n-valued
data symbols with n>2 is provided, comprising a coding unit
for generating a plurality of check symbols from the plurality
of n-valued data symbols, a check symbol being calculated
from an n-valued expression having n-valued data symbols of
acodeword as variables and wherein a codeword is formed by
associating the plurality of n-valued data symbols with a first
matrix and the codeword has n-valued data symbols of a row
or a column of the first matrix, a decoding unit for generating
a plurality of recalculated check symbols which are recalcu-
lated in accordance with the first matrix from the plurality of
data symbols having one or more data symbols in error, an
error locating unit for locating one or more symbols for error
correction in the plurality of n-valued data symbols having
one or more data symbols in error by using only check sym-
bols and recalculated check symbols, an error correcting unit
for calculating a correct value for a symbol for error correc-
tion by solving an equation using a reversible n-valued logic
function and having a symbol for error correction as an
unknown.

In accordance with a further aspect of the present inven-
tion, the system has at least one check symbol generated by
the n-valued logic expression using an n-valued function
which is not a modulo-n adder or an adder over GF(n).

In accordance with a further aspect of the present inven-
tion, the system for error correction comprises the coding unit
generating a second plurality of check symbols from the
plurality of n-valued data symbols, a check symbol being
calculated from an n-valued expression having n-valued data
symbols of a codeword as variables and wherein a codeword
is formed by associating the plurality of n-valued data sym-
bols with a second matrix and the codeword has n-valued data
symbols of a row or a column of the second matrix.

In accordance with a further aspect of the present inven-
tion, the system for error correction comprises the decoding
unit generating a second plurality of recalculated check sym-
bols which are recalculated in accordance with the second
matrix from the plurality of data symbols having one or more
data symbols in error.

In accordance with a further aspect of the present inven-
tion, the system for error correction comprises generating an
additional plurality of check symbols from the plurality of
n-valued data symbols, a check symbol being calculated from
an n-valued expression having n-valued data symbols of a
codeword as variables and wherein a codeword is formed by
associating the plurality of n-valued data symbols with an
additional matrix and the codeword has n-valued data sym-
bols of a row or a column of the additional matrix.

In accordance with a further aspect of the present inven-
tion, the system for error correction comprises the coding unit
generating additional check symbols from a plurality of
check symbols.
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In accordance with a further aspect of the present inven-
tion, the system for error correction comprises the decoder
correcting errors in the check symbols.

In accordance with a further aspect of the present inven-
tion, the system for error correction is provided wherein the
system is a data storage system.

In accordance with a further aspect of the present inven-
tion, the system for error correction is provided wherein the
system is a communication system.

In accordance with a further aspect of the present inven-
tion, the system for error correction is provided wherein
n-valued symbols are represented by binary symbols.

In accordance with a further aspect of the present inven-
tion, a method for coding a plurality of n-valued with n>2 data
symbols is provided, comprising selecting a first plurality of
n-valued symbols from the plurality of n-valued data sym-
bols, generating a first n-valued check symbol from the first
plurality of data symbols by using an n-valued logic expres-
sion using an n-valued reversible logic function, selecting a
second plurality of n-valued symbols from the plurality of
n-valued data symbols, generating a second n-valued check
symbol from the second plurality of data symbols by using an
n-valued logic expression using an n-valued reversible logic
function, and the first and the second plurality of n-valued
data symbols having at least one n-valued data symbol in
common.

In accordance with a further aspect of the present inven-
tion, the method for coding a plurality of n-valued with n>2
data symbols comprises selecting an additional plurality of
n-valued symbols from the plurality of n-valued data sym-
bols, generating an additional n-valued check symbol from
the additional plurality of data symbols by using an n-valued
logic expression using an n-valued reversible logic function,
repeating the previous steps until each of the plurality of
n-valued data symbols is associated with at least two check
symbols.

In accordance with a further aspect of the present inven-
tion, the method has at least one check symbol generated by
the n-valued logic expression using an n-valued function
which is not a modulo-n adder or an adder over GF(n).

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an n-valued LFSR circuit with
multipliers and is prior art;

FIG. 2 is a diagram equivalent to the LFSR circuit of FIG.
1 having no multipliers;

FIG. 3 is a matrix showing codewords with data symbols
and check symbols;

FIG. 4 is another matrix showing codewords with data
symbols and check symbols;

FIG. 5 is a diagram of an n-valued LFSR circuit for gen-
erating check symbols;

FIG. 6 is another diagram of an n-valued LFSR circuit for
generating check symbols;

FIG. 7 is another diagram of an n-valued LFSR circuit for
generating check symbols;

FIG. 8 is a matrix showing codewords with data symbols
and check symbols;

FIG. 9 is a diagram of an n-valued LFSR circuit for gen-
erating check symbols;

FIG. 10 is a diagram of an equation solver in accordance
with one aspect of the present invention;

FIG.11is a flow diagram for determining check symbols in
accordance with a further aspect of the present invention;
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FIG. 12 illustrates a system that is used to perform the steps
described herein in accordance with another aspect of the
present invention;

FIG. 13 illustrates a storage system for writing data to a
storage medium in accordance with yet another aspect of the
present invention;

FIG. 14 illustrates a storage system for reading data from a
storage medium in accordance with yet another aspect of the
present invention;

FIG. 15 illustrates detecting symbol errors in a coding
matrix in accordance with an aspect of the present invention;

FIG. 16 illustrates coding a plurality of n-valued symbols
according to a matrix in accordance with an aspect of the
present invention;

FIG. 17 illustrates coding a plurality of n-valued symbols
in accordance with another aspect of the present invention;
and

FIG. 18 illustrates coding a plurality of n-valued symbols
in accordance with another aspect of the present invention.

DESCRIPTION OF A PREFERRED
EMBODIMENT

According to one aspect of the present invention, several
error detecting, check symbol generation and symbol recon-
struction approaches for sequences including sequences of
n-valued symbols will be combined.

N-valued herein will mean an integer equal to or greater
than 3. It is distinguished from binary or 2-valued.

Furthermore, the terms state or value and multi-state or
multi-valued will be used interchangeably. The logic func-
tions that are provided herein represent the switching of
states. A state may be represented by a digit or a number. This
may create the impression that an actual value is attached to a
state. One may, to better visualize states, assign a value to a
state. However, that is not a requirement for a state. A name or
designation of a state is just to indicate that it is different from
states with different designations. Because some logic func-
tions herein represent an adder the names state and value may
be used meaning the same.

Furthermore, because of the practice in binary logic to
represent a state by a physical level of a signal such as a
voltage, one often assumes that different n-state signals have
different levels of a signal, such as voltage or intensity. While
such representations of a state are allowed it is not limited to
that. A state may be represented by independent phenomena.
Forinstance, different states of a signal may be represented by
different wavelengths of an optical signal. A state may also be
represented by a presence of a certain material, by a quantum-
mechanical phenomenon, or by any other phenomenon that
can distinguish a state from another state.

Furthermore, a symbol, which is regarded herein as a single
element, may also be represented by 2 or more p-state sym-
bols wherein p<n. For instance, a 4-state symbol may be
represented by 2 binary symbols.

The generation of check symbols, especially in sequences
of binary symbols, is known, and either a parity symbol or a
combination of symbols representing a checksum is gener-
ated. One may also generate n-valued check symbols by
applying n-valued symbols to one or more n-valued logic
functions.

As an illustrative example to describe one aspect of the
present invention assume a set of codewords of 5 n-valued
symbols. All possible codewords of 5 n-valued symbols have
atmost 4 symbols in common. Having symbols in common in
codewords is assumed to mean having symbols in common in



US 8,046,661 B2

7

like positions. For instance the word [0 1 2 3 4] and the word
[3 2 1 0 4] have only one symbol (the 4) in common in like
positions.

Assume that one can add to each codeword of 5 n-valued
symbols 2 n-valued symbols in such a way that each code-
word (of now 7 symbols) still have at most 4 symbols in
common with another codeword. Now assume that a code-
word of 7 symbols is transmitted to a receiver. Before or
during reception an error may have occurred in one of the 7
symbols. This means that 6 symbols are correct and one
symbol is in error. The received codeword has then 6 symbols
in common with the correct codeword. Because each code-
word has at most 4 symbols in common with each other
codeword and assuming that an error has occurred in one
symbol the codeword did not have in common with another
codeword, then a codeword with one error has at most 5
symbols in common with any other codeword than the correct
codeword. A codeword with 2 errors has at most 6 symbols in
common with any other codeword except the correct code-
word. It may also have just 5 symbols in common with the
correct codeword. It should be clear that with 3 errors it will
be possible that a codeword with errors may have 7 symbols
in common with a codeword not being the correct codeword.

One may then conclude that a set of codewords of p+k
symbols of which each codeword has at most q symbols in
common with another codeword has a difference of at least
p+k—q symbols between each codeword. And at most p+k-
g-1 symbols in errors can be detected. The problem is that
one can usually only determine (detect) that up to (p+k—-q-1)
symbols are in error in a codeword. In general one can not
determine which of the p+k symbols are in error. It is known
that twice as many redundant symbols are required to also
correct the symbols in error.

In general, error correction also requires the application of
some decoding scheme. For instance, one can apply convo-
Iutional coding and attempt to create a maximum likelihood
Trellis for decoding. One may also code the words according
to a Reed Solomon scheme and correct any errors by solving
equations based on syndromes.

A preferred embodiment as one aspect of the present inven-
tion, is to first identify which symbols in a sequence are in
error, and based on a selected coding scheme reconstruct the
symbols that were detected as being in error by using revers-
ing equations. The advantage is that the decoding can be done
in a fast and simple manner.

Reconstruction of symbols (including n-valued symbols)
in error based on known correct symbols has been demon-
strated by the Applicant in U.S. patent application Ser. No.
11/566,725, filed on Dec. 5, 2006 entitled ERROR COR-
RECTING DECODING FOR CONVOLUTIONAL AND
RECURSIVE SYSTEMATIC CONVOLUTIONAL
ENCODED SEQUENCES, which is incorporated herein in
its entirety by reference. Reconstruction of symbols in error
in Reed Solomon codes and in what the Applicant calls Reed-
Solomon like codes also are described in U.S. Non-provi-
sional patent application Ser. No. 11/739,189, filed on Apr.
24, 2007, which claims the benefit of U.S. Provisional Patent
Application Ser. No. 60/807,087 filed Jul. 12, 2006; U.S.
Non-provisional patent application Ser. No. 11/743,893, filed
on May 3, 2007, which claims the benefit of U.S. Provisional
Patent Application Ser. No. 60/821,980 filed Aug. 10, 2006,
which are all four incorporated herein by reference in their
entirety.

A reconstruction approach will be briefly explained in this
section. As an example a 4-valued Reed Solomon code will be
generated of 3 4-valued data symbols. A known 4-valued
Linear Feedback Shift Register (LFSR) configuration that is
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ableto generate the code is shown in FIG. 1. It should be noted
that the coder is shown in Fibonacci configuration. An equiva-
lent LFSR coder in Galois configuration can also be con-
structed. The rules for creating equivalent n-valued Fibonacci
and Galois LFSR based configurations are disclosed by the
Inventor in U.S. Non-provisional patent application Ser. No.
11/696,261, filed on Apr. 4, 2007, and which claims the
benefit of U.S. Provisional Patent Application Ser. No.
60/789,613, filed on Apr. 5, 2006 which are both incorporated
herein in their entirety. It is understood for those skilled in the
art that when a Fibonacci configuration LFSR is shown, that
an equivalent Galois configuration of that LFSR is implicitly
disclosed. Galois configurations of LFSRs can inherently be
faster than Fibonacci configurations.

The coder as shownin FIG. 1is comprised of an LFSR with
a 3 element shift register with elements 101, 102 and 103,
each of which can store a 4-valued symbol. Not shown, but
assumed is a clock signal that will advance or shift the content
of each element one position to the right. The first element
101 will assume the symbol that is also outputted on output
109 on the occurrence of a clock pulse. The content of the last
element 103 will be lost after a clock pulse. The output of each
shift register element is also provided to a 4-valued multi-
plier; that is: the output of 101 is also provided to a 4-valued
multiplier factor 2 106, the output of 102 is also provided to a
multiplier factor 1 107 and the output of 103 is provided to a
4-valued multiplier 108 representing a factor 1. The signals
outputted by the multipliers are inputted to 4-valued adding
function scl.

In order to generate a 4-valued codeword of 5 symbols, the
shift register is initiated with the 3 data symbols and the coder
will be run for 2 clock pulses, generating 2 additional (redun-
dant) symbols that will be joined with the three symbols to a
codeword of 5 4-valued symbols.

The 4-valued multipliers and the 4-valued adder scl are
defined over an extended binary Finite Field GF(2?). The
truth table of the adder and the multiplier are provided in the
following tables.

+]0f1[2]3 x[0]1]2]3
0]0]1]2(3 0f0]0]0]0
111{0f3]2 110]1[2]3
212]13]0f1 2{0]12]3]1
3]13]2]1f0 3{0]3]1]2

For reconstruction purposes, one would need to reverse the
functions in the decoding process. The inventor has shown in
U.S. patent application Ser. No. 10/935,960, filed Sep. 8,
2004, entitled TERNARY AND MULTI-VALUE DIGITAL
SCRAMBLERS, DESCRAMBLERS AND SEQUENCE
GENERATORS, which is incorporated herein by reference in
its entirety, how to create n-valued functions having no mul-
tipliers, equivalent to n-valued functions having n-valued
multipliers or inverters at its inputs. For several reasons, it is
easier to use n-valued functions using no multipliers. How-
ever, it may be easier to do calculations with adders and
multipliers. In accordance with a further aspect of the present
invention one may do all calculations with adders and multi-
pliers, but implement all functions in reduced form, using no
multipliers.

The configuration equivalent to the one of FIG. 1 is shown
in FIG. 2. Herein no multipliers are used. The generated
redundant symbols are provided on output 209. There is still
a shift register with elements 201, 202 and 203. However, the
multipliers and adders are combined into functions sc2 (204)
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and adder scl (205). Because multipliers 107 and 108 in FIG.
1 are a factor 1, the function 205 in FIG. 2 is identical to
function 105 in FIG. 1. The function sc2 (204) in FIG. 2 is the
adder scl modified by a multiplier 2. The truth table of sc2 is
provided in the following table.

sc2|0f1f2]3
0 |0]1]2]3
1 |2[3]0]1
2 [3]2]1]0
3 |1]10]3]2

Accordingly, one can create a set of 64 different codewords
of'5 4-valued symbols using the coder of FIG. 2 wherein each
codeword has at most 2 symbols in common with another
codeword from the set. The following table shows part (50%)
of the generated set of codewords.

data [redun data [redun
ofojojojof|3fofo]1|1
ofoj1j1]2]]3fof1]of3
ofoj2]12]3]]3[of2]3]2
ofo]313]1|3[0of3]2]0
ofrjoj1)3f|3frf{ojof2
ofrjrjoprf3frfry1fo
ofrj2)31of]3y1]2]2f1
of1]13]12]2]}3]11]3]3]3
of21012]1]]|3]2]0]3f0
OJ211]13]3][3]2]1]2]2
oj2]12]0]2][3]2]2]1]3
01213]1]0][3]2]3]0]1
013]1013]2][3]3]0]2]3
0131112]0][3]3]1]3]1
013]1211]1][3]3]2][0]0
0131310131 [3]3]3[1]2

The data symbols are in the columns under data. The redun-
dant symbols are in the columns under ‘redun’ in the table. It
should be clear that combination of the redundant symbols
with the data symbols is trivial. They can be put before or after
(as in the table) the data symbols. The order of the symbols
can be changed or the redundant symbols can be inserted
between the data symbols. However, no matter how the
redundant symbols are combined with the data symbols, it
should be done in an identical fashion for all the codewords.

One can arrange the data symbols of codewords in a matrix
and calculate the redundant symbols over the dimensions of
the matrix. An example is shown in FIG. 3 wherein the sym-
bols are arranged in a 2-dimensional matrix. For illustrative
purposes, 2 dimensional matrices will be used. However, the
matrices can also be arranged in three dimensional or higher
dimensional matrices. Furthermore, the matrices do not have
to be square or rectangular. For instance one may fold a
sequence of n-valued symbols as a series of columns of a
matrix, wherein a the end of a previous column is connected
to the end of the next column, as for instance shown in FIG. 4
by line 401. In that case errors may spill over from one
column to the other (or from one row to another row) and one
should perhaps use more redundant symbols at the end of a
column or row than in the middle.

FIG. 3 shows a matrix of codewords. The columns and
rows comprise 3 data symbols, of which the columns have 2
redundant or check symbols, while the rows have only one
check symbol. Such an approach may be selected when 2
consecutive errors can be expected to occur in at most one of
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4 columns. This is equivalent to a symbol error ratio of 2%10~
2. One can then use the check symbols ql, g2, q3, q4 and g5
to determine which of the rows has a single error. By recal-
culating the check symbols of the columns one can determine
in which of the columns one or two errors have occurred
(assuming for this example that only one of the 4 columns will
have one or two errors). This determines which of the sym-
bols is in error.

It should be understood that the number of check symbols
and the size and dimension of the matrix depends on factors
such as desired correction capability and expected symbol
error ratio. For instance, if symbols are represented as true
multi-valued signals one may want to focus on detecting and
correcting single errors. However if n-valued symbols are
represented by words of lower valued (such as binary) sym-
bols, one has to address the fact that errors may occur in two
adjacent symbols. It should be clear that within the con-
straints of expected errors one can identify the location of a
symbol in error.

The technique of using parity or check bits in two dimen-
sional or multi-dimensional matrices comprising data bits
and check bits is known. For instance U.S. Pat. No. 3,831,144,
issued on Aug. 20, 1974, inventor John En, entitled MULTI-
LEVEL ERROR DETECTION CODE, discloses a two-di-
mensional matrix with horizontally and vertically determined
check bits. The advantage of binary codes is that once the
position of error is known one can determine the correct
symbol, by flipping the symbol in error.

Independent Equations for Determining Check Symbols

Binary check symbols or parity bits are based on a limited
relationship between the constituting bits. The relationship is
commonly established by the binary XOR function. N-valued
check symbols can have more varied reversible relationships
as was explained in the earlier cited application Ser. No.
11/680,719. For instance one may have a word of 4 n-valued
symbols [a b ¢ d]. One may create a first n-valued check
symbol cl=a (abbDcPd. One may also create a second
check symbol c2=a &b & ®d®. If only one of the symbols a,
b, cordisinerror one can reconstruct the symbol in error both
from c1 or ¢2 if these are not in error and both @ and ® are
reversible operations. It should also be clear that two symbols
in error can be reconstructed if the equations for c1 and c2 are
independent and the operations are reversible. Calculation of
cl and c2 by @ and ® may be independent because the
operations are totally diftferent. The equations for ¢l and c2
may be independent because the symbols a, b, ¢ and d are
processed with the same function but with for instance dif-
ferent n-valued inverters. For instance, c2=a®2b@P3cP2d in
an n-valued code. The advantage of using n-valued coders
with LFSRs either in Galois or in Fibonacci configuration is
that each next generated check symbol has an independent
equation from another check symbol in the code. That is a
reason why Reed Solomon (RS) codes work as error correct-
ing codes.

The advantage of using an LFSR is that one does not need
to execute each expression or equation in full to generate a
check symbol. The appropriate configuration of the LFSR
takes care of generating the check symbols in accordance
with independent expressions or equations. The drawback of
the RS code is that the location of an error first has to be found
by for instance solving an error correction polynomial. In
order to be able to do that for each error there have to be 2
check symbols. By knowing where the errors occur, for
instance by using a matrix with error symbols derived from
columns and rows, one may be able to use just one check
symbol per error.
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In accordance with a further aspect of the present inven-
tion, one can calculate the correct value of a symbol in error
of which the location is determined. In general, one can not
correct two errors occurring in a 7 4-valued codeword as
generated by the coder of FIG. 2. However, this error correc-
tion becomes possible when one knows which symbols are in
error.

As an illustrative example assume 2 consecutive errors to
occur in the code word [3 3 2 3 2]. The codeword is formed by
the coder of FIG. 2 as [sig 4 p1 p2], wherein sig4 is a 4-valued
data word sigd=[x2 x3x3]=[3 3 2] and [pl p2]=[0 O]. The
equations that are used to generate [pl p2] are: p1={x1 sc2
(x2 sc1x3)} and p2={p1 sc2 (x1 sc1 x2)}. The function sc2 is
non-commutative, so care should be taken with the order of
execution.

One needs to show that the data word can be recovered with
any two consecutive errors. This means for received code-
words [e1e2200],[3el e200],[33ele20]and[332el
e2]. The last codeword is of course the simplest to decode as
only the check symbols [p1 p2] are in error, but not the data
symbols. Consequently, the correct data word is of course [3
32].

Methods for Solving N-Valued Error Equations

There are actually several slightly different methods to
solve the n-valued error equations. Which method one applies
may depend on the complexity of the equations, the proper-
ties ofthe functions and which ofthe symbols are in error. The
complexity and properties of functions is directly related to
the value of n. For instance, if n=27 then one can use a function
scl which is an addition over GF(2?) and multipliers over
GF(27). In that case scl is self-reversing, commutative and
associative. This makes solving equations much easier. An
illustrative example will be provided.

Under conditions where the position of an error symbol can
be determined unambiguously, it is also possible to solve the
equations unambiguously. If for some reason it is impossible
or undesirable to solve equations in an algebraic fashion, one
can solve the equations iteratively by using all possible values
for the symbols in error. One will find only one combination
of values that solves all equations correctly. Illustrative
examples will be provided.

One method is to solve the equations in an algebraic fash-
ion. In order to solve equations it is useful to review the rules
for reversible, non-commutative and non-associative n-val-
ued logic functions. Assume n-valued logic function ‘sc’ to be
reversible, non-commutative and non-associative.

When (a sc b=c) then (b sc” a=c), with the truth table of sc”
being the transposed of the truth table of sc.

When (a sc b=c) then (¢ scrc b=a), with the function ‘scrc’
being the reverse of ‘sc’ over constant columns.

When (a sc b=c) then (a scrr c=b), with the function ‘scrr’
being the reverse of ‘sc’ over constant rows.

When (b sc” a=c) then (b sc’rr c=a), etc

For the coder of FIG. 2 the following two equations apply
for generating pl and p2: pl={x1 sc2 (x2 scl x3)} and
p2={pl sc2 (x1 scl x2)}.

Algebraic method. As a first example, assume that of [x1
x2x3 pl p2] x3 and p1 are in error. Clearly a first simple step
is to solve p2={p1 sc2 (x1 sc1 x2)} which has p1 as unknown.
One can rewrite the equation as: {p2 sc2rc (x1 scl x2)}=pl.
Herein the function sc2rc is the reverse of sc2 over constant
columns. Its truth table is provided in the following table.
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sc2rc |0]1]2]3
0 0f3f1]2
1 3fof2]1
2 112]0(3
3 2{1(3]0

The assumption was that x3 and p1 were in error, so in the
example the received codeword was [3 3x3 pl 0] using the
earlier example. Filling in the values in the equation provides
p1={0 sc2rc (3 scl 3)} or p1=0 sc2rc 0=0.

From pl1={x1 sc2 (x2 sc1 x3)} wherein now only x3 is an
unknown one can derive: (x2 scl x3)={x1 sc2rr p1} wherein
sc2rristhe reverse of'sc2 over constant rows. Keeping in mind
that scl is self reversing: x3=x2 scl (x1 sc2rr pl). The truth
table of sc2rr is provided in the following table.

sc2rr |0]1]2]3
0 0]1(2]3
1 213(0]1
2 312f1]0
3 110]3(2

Thus, x3=x2 scl (x1 sc2rr pl) leads to: x3=3 scl (3 sc2rr 0)
or x3=3 sc1=2.

One may apply the same approach when x2 and x3 are in
error. In that case, one may apply p2={p1 sc2 (x1 scl x2)} to
achieve (x1 sc1 x2)=p1 sc2rr p2 and thus achieve x2=x1 scl
(p1 sc2rr p2). This will provide x2=3. Etc.

A more difficult situation occurs when x1 and x2 are deter-
mined to be in error. The equations will be fairly difficult to
solve. Assume that x1=e1l and x2=e2. The equations will then
be:

pl={el sc2(e2 scl x3)} and

p2={pl sc2(el scl e2)}.

The value of pl and p2 are correct. So one way to solve the
equation in an iterative manner is to solve the equations:

11={el sc2(e2 scl x3)} and

2={p1 sc2(el scl e2)}

for all values of el and e2, and determine for which values of
(el,e2) the value (p1-tl1) and (p2-t2) are both 0. Not surpris-
ingly this will be the case for (el,e2)=(3,3). This is a time
consuming and not very elegant way to solve the problem,
and should be a solution of last resort.

Fortunately for LFSRs defined within GF(27), one can also
use a different approach. Within GF(27) the addition can be a
self reversing, commutative and associative function. As is
shown in FIG. 1, an LFSR in GF(2?) can be realized with
functions which are a combination of adders with multipliers.
One can reduce the functions by reduction of the truth tables
according to the multipliers, as was shown in FIG. 2. This
makes the execution of the coder quicker. In order to solve the
equations one can revert back to associative adders with mul-
tipliers.

This is shown in FIG. 5 wherein the coder of FIG. 2 is
equivalent to the coder as shown in FIG. 5. The shift register
has elements 501, 502 and 503 which will be initiated with (in
this illustrative example) the 4-valued symbols [x1 x2 x3].
The functions 504 and 505 are both the adder sc1 over GF(27).
One input of 504 has a 4-valued multiplier 506 representing
x2, which is equivalent to a 4-valued inverter inv2=[0 2 3 1]
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according to the truth table of the multiplier over GF(27). The
input of 507 of function 504 is here a symbol xt, which is an
inverted value of the content of 501. This is, of course, dif-
ferent from FIG. 2 where the input to 204 is the value of 201.
The equations now become:

pl={x11 sc1(x2 sc1 x3)} and p2=
{ptl scl (x1 scl x2)}.

Herein xt1=inv2(x1) and pt1=inv2(p1). Because scl is com-
mutative, self-reversing and associative, one can change
order of input, remove parentheses (or ignore order of execu-
tion) and move parts of the equation to the other side of the =
without changing the function. Consequently: pl=xtl scl x2
scl x3 and p2=ptl scl x1 scl x2.

Assume again that x1 and x2 are in error. So the equations
have to be solved for x1 and x2 and xt1. This leads to (xt1 scl
x1)=(ptl scl pl) scl (p2 scl x3). The parentheses are pro-
vided for the next step, but are not required when only using
function scl. It should be clear that (xt1 scl x1) is in fact (x1
sc2x1), as a function sc1 with an inverter inv2 at the input can
bereduced tosc2. One may alsouse (x1 sc1 xt1)=(x1sc27x1).
Also (ptl scl pl)=(plsc2pl). Consequently: (x1 sc2x1)=(pl
sc2pl)scl (p2scl x3). Or (x1 sc2x1)=(0sc2 0)scl (0scl 2),
whichis (x1 sc2 x1)=0scl 2=2. The solution (x1 sc2 x1) is the
diagonal [03 1 2] of the truth table of sc2. The solution for (x1
sc2 x1)=2 belongs to x1=3, which is of course correct. One
can now also determine x2 and calculate that x2=3.

The need for solving errors of 2 symbols in a word is
because of the spill-over effect when one codes a symbol as
for instance a binary word. One can never be sure that only an
error in one symbol has occurred, so one should be prepared
to solve the equations for two adjacent symbols in error. It is
also possible that two errors have occurred in non adjacent
symbols in a word. This assumes a different error behavior
than for adjacent errors. Especially codewords generated by
LFSRs (Galois and Fibonacci) that can be created by addi-
tions (with or without multipliers) over GF(2?7), have easier to
solve equations because of the associative properties of the
addition function.

For instance, assume using the current 4-valued illustrative
example with a coder as illustrated by FIG. 5, that x1 and p1
are found to be in error. Using again the equations p1={xt1
scl (x2 scl x3)} and p2={ptl scl (x1 scl x2)}. Herein
xtl=inv2(x1) and ptl=inv2(pl) and scl is a commutative,
self-reversing and associative function. The way to approach
this is to use arithmetic in GF(2?). The following rules apply
using + and x in GF(2?).

Multiplication:
1{2]3
x1 11{2]3
x2 12(3]1
x3 |3[1]2

For instance, in GF(2?) under the earlier defined multiplica-
tion 2x2 x1=3x1, etc.
Addition

2x1

x1 +2xl =3x1
2x1 +2x1=0
3x1 +2xl =x1

3x1

x1 +3x1 =2x1
2x1 +3x1 =x1
3x1 +3x1=0

+ x1

x1+x1=0
2x1 +x1 =3x1
3x1 +x1 =2x1

x1
2x1
3x1

The distributive property applies to ax(b+c)=axb+axc.
Division is the inverse of multiplying.
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Accordingly, division by 1 is multiplying by 1; division by 2
is multiplying by 3; and division by 3 is multiplying by 2.

One can then write the equations as p1=2xx1+x2+x3 and
p2=2xpl+x1+x2.

For instance, assume that x1 and x2 are known to be in
error. Then x2=2xx1+x3+pl. Substitute in the p2 equation:
p2=2xpl+x1+(2xx1+x3+pl) or 2xx1+x1=2xpl+pl+p2+x3,
or 3xx1=3xpl+p2+x3. Dividing by 3 is multiplying by 2 so:
x1=pl+2xp2+2xx3=0+2x0+2x2=3. Etc.

As another example, one may assume that not adjacent
symbols x1 and p1 are in error. One must solve the equations
then for x1. This leads to 2xx1=3xx2x2xx3+p2; or x1=2x
X2+x3+3%xp2=2x3+2+0=1+2=3. One achieves this result by
applying the arithmetic rules in GF(2?) as stated before.

Galois field arithmetic may be preferred for solving the
equations for in error symbols. However, these easy solutions
may only be available for codewords defined in extension
binary fields. As an illustrative example, a 5 symbol S-valued
code will be generated with 3 data symbols from a 5-valued
LFSR as shown in FIG. 6

The coder in FIG. 6 is a 5-valued LFSR with shift register
elements 601, 602 and 603. The taps have functions sc5 at 604
and 605. The end tap has a 5-valued multiplier factor 2, which
is a 5-valued inverter [0 2 4 1 3]. The functions sc5 is addition
modulo-5 of which its truth table is shown in the following
table.

sch[0f1f2(3|4
0 [of1f2(|3]|4
1 1121314]0
2 [2[3[4]0]f1
3 [3[4fof1f2
4 14]0]1]2]3

This coder will generate 5-valued codewords by providing
the data symbols as initial shift register content and running
the coder for two clock pulses. The check symbols will be
generated on 609. The codewords thus generated have at most
2 symbols with another codeword in common. That means
that 2 errors can be detected, and knowing the position of two
errors, two errors can also be corrected. The first 25 code-
words of this coder are provided in the following table.

0fojo0j0fo0
ofo)1]2f2
0(0]2]4]4
ofo]3]1f1
001433
0f1]10]1(3
of1]11]13f0
0f1]12]10f2
011324
0f1]14]14f1
0f210]2f1
0f211]4(3
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-continued
012121110
0121313]2
0]12]410]4
013]0[13]4
013]110]1
013]1212]3
013131410
0131411]2
014]0]4]2
014|111]4
01412131
014]13[10]3
olalal 2o

The coder of FIG. 6 will be used for developing the equa-
tions to solve the errors. It should be clear that when a symbol
x3 is in shift register element 603 a symbol value 2xx3 is
provided to input 607 of function sc5 at 605. The 5-valued
equations are then: p1={x1 sc5 (x2 sc5 2xx3)} and p2={p1
sc5 (x1 sc5 2xx2)} to generate codeword [x1 x2 x3 pl p2].
Because sc5 is an addition (mod-5) one can write the equa-
tions as:

p1=x1+x242xx3 and p2=pl+x1+2xx2

One can reduce the coder of FIG. 6 to the coder of FIG. 7.
The coder of FIG. 7 has 5-valued shift register elements 701,
702 and 703. The functions sc51 at 705 is the original function
sc5 modified according to the multiplier and function sc5 at
704 remains sc5. The check symbols are generated on 707 and
are identical to the ones generated on the coder of FIG. 6.

For the 5-valued arithmetic the following truth table need
to be used for multiplication x and subtraction —, meaning
(a-b) wherein ‘a’ is the row and ‘b’ is the column of the truth
table.

0f112]3(4 x[o]1(2]3]4
0f0]14]3[2]1 0fo]ofo]O]0O
1]11[{0]4]3]2 110f1]2(3]4
2(2]11]10(4]3 2(0]12[4]1]3
3(312]1(0]4 3({0]13[1]4]2
414[3]12]1{0 410[{4]13[2]1

One should further keep in mind that dividing by 2 is
multiplying with 3, dividing by 3 is multiplying by 2 and
dividing by 4 is multiplying by 4. Further more 3x3=4 and
4x4=1, etc.

Accordingly one will find for x1: p2=2x1+3x2+2 x3 or
3p2=x1+4x2+x3 or x1=(3p2-4x2)-x3. Assume from the
table that [x1 x2x3 pl p2] was [0 4 3 0 3] with x1 and p1 in
error. The equation provides: x1=(3x3-4x4)-3=(4-1)-3=0.
As another example assume from the codeword table that the
codeword was [02 3 3 2] with x1 and p1 in error, so x1 has to
be calculated from (x2, x3 and p2). The equation then pro-
vides x1=(3%x2-4x2)-3=(1-3)-3=0. The tables show that
3x2=1 and 4x2=3 and 1-3=3 in modulo-5 arithmetic as
defined by the tables.

The methods here presented as different aspects of the
present invention also apply to detection and correction of
more than 2 errors, such as three errors. In order to detect k
errors in a codeword of n symbols, each codeword in a set of
codewords must have at least k+1 different symbols in com-
mon positions from any other codeword in the set. Or each
codeword may at most have (n-k-1) symbols in common
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positions. The best one can do in a 7 symbol codeword to
detect 3 errors is having at most 3 symbols in common. Such
a code would require 8-valued symbols and is generally
known as an RS-code. Itis possible to meet the error detection
requirement in a lower valued symbol codeword. However,
that would require a codeword with more symbols. It is then
understood that other and different examples of detection 3
errors in a codeword can be provided according to different
aspects of the present invention. As an illustrative example, an
8-valued 7 symbol codeword with 3 check symbols will be
provided to demonstrate error correction when the position of
errors is known.

One can identify the positions of the errors for instance by
establishing a matrix as shown in FIG. 8. The data symbols
occur sequentiallyasx1...x4,yl...y4,vl...vd zl ... 74.
The symbols are broken up as 4 columns of 4 data symbols
and horizontal check symbols t and tt are generated as well as
vertical check symbols p, q, r and s. The assumption in the
example is that errors will occur as at most 3 adjacent errors
in a column. One skilled in the art may, of course, design 2 or
3 dimensional matrices for different (also non adjacent) errors
and different symbol error ratios as well as different code-
word sizes.

Assume that all symbols in the illustrative examples are
8-valued. By running 8-valued coders on the received data
symbols one can check the newly generated check symbols
against the received check symbols and determine which
rows and columns are in error, thus determining the position
of the errors. Based on the known error positions and the
coder one can reconstruct the correct symbols in the error
positions.

Assume that the 3 check symbols in the column of FIG. 8
are generated by the 8-valued Fibonacci coder of FIG. 9. This
is an 8-valued LFSR with 4 shift register elements 901, 902,
903 and 904 with three identical 8-logic functions 905, 906
and 907 which is an addition sc1 over GF(2*). Also included
are 4 multipliers 908, 909, 910 and 911 which are multipliers
respectively of a factor 4, 1, 1 and 2 over GF(2*). At each
clock cycle a check symbol in generated on output 912.
According to earlier disclosed methods, the coder can be
reduced in number of elements by reducing the addition
according to the multipliers. One can also modify the
Fibonacci configuration to a faster Galois configuration. All
providing the same check symbols. However, for reconstruct-
ing the error symbols, especially applying GF(n) arithmetic,
a Fibonacci configuration with multipliers may be preferred
for error correction, though probably not for generating check
symbols.

The truth tables of the addition scl and multiplier over
GF(2%) are provided in the following truth tables.

Dowlbslwlhol—]lo] +
G a|u|slwhv|=]olo
Wl ][O~
Y BN I A =1 FN [N S
i B 1 K= E=2 E5 BN 2] R
nlwl oo~ &~
EN E] k=1 BN N7 (V) Fo N [V/} RO}
ol —|lwls]w|u]|a]o
(=] [*] NN RV7) P FC N [OF) BN} )
G a|u|slwol=]o] x
ololo|elo|eo|le|o|o
G a|u|slwho|=]o]—
—lwla|uls|w|o]o] e
=] wlo|u|s|w|o]w
(3] ST E BN -0 EW/Y NN Fall AN
Ny RS ST O Y [CN) (V2N R RV
|l wlo]=|w|a|o] o
=N E97] [N [9%) Y P NG Pl )
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The following table shows the division rule in GF(2?).

Or division by 2 is multiplying by 7, division by 3 is multi-
plying by 6, etc.

The initial state of the shift register of the coder of FIG. 9
is [x1 x2 x3 x4]; in three clock cycles the coder will generate
3 check symbols [p1 p2 p3]. The equations for generating the
check symbols are:

p1=Ax1+x2+x3+2x4;
P2=4pl+x1+x2+2x3;

P3=4p2+pl+x1+2x2.

One can solve these equations for any of the 3 symbols to
be unknown. As one example assume [x1 x2 x3] to be in error.
One can solve the linear equations by matrices or by substi-
tution. Applying substitution one will find:

x3=Tpl+4p2+5p3+x4;
x2=6p1+6p2+5p3+6x3;

x1=pl+4p2+p3+2x2;

and thus with [x4 pl p2 p3] known one can solve the equa-
tions.

A partial set of 7 8-valued symbol codeword generated by
the coder of FIG. 9 is shown in the following table.

x1[x2|x3|x4|pl|p2|p3
0 1417 121213 |4
1 {3 {7 [1 [o]3]7
2 |5 16 |4 |1 ]2 ]2
3514121517 |1
4 {3 {7 1 [5]6 |3
51416 |6 |0 ]0 |0
6 |13 1410 |7 |1 |2
717121417 |0 |1

One can easily check for the provided codewords using [x4
pl p2 p3] in the equations to determine [x1 x2 x3].

One can provide the solution set for any of 3 or less sym-
bols in a codeword being in error.

One may also determine solutions for independent sets of
unknowns by applying Cramer’s rule. As an example, the set
of equations for the coder of FIG. 9 will be used. For appli-
cation of Cramer’s rule one should apply all additions and
multiplications of in this example GF(8). When applying
Cramer’s rule using for other radix-n one should apply the
appropriate arithmetic. In this example, one should apply
addition and multiplication over GF(2) of which the truth
tables are provided above.

Assume that it is determined that x1, x2 and x4 are in error.
The codeword in error is [x1 X2 x3 x4 pl p2 p3]=[el e2 7 ¢4
5 6 3]. One should the create three equations with unknowns
x1, x2 and x4 from the known equations as:

Ax1+x2+2x4=pl+x3=
x1+x240=4p1+p2+2x3

x1+2x2+0=p1+4p2+p3
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Cramer’s rule then solves the above equations as:

dr 12
d2 10
la3 2 0

xl=

4 d1 2
1 a2 0
[1 a3 0

x2=

41 dl
11 a
|12 a3

x4 =

Herein

10
10

=0+04+2=%(1+2)=2%4

+2%

11
12‘

=5,

as the rules of GF(8) are used.

Furthermore,

dl pl+x3 4
[dZ]:[4p1+p2+2x3]:[6]
43 pl+4p2+p3 0

Accordingly

2
=3

4=l 3amdxtc o1
_,x_g_anx_g_.

This is in accordance with the elements in the word as gen-
erated by FIG. 9.

One may also apply Cramer’s rule to other n-valued codes,
such as the 5-valued coder of FIG. 6. Herein, one should use
the rules of modulo-5 addition and modulo-5 subtraction in
the provided example, as well as the multiplication. Assum-
ing thatx2, p1 and p2 are correct and x1 and X3 are in error the
equations become:

x1+2x3=pl-x2

x1x0=p2-p1-2x2.

The determinant

12

D=
‘1 0

‘:1*0—2*1:—2:3.
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The solution vector is

(dl] ( pl—x2 ]
) \p2-pl-222)

Assume that the codeword [x1 x2 x3 p1 p2]=[el 4 e3 2 0]
was received. According to Cramer’s rule:

dl 2 2

i ol ool
xl = =———=0,and

D 3

1 dl 13
5 ‘1 dZ‘ ‘1 0‘ 1%0-3%1 -3 L4
YE—p T3 ~ 3 T3 T T

Accordingly, the correct codeword is [x1 x2 x3 pl p2]=[0
4 4 2 0], which is the last codeword in the list of codewords
that was provided. The example is fairly simple. However, it
demonstrates that as long as the position of errors are known
one may correct any adjacent or non-adjacent set of errors
within the constraints of the number of independent equa-
tions.

For illustrative purposes errors are solved by using n-val-
ued adders and multiplications, either modulo-n or over
GF(n). An n-valued multiplication with a constant may be
dealt with as an n-valued inverter. One may reduce combina-
tions of n-valued inverters and an n-valued logic function to a
function with a modified truth table as was shown by the
inventor in U.S. patent application Ser. No. 10/935,960, filed
on Sep. 8, 2004, which is incorporated herein by reference.
An expression for a check symbol cs1=inv2(x1) sc5 inv3(x2)
sc5 inv4(x3) may then be replaced by sc1=x1 sc51 x2 sc52,
wherein sc51 and sc52 are the function sc5 modified in accor-
dance with the inverters. This reduction may be applied to any
expression having inverters and functions, including
modulo-n adders and multipliers and adders and multipliers
over GF(n). Accordingly, an n-valued expression created
from adders and having at least one multiplier may be
changed to an expression having at least one function not
being an adder modulo-n or over GF(n). A function not being
an adder over GF(n) or a modulo-n adder herein may be
defined as an n-valued non-adder function.

In accordance with an aspect of the present invention, one
may thus circumvent using an adder and multiplication by
using an n-valued non-adder function in an expression to
solve an error. Such an expression may be part of Cramer’s
rule.

Furthermore, one may over estimate the number of errors
within the constraints. For instance, if only x1 was in error
and x3 was not in error but the other conditions still apply then
one still will reconstruct the correct value for x3. Even though
x3 was not in error.

It is fairly simple to calculate the symbols in error ‘on-the-
fly’, based on the errors. One can also already implement each
set of solutions based on the maximum number of errors.
Assuming 3 symbols in error even if only one is in error does
not matter to the final error correction. One merely recalcu-
lates the symbols. The only limitation is that one of course can
not solve more errors than independent equations. One can
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again see the clear advantage here of knowing where the
errors are located. It cuts the number of required check sym-
bols in half.

FIG. 10 provides a diagram for solving different equations
depending on different errors. One can store the equations for
specific combinations of errors. As an example, it is assumed
that at most 3 consecutive symbols can be in error. For each
error combination a solution set is determined a stored for
instance as an executable program or is hard wired as a circuit.
Assume a codeword having 10 data symbols and 3 check
symbols and each codeword of the set has at most 9 symbols
in common with another codeword. Assume that, for
instance, through using also horizontal error check symbols
one can determine where errors occur in a column 1000 in
FIG. 10. Assume that errors occurred in position 1001 or in
the first 3 symbols of the codeword. The solution for this
situation is enabled as ‘solution 1’ in equation solver 1010.
This equation solver may be part of a computer program or
hard wired logic circuits. The solver is then provided with the
known correct symbols [x4 x5 x6 x7 x8 x9x10 pl p2 p3] and
then generates the correct [x1 x2 x3]. For another error situ-
ation 1002 the solver addresses a different ‘solution 2” and
generates [x5 x6 x7] and for error situation 1003 the solver
addresses yet another ‘solution 3” which may generate just
x10 or also [pl p2] if those symbols are used in a later stage.

FIG. 11 shows a possible flow diagram of determining the
errors in a two dimensional symbol matrix with lines and
columns. This is for illustrative purposes only. The symbols
can be arranges in multi-dimensional matrices (3 dimensional
and higher) and the arrangement does not need to be of a
square or rectangular shape. In the flow diagram first all
horizontal lines are checked against the received check sym-
bols by running a coder on the incoming data symbols. If
newly calculated check symbols and received check symbols
are different the line has at least one symbol in error. After
completing the lines the columns will be analyzed. It should
be clear that the checking in the diagram can be performed in
many different ways. One can first check the columns and
then the lines. One can stop checking if a certain number of
lines or columns in error have been detected. One may also
check different dimensions in parallel, and many other
approaches can be applied and are fully contemplated. The
error positions, once established, will be provided to the
‘solver’ of which one illustrative example has been provided
in FIG. 10.

Again referring to FIG. 3, one may analyze the method that
is provided here as an aspect of the present invention as
follows. At least one word of n-valued symbols having at least
one check symbol may be designated as a positional code-
word. For instance, as an example one may consider the rows
in FIG. 3 as the positional codewords. One may consider the
columns of the matrix as the equational codewords, which
provide the plurality of check symbols and equations from
which known errors can be solved. The combination of check
symbols in the positional and equational codewords provides
the position of an error in a codeword. While the matrix of
FIG. 3 is two-dimensional, more dimensional matrices of
codewords can also be used. Once the positions of the error
are located, one can then assign the symbol that is in error as
an unknown in the sets of equations derived from the equa-
tional codewords. With known or assumed patterns of errors
one may provide additional input to solving the equations.
Checking the Check Symbols

An aspect of the present invention is to make sure that no
confusion can arise about the status of a check symbol. If a
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check symbol is part of a set of p independent equations then
knowing that one of at most p symbols is in error and knowing
which of at most p symbols are in error, which may include
check symbols, is sufficient to correct errors. However, if
error free check symbols are required to locate an error one
may have to take additional measures to make sure that errors
in check symbols can be located and corrected. One may take
additional measures to solve errors in check symbols.

FIG. 16 shows in diagram a 2 dimensional matrix or array
1600 of n-valued symbols. It should be understood that the
aspects here explained can be applied to any k-dimensional
array of symbols. For illustrative purposes, the example is
limited to the 2-dimensional case. The rectangle 1601 repre-
sents rows and columns of n-valued symbols. Rectangle 1602
contains the check symbols over a row. It may be called a field
of row check symbols. As disclosed before, each row may
have more than 1 check symbol assigned to it calculated from
data symbols in a row. Each check symbol may be calculated
in different ways. For instance, two different check symbols
calculated over a row may be calculated using all symbols in
a row, but using different equations which may be part of a
linear independent set.

A row of a matrix may have p n-valued data symbols. A
check symbol over a row may also be calculated from a
number m with m<p of data symbols. One may herein use
similar or different expressions to calculate check symbols.

FIG. 16 rectangle 1603 is a field of check symbols calcu-
lated from a column of the matrix of n-valued data symbols
represented by 1601. One or more check symbols may be
calculated over each column. One may use all data symbols in
a column to calculate a column check symbol. One may also
not use all data symbols in a column. Furthermore, one may
use different n-valued expressions to calculate a check sym-
bol in a column or a row. One may also use the same expres-
sion.

Furthermore, one may include a previously calculated
check symbol in calculating a next check symbol over a row
or a column.

In accordance with a further aspect of the present inven-
tion, a field 1604 may be created which creates check symbols
from check symbols. Field 1604 is drawn to be broader than
field 1602 and deeper than field 1603. The reason is to illus-
trate that if a column of data symbols generates k check
symbols and a row generates r check symbols then if the same
check symbol generating rules are applied also (2xkxr) check
symbols of check symbols will be generated. One may also
generate more check symbols. For instance one may use a
Reed Solomon coding scheme to correct up to e errors in any
row or column in a matrix. For instance, with a relatively high
coding rate with a high ratio of data symbols to check sym-
bols, it may be worthwhile to assure error free check symbols,
as the overhead for error correcting check symbols would be
much lower than full RS error correction for each and every
word of data symbols.

Low Density Parity Check Symbol (LDPCS) Code

One may calculate w n-valued check symbols from difter-
ent data-symbols in a sequence of p n-valued data symbols.
One should make sure that a data symbol is then included in
at least two different check symbols. By limiting the number
of check symbols to obtain a code rate which is about the
same or better than the code rate of a Reed Solomon code one
can thus create an n-valued Low Density Check Symbol
(LDCS) code. Such a code is not unlike the known binary
Low Density Parity Check (LDPC) code. However, in a
binary LDPC code a parity check symbol can only be deter-
mined in a limited number of ways, usually by applying the
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binary XOR function. The variation of expressions for deter-
mining an n-valued check symbol is much greater than in the
binary case. It thus enables to create a much greater variety of
low density codes.

In general, a LDPC code determines parity bits over parts
of a sequence of bits. By arranging information symbols in a
2-dimensional or higher dimensional matrix and by determin-
ing one or more check symbols over a dimension one creates
what is generally known as a product code.

In a simple form an n-valued LDCS code 1700 may look as
in FIG. 17. A sequence of n-valued data symbols [x1 . . . xk]
may be arranged in a matrix 1701, wherein each line 1702 has
a series of symbols containing one or more of the n-valued
data symbols. Each line also contains at least one check
symbol v. One may generate one than one check symbol
shown as [x1 . .. vm]. In general only one check symbol is
generated per line. As with LDPC in a line not all data sym-
bols are used but just a limited number. What is different
between LDPC and LDCS codes as defined here aline formed
by a set of data symbols and one or more check symbols form
an expression which is part of a set of linear independent
equations. Accordingly, one could write the formation of the
check symbol in line 1702 as: al*x1+a2*x2+a3*x3+ . . .
ak*xk=v1. Herein a coefficient ak may be 0.

One may calculate other check symbols in the line using
different coefficients. A similar calculation for check symbols
in p lines of the same data symbols, each calculation being
performed in accordance with an equation from the set of p
linear independent equations can then be performed. Further-
more, one may add one or more check symbols per series of
check symbols in 1704 to make sure that check symbols are
error free.

This means that when it is known which symbol is in error
(including the check symbol) one can solve p errors.

For instance, it may be assumed that errors occur in a burst
and that at most p consecutive errors in symbols can occur.
One may then, as was shown earlier, solve the errors for
instance by applying Cramer’s rule adapted to the n-valued
logic functions that are used in an expression. The number of
consecutive errors that can be corrected then depends on the
number of linear independent equations. The number of lin-
ear independent equations depends of course on n in n-val-
ued. One may use then an additionally generated check sym-
bol per line, using a different equation or expression to check
if a calculated to be correct data symbol is indeed correct.

In accordance with an aspect of the present invention, one
can thus create an error detecting and/or error correcting code
from a plurality of n-valued data symbols by creating a plu-
rality of n-valued check symbols, an n-valued check symbol
being generated from an n-valued expression wherein the
value of at least one of the plurality of n-valued data symbols
is a variable in the expression. In accordance with a further
aspect of the present invention, at least two of the plurality of
n-valued data symbols are variables in an expression to gen-
erate a check symbols. In accordance with yet a further aspect
of the present invention, check symbols are calculated from
the check symbols. In yet a further aspect of the present
invention an expression to calculate a check symbol is an
equation in a plurality of linear independent equations. In yet
a further aspect of the present invention, an assumption may
be made on which symbols are in error. Based on the assump-
tion one may then calculate the correct value of the symbols
assumed to be in error. One may check the correctness of
assumption by recalculating check symbols. Such recalcu-
lated check symbols may be different from the ones which
were used for resolving symbols assumed to be in error.
Accordingly, one may create in accordance with an aspect of
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the present invention a low density check symbol code which
allows for error detection and/or error correction. Creating
and using such a code applies to n>2.

As an illustrative example one may apply the coder of FIG.
9. The initial state of the shift register of the 8-valued coder of
FIG. 9 is [x1 x2x4]; in three clock cycles the coder will
generate 3 check symbols [pl p2 p3]. The equations for
generating the check symbols are:

pl1=Ax1+x2+x3+2x4;
P2=4pl+x1+x2+42x3;

P3=4p2+pl4x1£2x2.

One may make different assumptions about errors in data
symbols or check symbols. Up to three symbols may be
corrected. As an illustrative example assume that 2 consecu-
tive errors can occur and that the sequence of symbols is
transmitted as [x1 x2 x3 x4 pl p2 p3]. One may then solve 2
equations with the assumed errors as unknowns and apply the
third equation to check correctness of solutions. Assumed
symbols in error can be (x1,x2); (x2,x3); (x3,x4); (x4,p1);
(pl,p2); and (p2,p3). It should be easy to solve any of the
assumed errors and check if the assumption is correct.

In general, one may use LDCS codes for larger sequences
of' symbols. In those cases hard coding based on assumptions
will probably not practical and an iterative approach should
be used.

Shifting the Matrix

If there are a limited number of overlapping errors in a
block determined by a matrix, then determining the occur-
rence and position of an error is simple and an error corrected
symbol may be calculated very rapidly. One may adapt the
size of a block or matrix to an expected symbol error ratio.
When the block is too small there may be no advantage over
other error correcting methods. The here provided methods
may be advantageous for instance when burst errors may
occur. Especially in systems with very high data throughput
and requirement for limited latency the methods may be
advantageous. In general, known methods use syndrome cal-
culations or are iterative, using maximum likelihood meth-
ods. Working close to the Shannon limit these methods may
process large blocks of data contributing to decoding latency.

Error correcting blocks having potentially large bursts of
errors that can be easily detected and error corrected are
another aspect of the present invention. Detection of two
errors requires two check symbols. The problem of detecting
multiple errors in a single matrix having data symbols and
check symbols is that two errors can cancel each other if the
check symbol is not determined by an expression that can
detect 2 errors.

There are several ways to detect multiple errors in a word of
n-valued symbols. As an illustrative example, a series of
n-valued symbols is organized in a matrix and check symbols
are calculated along columns and rows. One may make the
matrix multi-dimensional. To keep the example simple a 2
dimensional matrix is used, though such a limitation is not
required. One can determine check symbols along columns
and rows for instance. The coding matrix is shown in the
following table with check symbols p and q.
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pll | p21 | p31 | p4l | p51 | p6l | p71 | p81

qll
q21
q31
q4l
g51
q61
q71
q81

Xel | X1

X2 | Xe2

It should be clear that detecting a single error and correct-
ing such an error is easy if a check symbol is created from a
reversible expression. Even multiple errors can be detected
and corrected. However, this requires that (when using a
single check symbol per word in a column or a row) two errors
that cancel each other out do not occur in the same row or
column. In the illustrative example in the above table check
symbols p11, p21, q21 and q51 are found to be in error. One
has to solve each error from one check symbol recalculate the
second check symbol to make sure that one has identified the
appropriate error. If indeed no error overlaps then one can
solve the check symbol equations for (X1,X2) and (Xel,
Xe2). Only corrected (Xel,Xe2) will provide both the correct
column and row check symbols.

One way to solve overlapping errors is to provide addi-
tional check symbols, such as using a multi-valued CRC
code. An example is provided in the following table.

pll | p21 | p31 | p4l | p51 | p6l | p71 | p81

qll
q21
q31
g4l
q51
q61
q71
q81

ql2
q22
q32
q42
q52
q62
q72
q82

Xel | X1

X2 | Xe2

Both (Xel,X1) and (X2,Xe2) can be calculated with the
above methods. If one assumes a total number of adjacent
errors being 2 than one can also correct the errors if they
overlap by 1 using the above methods. However, by using
more check symbols the advantage over for instance Reed
Solomon codes may disappear or become less pronounced.

If one uses the correct expressions two errors in a row or a
column may always be detected if 2 check symbols are pro-
vided over a row or a column. If not the correct expressions
for calculating check symbols are used or for instance only
one check symbol is used over a column or row then errors
may cancel each other out.

One simple way to increase the benefit of additional check
symbols is by calculating the check symbols over a same
number but differently arranged data symbols. This helps in
“unhiding’ hidden errors. Such a coding method may not be as
efficient in number of check symbols as other maximum-
likelihood decoding parity check methods. However decod-
ing methods can be very fast.
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In accordance with an aspect of the present invention, a
series of (pxq) n-valued data symbols are arranged in such a
way that at least p+q check symbols are generated. A check
symbol belongs then to a word of p data symbols or to a word
of'q data symbols. In an embodiment of the present invention
the same data symbols will be re-arranged and again p+q
check symbols will be generated, wherein at least either the
words of p data symbols or the words of q data symbols do not
have the same data symbols in the word. This can be illus-
trated in the following table.

pl [p2 |p3 [p4 |pS sl |s2 [s3 |s4 |[s5

all | al2 [al3 |ald|al5| ql all | al2 |[al3 |ald|al5| ql
b21 | b22 | b23 | b24 [ b25] g2 b22 [ b23 | b24 | b25 | bl12] g2
c31 | e32[e33c34]e35] g3 ¢33 |34 [e35]ce31(e32( g3
d41 | dd2 | da3 | dd4 [ 45 | ¢4 d44 [ d45 ] d41 | d42 | d43 | g4
f51 | £52 | 153 | 54 [ 55| 5 55 [ £51 | £52 | £53 | 54 | ¢5

For calculating the check symbol of a column a row is
shifted one position to the left compared to its position to the
row above it. This means that the check symbols over a
column may be different while the check symbols over a row
remain the same. Such a shift may be considered adding
another dimension to a check symbol matrix.

The advantage of the methods provided herein as an aspect
of the present invention is that one may reduce the overall
number of check symbols and faster calculation of the correct
symbols based on an assumption of error behavior.

One may design different shifts over columns and rows.
For instance, in an illustrative example, one may use the
following transformation of a matrix to create different sets of
check symbols.

pl | p2 | p3 | p4 | pS sl [s2 | s3 [s4 |55

11 11211311415 ql 11 (53 1451322411
21 (2223 )24 | 25| q2 25 112 [ 54 (41 | 33| 12
31 [ 3233 ]34 ]35] 43 34 121 [ 1355423
41 | 42 143 |44 [ 45 | o4 43 [35 12214 |51 |4
51 [ 5253545595 52 144 (312315 (5

The transformation rule is to shift every element in a row
and each element in a column compared to a previous trans-
formation, whereby the first element 11 is not transformed.
One can then determine a check symbol over each row and
column. No two data symbols will then be in the same row or
column after and before transformation. One may determine
the check symbols in intermediate steps; for instance first a
row transformation and then a column transformation. For
determining check symbols one may use simple expressions.
For instance one may use an addition, for instance modulo-n
orover GF(n) to determine a check symbol. In n-valued check
symbols one may also apply more complex expressions like:
k1*x1 scl k2*x2 . . . scm kp*xp=r wherein x1 . . . xp are
n-valued data symbols, k1 .. . kp are n-valued coefficients and
scl ... scm are n-valued reversible functions.

As anillustrative example the following matrix of25 4-val-
ued data symbols is assumed.
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0f1]12]3(4
110[(1]0]3
3(3]1]1f0
0f1]13]2]1
1]13[2]3]0

The following matrices are received in accordance with the
previously shown transformation and including 4-valued
check symbols over columns and rows before and after trans-
formation by using the addition over GF(4) over all symbols
in a row or a column. Transmission errors are included in the
matrices.

W= S| W]
= =l B =1 =]

wl—=|o|l~|eolo
o|lw|—lw] —~]+~—
wln|w|=|—=]r~
wlw|ro|—=|o]w
olo|—~]o|w]|e
plw|lw|—=|w]lo
olvw|o|lol—]w
Wl ]| w] e~
== w]lo|lo|w
w |~ —|~]o

The bottom row shows the check symbols over columns.
The most right column in a matrix shows the check symbols
over the rows. A check symbol over the column and row of
check symbols may also be included. This was left out in this
example.

One then may re-calculate the check symbols which will
provide the following results.

ofrf2]13)2(2 of211]3]0f0
ofrf1]o0f3]3 3({1]3]0]1(0
1]13(1]1]0(2 1jo12)10]1f2
ofr|3j2f1]1 3fo]1]3]1f0
113(2]13]0(3 3(2]11]1(2]3
3({03]3(0 2(1]10]1(3

In order to highlight the differences between the received
and recalculated matrices one may take for instance the dif-
ference between the two. This will provide the following.

=N el el Rl el

wlol|lo|lo|lo|lo
(=) el Hel Hel Rl K=
(=) el Hel Hel Rl K=
(=) el Hel Hel Rl K=

If one would depend only on the first matrix one may
conclude wrongly that only the first two elements of the third
row are in error. The shaded area in the second matrix shows
that other potential errors may have occurred. By mapping the
positions of potentially the most identified errors, which
occur in the second matrix into the matrix with fewest iden-
tified errors one can find the actual errors. This can be done by
using the reverse transformation. One then finds
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One can then solve e2 from the relevant column check
symbol; one can solve €3 from the relevant row check symbol
and one can solve el from either column check symbol and €3
or from row symbol and e2.

One can thus solve a plurality of sometimes fairly complex
error patterns. The method here provided can be further
extended by generating additional check symbols by using
additional matrix transformations. Furthermore, one may use
iterative methods to solve errors that are potentially identified
but cannot be resolved in a deterministic way.

One may create one or more matrix transformations so that
matrices have no or just a very limited number of elements in
a same position. Furthermore, one may create a matrix of
n-valued data symbols in such a way that elements such as
symbols will not appear in the same row and/or the same
columns and/or not in a common row and/or in a common
column with the same elements as in another matrix. This last
aspect prevents double or multiple errors appearing in shared
columns or rows. This allows for unhiding hidden double or
multiple errors.

One can thus first calculate check symbols according to a
matrix before transmission of symbols. Then one transmits all
symbols, including the check symbol. The matrix is recon-
structed from received symbols which may contain errors.
The check symbols are recalculated from received symbols.
One can then compare received and recalculated check sym-
bols. By using additional matrices for generating check sym-
bols one can uncover hidden errors from double or multiple
symbols in error. One does this by using from a matrix all
possible errors and mapping error positions into another
matrix. The other matrix may show an error pattern. One may
use different matrices. The real errors are those that will not
create a conflict in any of the matrices.

Accordingly, one can articulate the coding and decoding as
associating n-valued data symbols or the positions of n-val-
ued data symbols with at least a first and a second 2-dimen-
sional matrix. Herein a three or higher dimensional matrix is
assumed to also be included in a first and a second matrix.
Check symbols will be generated along the data symbolsin a
row and in a column of a matrix. This will be called: deter-
mining check symbols along the dimensions of a matrix.
Associating n-valued data symbols with a matrix does not
mean associating symbols with a Generating Matrix G or a
Parity Matrix H which is known. Associating with a matrix in
this context means associating a symbol with a position in a
matrix. The matrices may have identical dimensions, they
may also have different dimensions. A position in one matrix
may be related to a position in a second matrix. By changing
the dimensions of a matrix one may store the same number of
data symbols but generate a different number of check sym-
bols. For instance, a first matrix of pxp symbols may generate
(p+p)=2p check symbols, ifone generates a check symbol per
row and per column. Changing the dimensions to Y2 p by 2p
will generate 21 p check symbols.

The advantage of this method is that more errors can be
detected in a single word than with other methods by using on
average fewer check symbols per word. For instance, for a
word of 20 symbols to detect 5 errors would require 10
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additional symbols in for instance a Reed Solomon code. A 20
by 20 matrix in RS would then require 200 check symbols.
Even though the errors will occur in one of 20 words. In the
present method 2 check symbols per column and row may be
required adding 80 check symbols. One may want to add a
field for checking the check symbols. So if a certain error rate
and a distribution of errors can reasonably be established the
error detection/correction method provided herein may be
faster and more efficient.

It should be clear that the here provided methods and
apparatus and systems also apply to binary coders and decod-
ers. The solver equations for the binary case are easy to
determine as the multipliers are limited to 0 and 1, and the
applied function is usually the XOR function, which is com-
mutative, associative and self reversing. The binary EQUAL
function can also be used.

For illustrative purposes, the expected symbol errors were
limited to one vertical codeword per set of codewords. This
can easily be expanded to more vertical codewords with
errors. However, it requires then the horizontal codewords to
be expanded with additional check symbols. Furthermore it
may initially not be clear which of the symbols are in error.
This is illustrated in FIG. 15. FIG. 15 is a modified version of
the coding matrix of FIG. 8. An extra column with check
symbols ccl, cc2, cc3, cl, ¢2, ¢3 and c4 has been added. This
allows detection of 2 errors in any horizontal line codeword.
FIG. 15 shows that errors have been detected in shaded col-
umns under pl and rl and in shaded horizontal lines with t1
and t4. Accordingly, (assuming that all errors are adjacent and
only one or one set of adjacent errors occur in a column)
column under p1 has either x1 or x4 in error. If column under
pl has x1 in error then the column under r1 has v1 in error. If
column under p1 has x4 in error then the column under rlhas
v1 in error. As the solver has all relevant equations is it easy to
determine both (x1,v4) and (x4,v1). Only one of those solu-
tions will generate the correct check symbols. It should be
clear that different error detecting strategies can be devel-
oped.

In FIGS. 4 and 8 examples are provided how codewords
can be arranged for error detection and error correction. It
should be clear that this is usually not the way that codewords
are actually transmitted. In general, symbols are transmitted
sequentially, one behind each other, to form a sequence of
symbols. Check symbols have to be inserted into the
sequence in a pre-determined way at the transmitting side. At
areceiving end the codewords with respective check symbols
have to be extracted and have to be matched with their appro-
priate codeword symbols. Accordingly, a series of codewords
may have to be organized in a frame and transmitted as a
sequence and deconstructed in its constituting codewords at
the receiving side, using the frame information. Synchroni-
zation words may be used to determine beginning and ending
of a frame. Expected symbol error ratios may be applied to
determine where to insert check symbols in a frame. Addi-
tional check symbols may be provided to find critical errors in
check symbols.

The methods and systems here provided can save substan-
tial check symbol redundancy. For instance, assume a matrix
01100 data symbols arranged in 10 columns and 10 horizontal
lines or rows. Assume that at most 3 consecutive symbols in
100 data symbols have to be error corrected. One can do that
by assigning 3 check symbols to the columns and assigning 1
check symbol to a horizontal line. This means a overhead of
3x10+13=43 ifthe vertical column of check symbols requires
no check. This differs with having 10x6=60 check symbols if
one wants each vertical column to be error corrected for 3
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errors by an RS code. Additionally, the error correcting solver
as an aspect of the present invention is simple and fast.

As an aspect of the present invention, a distinction is made
between detecting symbols in error and correcting errors. The
known art of error correction also makes a distinction
between error detection, erasures and error correction. In
many cases error detection in the known art often means
detecting that a specific codeword is in error. That still leaves
uncertainty about the location of the error or in other words
which of the symbols in a word is in error. Accordingly, in this
invention, detecting symbols in error means identifying a
symbol in error, which includes its location in a codeword. In
some situations when multiple errors occur in multiple code-
words in a frame of codewords, it means identifying possible
areas or locations of symbols of error within a codeword. In
all cases detecting a symbol in error or symbols in error in the
present invention mean identifying error locations that are
more specific than just the codeword, unless specifically used
in a different sense.

As illustrative examples, n-valued codes and coders have
been provided that generate codes of p data symbols and k
check symbols so that each codeword has at most (p-1)
symbols at common with another codeword. These codes are
optimal, in the sense that other codes can be generated so that
a codeword of p data symbols and k check symbols have at
most q symbols in common with another codeword from the
set and wherein q<k+1. The optimal code can detect up to k
symbols in error, while the sub-optimal code can detect less
than k symbols in error. While optimal codes may usually be
preferred, in some circumstances it may for instance require
that one has to use n-valued logic wherein n is too high valued.
One can then create codes which are perhaps sub-optimal in
detection capabilities, but are close and can apply a more
preferred value of n and n-valued logic.

In accordance with another aspect of the present invention,
the n-valued symbols of a codeword are interleaved over a
plurality of codewords. Interleaving provides a way to sepa-
rate closely related symbols for instance by a predetermined
and recoverable transposition of symbols over a sequence of
symbols. Errors often occur in bursts. Such a burst may affect
a group of symbols which are adjacent or close to each other.
Ifall symbols affected by an error are in one word it may make
the word unrecoverable. By interleaving symbols that are
now adjacent or close are most likely from different words.
Accordingly, a burst may still affect a number of symbols, but
each affected symbol most likely belongs to a different word
that still can be corrected.

In accordance with a further aspect of the present inven-
tion, the here provided methods of error correction by error
detection and symbol reconstruction can be used in a system,
such as a communication system. A communication system
may be a wired system or a wireless system. Such a system
may be used for data transmission, telephony, video or any
other type of transfer of information. A diagram of such a
system is provided in FIG. 12. Herein 1201 is a source of
information. The information is provided to a coder 1202.
The information provided to a coder 1202 may already be in
a digital form. It may also be converted into digital form by
the coder 1202. The coder 1202 creates the code words of a
plurality of data symbols with added check symbols as
described herein as another aspect of the present invention.
The codewords are organized in such a way that up to a
number of symbols in error can be identified as such. The thus
created codewords may be provided directly to a medium
1203 for transmission. They may also be provided to a modu-
lator/transmitter 1206 that will modify the digital coded sig-
nal provided by 1202 to a form that is appropriate for the
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medium 1203. For instance, 1206 may create an optical sig-
nal. Modulator 1206 may also be a radio transmitter, which
will modulate the signal on for instance a carrier signal, and
wherein 1203 is a radio connection.

At the receiving side a receiver 1207 may receive, amplify,
and demodulate the signal coming from 1203 and provide a
digital signal to a decoder 1204. The decoder 1204 first iden-
tifies if and which symbols are in error in accordance with
another aspect of the present invention and then applies the
methods provided herein to correct symbols in error. A
decoded and error corrected signal is then provided to a target
1205. Such a target may be a radio, a phone, a computer, a tv
set or any other device that can be a target for an information
signal. A coder 1202 may also provide additional coding
means, for instance to form a concatenated or combined code.
Inthat case, the decoder 1204 has equivalent means to decode
the additional coding. Additional information, such as syn-
chronization, frame or ID information, may be inserted dur-
ing the transmission and/or coding process.

In accordance with another aspect of the present invention,
the here provided methods and apparatus for error correcting
coding and decoding of signals can also be applied for sys-
tems and apparatus for storage of information. For instance,
data stored ona CD, a DVD, amagnetic tape or disk or in mass
memory in general may benefit from error correcting coding.
A system for storing error correcting symbols in accordance
with another aspect of the present invention is shown in
diagram in FIG. 13. A source 1301 provides the information
to be coded. This may be audio, video or any information
data. The data may already be presented in n-valued symbols
by 1301 or may be coded in such a form by 1302. Unit 1302
also creates the code words of a plurality of data symbols with
added check symbols as described herein as another aspect of
the present invention. Codewords are organized in such a way
that up to a number of symbols in error can be identified as
such. The thus created codewords may be provided directly to
a channel 1304 for transmission to an information carrier
1305. In general, a modulator/data writer 1303 will be
required to write a signal to a carrier 1305. For instance the
channel requires optical signals or it may require magnetic or
electro-magnetic or electro-optical signals. Modulator/data
writer 1303 will create a signal that can be written via channel
1304 to a carrier 1305. Important additional information such
as for ID and/or synchronization may be added to the data.

FIG. 14 shows a diagram for error correcting decoding
information read from a carrier 1405. The information is read
through a channel 1404 (such as an optical channel or mag-
netic or electro-magnetic or electro-optical) and provided in
general to a detector 1403 that will receive and may amplify
and or demodulate the signal. The signal is then provided to a
decoder 1402 where error detection and error correction takes
place. The information signal, possibly readied for presenta-
tion as an audio or video signal or any other form, is then
provided to a target. The target may be a video screen, a
compute, a radio or any other device that can use the decoded
signal.

N-valued check symbols as disclosed herein are generated
from n-valued data symbols. There are different ways to
calculate n-valued check symbols. In a first embodiment, a
check symbol can be generated from an n-valued Linear
Feedback Shift Register (LFSR). The LFSR may have adders
and multipliers over GF(n). The LFSR may also have n-val-
ued functions with no multipliers occurring in the n-valued
LFSR. Furthermore, the check symbols may be generated by
apparatus such as circuitry or by processors such as program-
mable processors or by dedicated processors that executes
combinational n-valued logic expression without using LFSR
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or LFSR-like circuitry or programs. These non-LFSR meth-
ods may be called “direct methods”.

The n-valued functions disclosed herein which may be
included in n-valued expressions for generating check sym-
bols, for solving errors or for locating errors can be imple-
mented in processors. This may be programmable processors,
dedicated processors. They may use memory based truth
tables or switches and inverters that implement n-valued
functions. A processor may also be binary processors wherein
n-valued symbols are represented as words of binary sym-
bols. An A/D converter may be applied to transform an n-val-
ued symbol into a binary word; and a D/A converter may be
applied to transform a binary word into an n-valued symbol.
An n-valued symbol may thus be a single element. [t may also
be a word of p-valued symbols with p<n. Switching and
processing may be in electronic form, in optical form, or any
other physical form that implements n-valued states.

In accordance with an aspect of the present invention,
check symbols are generated in accordance with rows and
columns of a matrix to generate a check symbol. This makes
analysis of relations between check symbols easy to oversee.
In accordance with another aspect of the present invention,
one may also generate n-valued check symbols in a different
way. For instance, an illustrative example is shown in FIG. 18.
Herein different combinations of 10 n-valued data symbols
are used to generate 6 different check symbols. For check
symbol c1 and c6 the n-valued expressions are provided to
generate the check symbols. Because one uses an n-valued
basis one may use coefficients al ... a6 and b1, b2, b6, b7, b8,
b9 and b10 which have a value or a state (1, 2, 3, ...n-1). The
check symbols c2, . . ., ¢5 have similar expressions, but are
not shown in detail. Each data symbol of [x1 . . . x10] should
have has at least 2 check symbols in common with another
data symbol so one may resolve errors by iterative methods.
For instance, by assuming a value of a data symbol and going
through different possibilities using received values until all
possible equations of check symbols generate the correct
outcome. Once all equations generate the correct values, one
has corrected the errors, if not too many errors were assumed.
While the symbols ‘+” and “* are used for clarity these may
also mean other functions than addition and multiplication. A
‘+’ may be any reversible n-valued logic function. A “*’ may
be any n-valued reversible inverter.

In accordance with an aspect of the present invention, one
may code a sequence of p n-valued data symbols by adding to
the data symbols q check symbols. One may select from the p
symbols q combinations with q<p of n-valued data symbols
and create from each of the q combinations a check symbol
and thus generate q check symbols. The combinations should
be selected in such a way that each of the n-valued data
symbols contributes to at least two check symbols. One can
then transmit a codeword containing the p n-valued data
symbols and the q n-valued check symbols. With q<<p one
may call such a code a Low Density Check Symbol (LDCS)
code. One may generate check symbols in different ways.
Assume a combination of r n-valued symbols [x1,x2, . .., xr]
to generate a check symbol ‘cs’.

One may generate the check symbol ‘cs’ by substituting the
value of the constituting symbol into an n-valued equation:

cs=(al inv1 x1) scl (a2 inv2 x2) sc2 . . . sc(r-1) (ar inv(r-1)
xr). Herein, x1, X2, . . ., Xr represent a value or a state of an
n-valued symbol. The terms al, a2, . . . ar are n-valued con-

stants with which the values or states are adjusted in the
equations. The terms inv1, inv2, . . . inv(r-1) represent n-val-
ued inverters. In one implementation inverters can all be a
multiplication over GF(n). The terms scl, sc2, . . . sc(r-1)
represent n-valued logic functions. In one implementation all
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functions canbe an adder over GF(n). The inverters can be the
same for each term or they can be different. They can be
reversible or non-reversible. The n-valued functions can all be
the same or they can be different. They can be reversible or
non-reversible. For use in error correcting check symbols all
functions are preferably reversible.

As an illustrative example one may use a set of 4-valued
data symbols [x1, x2, x3,x4] and from this generated 3 check
symbols [cs1, ¢s2, ¢s3] wherein cs1=cs1(x1,x2,x3); cs2=cs2
(x1,x2, x4) and cs3=cs3(x1, x3, x4). One may generate a
check symbol by adding and multiplying over GF(n) or as a
modulo-n operation.

However, in accordance with an aspect of the present
invention, a check symbol may be generated as a result of an
n-valued logic expression wherein not all operations are an
addition and/or a multiplication. For instance, a 5-valued
symbol may be generated using a reversible function sc5 of
which the truth table is provided in the following table.

sch[0f1f2(3|4
0 [0f4f3[2]1
1 [4]3]2]1]0
2 [3|2f1|0f4
3 [2f1fof4f3
4 |1]0]4]3]2

Furthermore, each symbol may be modified according to
an inverter inv, of which the truth table is provided in the
following table.

inv [0f1(2(3|4
0 [ofof1|2]3
1 10]1]2]3]4
2 [0f2f3[4]0
3 [of3f4]0f1
4 10]4]0]1]2

The inverters should be regarded as the columns of the
table, wherein inv2 is the inverter column under symbol 2
whichis [12340].

Accordingly, one may generate a check symbol sc1 accord-
ing to the following equations: sc1=inv2(x1) sc5 inv3(x2) sc5
inv4(x3). Assume that one has the sequence [1 2 3 4] to be
coded. Then the generated check symbol csl is: cs1=inv2(1)
sc5inv3(2) scS5 inv4(3)=2 sc5 4 sc5 1=((2 sc5 4) sc5 1)=4 sc5
1=0. The function sc5 is non-commutative, and accordingly a
pre-determined scheme for execution of the expression
should be used.

One may transfer symbols to a receiver where the check
symbols are recalculated. Occurring errors most likely affect
the recalculated check symbols and create differences with
the received check symbols, allowing the code to be used as
an error detecting code. One may further analyze received
symbols and recalculated check symbols and correct a num-
ber of errors that may have occurred.

One may reduce combinations of n-valued inverters and an
n-valued logic function to a function with a modified truth
table as was shown by the inventor in U.S. patent application
Ser. No. 10/935,960, filed on Sep. 8, 2004, which is incorpo-
rated herein by reference. An expression for a check symbol
csl=inv2(x1) sc5 inv3(x2) sc5 inv4(x3) may then be replaced
by sc1=x1 sc51x2 sc52, wherein sc51 and sc52 are the func-
tion sc5 modified in accordance with the inverters. This
reduction may be applied to any expression having inverters
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and functions, including modulo-n adders and multipliers and
adders and multipliers over GF(n). Accordingly, an n-valued
expression created from adders and having at least one mul-
tiplier may be changed to an expression having at least one
function not being an adder modulo-n or over GF(n). A func-
tion not being an adder over GF(n) or a modulo-n adder herein
may be defined as an n-valued non-adder function.

N-valued symbols can be represented as individual sym-
bols as was shown herein. A symbol is then a single element
which is assigned one of states. An n-valued function is then
represented by an n-valued truth table: being described as a
truth table with single element n-valued symbols as input and
a single element n-valued symbol as output. N-valued func-
tions which have multipliers at an input or output can be
reduced to an n-valued function having a single truth table and
no multipliers or inverters, as is shown elsewhere by the
inventor, for instance in U.S. patent application Ser. No.
10/935,960 filed on Sep. 8, 2004, which is incorporated
herein by reference. In that case, it does not matter how
n-valued symbols are represented, for instance by binary
symbols. One may also represent an n-valued symbol in
binary form. One in general then determines the parity of the
binary representation of two n-valued symbols to determine
anerror. [t should be apparent that using parity to detect errors
is different from comparing n-valued symbols. For instance,
a symbol may be represented by 8-bits or a byte. If two or four
or six or eight bits in a byte are in error then the byte in error
will have the same parity as the byte being not in error and a
parity check will not detect a difference. Not using parity
symbols of binary representations of n-valued symbols but
comparing two n-valued symbols may be called “direct com-
parison”.

It should be clear that data symbols and check symbols
generally can not be transmitted as a matrix. Accordingly,
after determining check symbols the data symbols and check
symbols may be ordered in a sequential frame structure of
which beginning and end can be determined and of which the
structure is known at a receiving or decoding side. At the
receiving or decoding side symbols can be extracted from the
frame and arranged in such a way that the matrix form can be
recognized, deconstructed and used to process the symbols.

While there have been shown, described and pointed, out
fundamental novel features of the invention as applied to
preferred embodiments thereof, it will be understood that
various omissions and substitutions and changes in the form
and details of the devices, systems and methods illustrated
and in their operation may be made by those skilled in the art
without departing from the spirit of the invention. It is the
intention, therefore, to be limited only as indicated by the
scope of the claims appended hereto.

The following patent applications, including the specifica-
tions, claims and drawings, are hereby incorporated by refer-
ence herein, as if they were fully set forth herein: (1) U.S.
Non-Provisional patent application Ser. No. 10/935,960, filed
on Sep. 8, 2004, entitled TERNARY AND MULTI-VALUE
DIGITAL SCRAMBLERS, DESCRAMBLERS AND
SEQUENCE GENERATORS; (2) U.S. Non-Provisional
patent application Ser. No. 10/936,181, filed Sep. 8, 2004,
entitted TERNARY AND HIGHER MULTI-VALUE
SCRAMBLERS/DESCRAMBLERS; (3) U.S. Non-Provi-
sional patent application Ser. No. 10/912,954, filed Aug. 6,
2004, entitled TERNARY AND HIGHER MULTI-VALUE
SCRAMBLERS/DESCRAMBLERS; (4) U.S. Non-Provi-
sional patent application Ser. No. 11/042,645, filed Jan. 25,
2005, entitled MULTI-VALUED SCRAMBLING AND
DESCRAMBLING OF DIGITAL DATA ON OPTICAL
DISKS AND OTHER STORAGE MEDIA; (5) U.S. Non-
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Provisional patent application Ser. No. 11/000,218, filed Nov.
30, 2004, entitled SINGLE AND COMPOSITE BINARY
AND MULTI-VALUED LOGIC FUNCTIONS FROM
GATES AND INVERTERS; (6) U.S. Non-Provisional patent
application Ser. No. 11/065,836 filed Feb. 25, 2005, entitled
GENERATION AND DETECTION OF NON-BINARY
DIGITAL SEQUENCES; (7) U.S. Non-Provisional patent
application Ser. No. 11/139,835 filed, May 27, 2005, entitled
MULTI-VALUED DIGITAL INFORMATION RETAIN-
ING ELEMENTS AND MEMORY DEVICES; (8) U.S.
Non-Provisional patent application Ser. No. 11/618,986, filed
Jan. 2, 2007, entitled Ternary and Multi-Value Digital Signal
Scramblers, Descramblers and Sequence Generators; (9)
U.S. Non-Provisional patent application Ser. No. 11/679,316,
filed Feb. 27, 2007, entitled METHODS AND APPARATUS
IN FINITE FIELD POLYNOMIAL IMPLEMENTATIONS.

The invention claimed is:
1. A method for coding of a plurality of n-valued data
symbols with n>2, comprising:
a processor associating the plurality of n-valued data sym-
bols with a first and a second 2-dimensional matrix; and

the processor generating a plurality of check symbols
along each dimension of the first and second matrix,
each of the plurality of check symbols being generated
by evaluating an n-valued logic expression wherein data
symbols are variables.

2. The method as claimed in claim 1, wherein the n-valued
logic expression uses an n-valued non-adder function.

3. The method as claimed in claim 1, further comprising:

the processor receiving of the plurality of n-valued data

symbols and the plurality of check symbols;

the processor associating the plurality of received n-valued

data symbols with the first and the second matrix;

the processor generating a plurality of recalculated check

symbols along each dimension of the first and the second
matrix, each of the plurality of recalculated check sym-
bols being generated by evaluating an n-valued logic
expression wherein received data symbols are variables.

4. The method as claimed in claim 3, further comprising
locating one or more symbols for error correction by applying
only received and recalculated check symbols.

5. The method as claimed in claim 4, further comprising:

error-correcting by applying an n-valued logic expression

having a symbol for error correction as an unknown.

6. The method as claimed in claim 5, wherein the n-valued
logic expression uses an n-valued non-adder function.

7. The method as claimed in claim 6, wherein the n-valued
logic expression is part of applying Cramer’s rule.

8. The method for error correction as claimed in claim 1,
further comprising the processor applying check symbols
generated in accordance with one or more additional matri-
ces.

9. The method as claimed in claim 1, wherein an additional
check symbol is generated by using an n-valued Linear Feed-
back Shift Register (LFSR).

10. The method as claimed in claim 1, further comprising:

the processor generating one or more n-valued check sym-

bols from the plurality of check symbols.

11. A system for coding a plurality of n-valued data sym-
bols with n=2, comprising:

a coding processor, the coding processor operative to per-

form the steps of:

associating the plurality of n-valued data symbols with a
first and a second 2-dimensional matrix; and

generating a plurality of check symbols along each
dimension of the first and second matrix, each of the
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plurality of check symbols being generated by evalu-
ating an n-valued logic expression wherein data sym-
bols are variables.

12. The system as claimed in claim 11, wherein n>2.

13. The system as claimed in claim 11, further comprising:

a decoding processor, the decoding processor operative to

perform the steps of:

associating a plurality of received n-valued data symbols
with the first and the second matrix;

generating a plurality of recalculated check symbols
along each dimension of the first and the second
matrix, each of the plurality of recalculated check
symbols being generated by evaluating an n-valued
logic expression wherein received data symbols are
variables.

14. The system as claimed in claim 13, further comprising
locating one or more symbols for error correction by applying
only received and recalculated check symbols.

15. The system as claimed in claim 14, further comprising
error-correcting by evaluating an n-valued logic expression
having the symbol for error correction as an unknown.

16. The system as claimed in claim 11, further comprising
generating of additional check symbols from the plurality of
check symbols.

17. The system as claimed in claim 16, further comprising
correcting errors in the check symbols.

18. The system as claimed in claim 11, wherein the system
is a data storage system.
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19. The system as claimed in claim 11, wherein the system
is a communication system.
20. The system as claimed in claim 11, wherein n-valued
symbols are represented by binary symbols.
21. A method for coding a plurality of n-valued data sym-
bols with n>2, comprising:
generating a first n-valued check symbol from the first
plurality of symbols selected from the plurality of n-val-
ued data symbols;
the processor generating a second n-valued check symbol
from a second plurality of symbols selected from the
plurality of n-valued data symbols, the first and the sec-
ond plurality of n-valued data symbols having at least
one n-valued data symbol in common; and
the processor generating at least one check symbol by an
n-valued logic expression using an n-valued non-adder
function.
22. The method as claimed in claim 21, further comprising:
the processor generating an additional n-valued check
symbol from an additional plurality of symbols selected
from the plurality of n-valued data symbols, the addi-
tional plurality of symbols having at least one n-valued
data symbol in common with another plurality of sym-
bols selected from the plurality of n-valued data sym-
bols; and
repeating the previous step until each symbol of the plu-
rality of n-valued data symbols is associated with at least
two check symbols.
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