
US007930331B2

(12) Ulllted States Patent (10) Patent N0.: US 7,930,331 B2
Lablans (45) Date of Patent: Apr. 19, 2011

(54) ENCIPHERMENT OF DIGITAL SEQUENCES (56) References Cited
BY REVERSIBLE TRANSPOSITION
METHODS U.S. PATENT DOCUMENTS

>l<

(75) Irrverrror: Peter Lablarrs, Morris Township, NJ 333333233 2‘ 4 313$ 5111;153:3158“W311; 338/12
(US) 5,799,088 A * 8/1998 Raike 380/30

6,442,190 B1 8/2002 Nguyen
(73) Assignee: Temarylogic LLC, MorristoWn, N] (U S) 6,636,552 B1 10/2003 Banister

7,071,866 B2 7/2006 Iny et a1.
* ' . ' ' ' ' 7,103,030 B2 9/2006 Jones

() Nome‘ ggtlggtctigoeiltlg?sgl?naeéi15233333115 2005/0083901 A1* 4/2005 Kim et a1. 370/342
2007/0076868 A1* 4/2007 Ming 380/54

USC 154 b b 1241 da 5.
() y y * cited by examiner

(21) App1.N0.: 11/534,777
Primar Examiner * Tan V Mai . y

(22) Flled: sep' 25’ 2006 (74) Attorney, Agent, or Firm * Diehl Servilla LLC

(65) Prior Publication Data (57) ABSTRACT
US 2007/0071068 A1 Mar. 29, 2007 _ _

Methods for transposing elements of a sequence according to
Related US, Application Data a rule, wherein the rule is derived from pseudo-noise 'or

(60) Provisional application No. 60/720,655, ?led on Sep. pseudo-Home hke bmary and nonjmnary Sequences are d15
26 2005 closed. Sequences of transposed symbols can be recovered by

’ ' applying a reversing rule. Sets of orthogonal hopping and
trans osition rules are createdb a l in trans osition rules (51) Int. Cl. P y PP y g P

G06F 7/58 (200601) upon themselves. Sets of orthogonal hopping and transposi
tion rules are also created from bin and non-bina Gold (52) us. Cl. 708/250 al'y rY

(58) Field of Classi?cation Search 708/250, Sequences

708/252
See application ?le for complete search history. 15 Claims, 11 Drawing Sheets

Origin Result Reverse

1 : 1 > 1

2 6
1 1

3 3 2 6

7 2

6 4 7 7

5 5
5 : 5

2 4

3 4 6 4

trans to trans_to
_ in ert

transpose 7 3 V
rule rule

US. Patent Apr. 19, 2011 Sheet 1 0111 US 7,930,331 B2

—> —> f;

3 T
s3 s2 51

V

FIG. 1

FIG. 2

US. Patent Apr. 19, 2011 Sheet 2 0111 US 7,930,331 B2

Reverse Result Origin

trans_to
invert
rule

tran s_t0

transpose
rule

Reverse Result Origin

5

tran s_fro1n
invert
rule

trans from

transpose
rule

FIG. 4

US. Patent Apr. 19, 2011 Sheet 3 0111 US 7,930,331 B2

500

\ \ \ \S,
‘Y 506 505 504

507 FIG. 5

- i Y

1 \
5L: —

‘HIM

FIG. 7

US. Patent Apr. 19, 2011 Sheet 4 0111 US 7,930,331 B2

1 a

~ -

=1 :1 1

n i l i I i l m

a at ,1’! 1: in “1a m

FIG. 8

902

J» I 906 I
s1 S2 S3

1 903 904

US. Patent Apr. 19, 2011 Sheet 5 0111 US 7,930,331 B2

FIG. 10

US. Patent Apr. 19, 2011 Sheet 6 0111 US 7,930,331 B2

30

FIG. 13

FIG. 14

US. Patent Apr. 19, 2011 Sheet 7 0111 US 7,930,331 B2

US. Patent Apr. 19, 2011 Sheet 8 0111 US 7,930,331 B2

FIG. 18

6543210987r6543210 1111111
U12 3 4 5 B F’ 8 910111213141516 12 3 4 5 B F’ 8 910111213141516 12 3 4 5 B F’ 8 910111213141516

Timeframe 2

FIG. 19

US. Patent Apr. 19, 2011 Sheet 9 0111 US 7,930,331 B2

65d3210987r6543210 1111111
U12 3 11 5 5 F" 3 310111213141516 12 3 4 5 5 1' 3 910111213141515 12 3 4 5 5 .7 3 910111213141515

Timcframc 3 Timcframc 2

FIG. 20

US. Patent Apr. 19, 2011 Sheet 10 0111 US 7,930,331 B2

2107

2102

2101

2100

2103

2105

FIG. 21

2201

FIG. 22

US. Patent Apr. 19, 2011 Sheet 11 0111 US 7,930,331 B2

2306

2300
2301

l

A 2308
>

2302 2312
p /| p 2307

2303 A 2313 —>
b

2304 A 2314
—> >

2305 2315

FIG. 23

US 7,930,331 B2
1

ENCIPHERMENT OF DIGITAL SEQUENCES
BY REVERSIBLE TRANSPOSITION

METHODS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the bene?t of US. Provisional
Patent Application Ser. No: 60/720,655, ?led Sep. 26, 2005,
Which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

This invention relates to the encipherment of binary and
non-binary digital sequences such as used in communications
by reversible transposition methods and the decipherment of
sequences enciphered by reversible transposition methods.
More speci?cally it relates to applying methods using
recoded binary and non-binary pseudo-noise sequences gen
erated by LFSR based sequence generators and other meth
ods that Will generate reversible sequences.

Sequences comprised of digital elements have knoWn
applications in communications and other applications. In
general binary pseudo-noise or PN-sequences are used.
Application of non-binary sequences is also possible. Linear
feedback shift register (LFSR) circuits or methods are often
used for the generation and detection of sequences. LFSR
circuits With p register elements can generate (nP—l) length
unique n-valued sequences Which are called maximum
length sequences. It is often desirable to encrypt digital data
for transmission, or storage on a data-storage medium such as
optical disks or as an embedded message for Watermarking
applications.

Substitution ciphers are knoWn, Wherein according to some
rules one symbol or series of symbols is replaced by another.
Another encipherment method is transposition Wherein in a
series of symbols the order of the symbols is changed accord
ing to a rule or set of rules.

While transposition encipherment can be used for security
reasons, it can also be used to randomiZe a process in a
recoverable Way. One such application is the creation of
sequences for application in frequency hopping in telecom
munications. In many cases binary LFSR based pseudo-ran
dom sequences are used as a number generator to create
hopping rules. Orthogonality of the sequences is important so
that each user in a hop is assigned a unique frequency slot.
Another application is in time-hopping applications. Herein
each user is assigned a unique time-slot, so that pulses of
different users do not collide. Non-binary pseudo-random
sequences have statistical advantages over the generally used
binary sequences. It is often useful to have a local method to
generate the transposition rule as Well as the rule to recover
the transposed sequence. Also the ability to select from a large
number of possible encipherment rules is advantageous.

Accordingly, neW methods for symbol transposition in a
pseudo-random like fashion are required.

SUMMARY OF THE INVENTION

In vieW of the more limited possibilities of the prior art in
enciphering binary and non-binary digital sequences by
transposition, the current invention provides methods and
apparatus for the rules of encipherment by transposition of
digital sequences and the decipherment of the encrypted
sequences.
The general purpose of the present invention, Which Will be

described subsequently in greater detail, is to provide novel

5

20

25

30

35

40

45

50

55

60

2
methods and apparatus Which can be applied in the encipher
ment by transposition using digital sequences With pseudo
noise or pseudo-noise like properties and the decipherment of
the encrypted sequences. Sequences are made of series of
symbols With an assigned position relative to an assumed or
assigned origin or anchor point. The individual symbols and
their order in a sequence may represent an electrical or optical
signal. The position of a symbol may represent a physical
order, a time slot, a frequency, a color or any other phenom
enon or concept that can be represented as a position.

Before explaining at least one embodiment of the invention
in detail, it is to be understood that the invention is not limited
in its application to the details of construction and to the
arrangements of the components set forth in the folloWing
description or illustrated in the draWings. The invention is
capable of other embodiments and of being practiced and
carried out in various Ways. Also, it is to be understood that
the phraseology and terminology employed herein are for the
purpose of the description and should not be regarded as
limiting.

Binary in the context of this application means 2-valued.
Multi-valued and n-valued in the context of this invention
mean an integer greater than 2.

It is one aspect of the present invention to provide neW
methods to transpose symbols in a sequence of digital sym
bols in a recoverable or reversible manner.

It is another aspect of the present invention to enable detec
tion of transposed sequences by knoWing the transposition
rule.

It is a further aspect of the present invention to provide a
method for creating transposition rules based on pseudo
random binary and non-binary sequences.

It is another aspect of the present invention to provide a
method for creating transposition rules based on pseudo
random sequences With no forbidden Word.

It is a further aspect of the present invention to provide a
method of creating plurality of orthogonal hopping rules by
repeated application of a transposition rule.

It is another aspect of the present invention to provide a
method for creating a plurality of orthogonal hopping rules
based on Gold sequences.

It is a further aspect of the present invention to provide a
system Which implements the methods provided as different
aspects of the present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Various other objects, features and attendant advantages of
the present invention Will become fully appreciated as the
same becomes better understood When considered in con
junction With the accompanying draWings, and Wherein:

FIG. 1 is a block diagram of a binary LFSR based sequence
generator.

FIG. 2 shoWs a correlation graph.
FIG. 3 is a diagram of a transposition rule.
FIG. 4 is a diagram of another transposition rule.
FIG. 5 is a diagram of an LFSR based sequence generator.
FIG. 6 shoWs a correlation graph.
FIG. 7 shoWs another correlation graph.
FIG. 8 shoWs a cross-correlation graph.
FIG. 9 is the diagram of an LFSR based sequence generator
FIG. 10 is the auto-correlation graph of a transposed 26

symbol sequence.
FIG. 11 is the cross-correlation graph of an original m-se

quence With its transposed sequence.

US 7,930,331 B2
3

FIG. 12 is the auto-correlation graph of a transposed ter
nary m-sequence Which is transposed again With the
‘modulo-n+1’ rule.

FIG. 13 is the cross-correlation graph of the transposed
ternary m-sequence With the sequence created by ‘modulo
n+1’ transposition of this sequence.

FIG. 14 is the cross-correlation graph of the original ter
nary m-sequence With the ‘modulo-n+1 ’ transposition of the
transposed ternary m-sequence.

FIG. 15 shoWs the combined auto-correlation graph of a
sequence combined With the cross-correlation graph of this
sequence With another sequence.

FIG. 16 shoWs the auto-correlation graph of a 16 element
4-valued sequence

FIG. 17 shoWs the auto-correlation graph of a transposed
sequence

FIG. 18 shoWs the cross-correlation graph of a sequence
With its transposed sequence.

FIG. 19 shoWs a pulse train diagram for time hopping
FIG. 20 shoWs another pulse train diagram
FIG. 21 is a diagram of a transposition system in accor

dance With an aspect of the present invention.
FIG. 22 is a diagram of a transposition reversing system in

accordance With an aspect of the present invention.
FIG. 23 is a diagram of a frequency hopping system in

accordance With an aspect of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The Related Art
There are different Ways to transpose symbols in a

sequence or a Word comprised of n symbols. In general one
can create transpositions by selecting one of the possible
reversible permutations of a Word of n symbols. A symbol
may be represented by a single element or a number of ele
ments. A symbol as one aspect of the present invention Will be
assumed to being able to be represented by a single element,
keeping in mind that it can in actuality be represented by a
plurality of elements. A Word or sequence of n symbols has
n!:1*2*3*4* . . . *(n—1)*n possible permutations. A

sequence of n symbols may comprise p different symbols
Wherein p<n. In that case some permutations are of course
identical.
A transposition rule may be created by a pseudo-random

number generator. A reversible transposition rule for the
transposition of n symbols may be considered an n valued
reversible inverter.

Pseudo-random sequences as transposition rules.
The inventor describes ‘Word-based’ methods for generat

ing pseudo-random and pseudo-random like binary and non
binary sequences in US. Provisional Patent Application No.
60/695,317 ?led on Jun. 30, 2005 entitled THE CREATION
AND DETECTION OF BINARY AND NON-BINARY
PSEUDO-NOISE SEQUENCES NOT USING LFSR CIR
CUITS and in US. patent application Ser. No. 11/427,498
?led on Jun. 29, 2006 entitled THE CREATION AND
DETECTION OF BINARYAND NON-BINARY PSEUDO
NOISE SEQUENCES NOT USING LFSR CIRCUITS

20

25

30

35

40

45

50

55

4
Which are hereby incorporated by reference herein in its
entirety. One aspect of that invention demonstrates that an
n-valued pseudo-noise or maximum length sequence Which
can be generated by an LFSR circuit With a shift register With
p memory elements of a length of (nP — 1) symbols, can also be
generated by a method combining in a prescribed fashion
(nP—1) unique Words of p n-valued symbols and taking from
each Word one symbol to create the sequence. The order of the
symbols in the sequence is determined by the order of the
Words.

The Words are identical to the consecutive states of the shift
register. Each Word is unique until it repeats itself again. In an
LFSR the repeat is after (nP—1) states. The Words may be
assumed to represent a decimal number. Within the (nP—1)
cycles each Word and its representative decimal number in a
pseudo-random sequence is unique. One may consider the
order of the decimal numbers then as a reversible shuf?ing
rule or a transposition rule.

For instance a binary LFSR pseudo-noise generator With a
3 element shift register can generate a pseudo-noise sequence
of length (23—1):7 elements. The folloWing table shoWs hoW
the sequence can be generated by using overlapping Words of
3 bits. As an illustrative example the generated sequence is [0
0 1 1 1 0 1] created from the ?rst bit of each Word.

TAB LE 1

se

s3 s2 s1 decl dec2 quence

outl 0 0 1 1 4 0
out3 0 1 1 3 6 0
out7 1 1 1 7 7 1
out6 1 1 0 6 3 1
out5 1 0 1 5 5 1
out2 0 1 0 2 2 0
out4 1 0 0 4 1 1

FIG. 1 shoWs the diagram of the LFSR based circuit that
Will generate the binary pseudo-noise sequence. The initial
(or seed) state of the LFSR is [0 0 1]. The forbidden state in
this con?guration is [0 0 0]. FIG. 2 shoWs the auto-correlation
graph of the generated sequence.
The Table 1. shoWs a column ‘dec1’, Which is the radix-10

value of the 3 bit Word, With the most signi?cant bit being the
?rst bit of the Word. The column ‘dec2’ in the table shoWs the
radix-10 value of the 3-bit Word With the last bit being the
most signi?cant bit of each 3-bit Word.

The columns in the Table 1. under ‘dec1 ’ and ‘dec2’ can be
interpreted as a rule for a transposition of symbols in a
sequence. This transposition may be considered orthogonal in
the sense that each symbol Will be transposed to a unique neW
position, in such a Way that the transposition can be reversed
and no position Will be shared by tWo symbols.

Clari?cation about the transposition rules Will be provided
next. First of all it should be clear What the transposition rule
actually means. TWo possible different Ways to apply a trans
position rule are provided in the folloWing Table 2 and Table
3.

TABLE 2

sequence Origin decl transito>g 1 seqiresl transito>g 2 seqfresZ Inverse

0 1 1 1 0 1 0 1
0 2 3 6 0 4 1 6
1 3 7 2 0 6 0 2

1 4 6 7 1 3 1 7
1 5 5 5 1 5 1 5

US 7,930,331 B2
5

TABLE 2-continued

sequence Origin decl transito’tl seqiresl transito*2 seqires2 Inverse

0 6 2 4 1 7 1 4
1 7 4 3 1 2 0 3

Table 2 and Table 3 show 2 different interpretations of the under ‘Inverse’. The inversion rules for both ‘from’ and ‘to’
transposition rules. In Table 2 the transposition column under rules look identical, but are of course applied differently. In
‘decl’ means that a symbol on a position as stated in the to fact the ‘transpose to’ rule is the inverse of the ‘transpose
column under Origin is being transposed to the position as from’ rule. The transposition by ‘trans_from’ rule and its
stated in the column under ‘decl ’ in Table 2. So the symbol in inverse is shoWn in FIG. 4.
the original position 1 is being transposed to position 1. The pseudo_code

Symbol 1h pos1t1on 2 1S transposed to ROW?“ 3; the Symbol In 15 The ‘to’ and ‘from’ transposition rules can be more easily
pos1t1on 3 1s be1ng transposed to pos1t1on 7, etc. The result of . . .

. expla1ned 1n computer program pseudo-code. The folloW1ng
that transpos1t1on 15 shown 1n Table 2 1n the column under .
‘ * , . _ . . Table 4 shoWs four columns, each W1th 7 elements.
trans_to 1 . Or 1n other Words. the ?rst pos1t1on of the
sequence as a result of the transposition has a symbol that TABLE 4
originally Was in the ?rst position of the un-transposed
sequence. The second symbol in the transposed sequence is 20 Origin rule resultito resultifrom
the symbol originally in the 6th position; the third symbol in
the transposed sequence is the second symbol in the original i ; é ;
sequence; etc. 3 7 2 7

In order to con?rm the rule it is executed an additional time 4 6 7 6
on the column under ‘trans_to*1 ’ and the result of the trans- 25 5 5 5 5

position is shoWn in the column under ‘trans_to*2’. The 3 i ‘3t 1
numbers in the column indicate the original position of the
symbols. The actual transposed sequence is shoWn in the
column in Table 2 ‘seq_res2’. The column under Inverse The ‘to’ transposition rule can be Written as;
shoWs the inverse transposition to the rule of ‘decl’. The 30
Inverse Transposition applied to the result in column
‘trans_to*1’ Will create the original sequence. Applying the
Inverse Transposition tWice to the result under ‘trans_to*2’ FOR 115115173X RULEO

. = 1

yvlll also ,recreate the ongmal 'sequence. The transpos1t1on by 35 RESULTiTOUNDEXFORIGINU)
trans_to rule and 1ts reverse 15 shown graph1cally 1n FIG. 3. NEXT
Table 3 shoWs the transpositions by the ‘transpose from’

rule.

TABLE 3

sequence Origin decl transifrorn’tl seqiresl transifrorn*2 seqires2 Inverse

0 1 1 1 0 1 0 1
0 2 3 3 1 7 1 6
1 3 7 7 1 4 1 2
1 4 6 6 0 2 0 7
1 5 5 5 1 5 1 5
0 6 2 2 0 3 1 4
1 7 4 4 1 6 0 3

The ‘transpose from’ interpretation of the rule means that 50 The transposition_to rule as provided in the table can be
the rule as displayed in Table 3 in the column under ‘decl’ applied to a sequence of 7 symbols seq:[a b c d e f g],
means that the Symbol 1h a chhtalh Pqsltloh tn the transposed Applying the rule Will lead to [a f b g e d c]. It should be clear
Sequence homes from the POSIUOH mdlcated by the number on that the symbols ‘a’, etc are selected as different characters to
that pe‘sttteh' The re,stht 15 shown 1.h Taht e 3 In the eehhhh differentiate betWeen them. The value of a symbol is to be
under trans_from*1 . The symbol 1n pos1t1on 1 of the trans- 55 . . .

- - - - - - determ1ned separately from the transpos1t1on rule and can be
posed sequence 15 com1ng from pos1t1on 1 of the ongmal 1 d b 1
sequence. The symbol in position 2 of the transposed ahthhw‘af he ,Sym e ' . . 1 b . _
sequence comes from position3 of the original sequence. Etc, e rem trahspesltleh ht e eah e Whtteh as‘

etc. The actual transposed binary sequence is shoWn in Table
3 in the column under ‘seq_resl’. 60
One can apply the transposition rule on the transposed FORi=1:7

sequence Which Will result in the transposition as shoWn in INDEX=RULE(i)
Table 3 in the column under ‘trans_from*2’. The actual tWice RESULTJIROMU)=ORIGIN(INDEX)

. . . END

transposed sequence 15 shoWn 1n Table 3 1n the column under
‘ seq_res2’. 65

The Inverse Transposition rule to reverse this example of a
‘Transpose From’ rule is shoWn in Table 3 in the column

Applying the transposition_from rule from Table 4 to [a b
c de fg] Will provide [a c g feb d].

US 7,930,331 B2
7

For simplicity reasons the ‘transpose from’ method Will be
used for illustrative purposes to describe the present inven
tion. The reason for that is that the rule provides the index of
the transposition. The “transposition to” requires an interme
diate step to display the index of the transposed sequence.
This is not fundamental to the method, but may be confusing.
It should be clear that the ‘transpose to’ method can also be
used in the provided examples.
The Forbidden Initial State
LFSR based sequence generators have an initial state of the

shift register that is knoWn as the ‘forbidden’ state. For
instance When the LFSR applies only binary XOR functions,
the ‘forbidden’ state of the shift register is all 0. In general a
‘forbidden’ state of a shift register does not create any change.
This means that the shift register feedbacks into the feedback
functions create a neW input to the shift register, folloWed by
a clock-pulse With a shift of the content of the registers in such
a Way that the neW content of the shift register is identical to
the previous content. Because the shift register does not
change its content, the output of the circuit Will be a sequence
of identical symbols (in this case 0s), Which in many cases is
not desirable.

One can use the binary EQUAL function as feedback func
tion. In that case the all 1 content of the shift register Will be
the forbidden state. The same phenomenon of ‘forbidden’
states Will occur in higher value or n-valued LFSR based

sequence generators. The ‘forbidden’ state Will depend on the
applied n-valued functions in the feedback path.

The signi?cance of the ‘forbidden’ state is that it creates an
LFSR Word that does not occur in an alloWed sequence gen

erator. That means that this Word does not occur in an LFSR

PN generator based transposition rule. In the binary case
using an LFSR using only XOR functions it means that the
Word comprising all 0s does not occur. This is not a problem
in a transposition Wherein a position 0 does not occur. HoW
ever in the case Where all Is cannot occur (using only the

EQUAL function) it means that all 0s can occur and all Is
cannot. This again means that the transposition rule includes
a position 0.
As an illustrative example of the effect of the selected

feedback function the LFSR circuit of Which a diagram is
shoWn in FIG. 5 Will be used. The circuit 500 in FIG. 5 is a
binary LFSR based pseudo-noise sequence generator. With a
4-element shift register the circuit 500 generates a PN
sequence of length 15. The circuit has a single tap 506 With a
binary function 502.
When the function of device 502 is the binary XOR func

tion and the initial state of the shift register is [0 1 1 0] then the
generated 15-bits PN sequence is: [0 1 1 0 0 1 0 0 0 1 1 1 1 0
1]. The transposition rule (equivalent With ‘dec1’ in the pre
vious example) formed from overlapping 4 bits Words is: [6
12924813715141310511].
When the function of device 502 is the binary EQUAL

function and the initial state of the shift register is [0 1 1 0]
then the generated 15-bits PN sequence is: [0 1 1 0 1 1 1 0 0
0 0 1 0 1 0]. The transposition rule (equivalent again With
‘dec1’ in the previous example) is: [6 13 11 7 14 12 8 012 5
10 4 9 3]. The ‘forbidden’ state in this case is [1 1 1 1] Which
is equivalent With ‘dec1’ position 15 and cannot occur in this
example. The initial state [0 0 0 0] is valid and Will occur and
is equivalent With ‘dec1 ’ position 0. This position Will occur

20

25

30

35

40

45

50

55

60

65

8
in ‘dec1’. In general positions of symbols in a sequence are
represented by using 1 as the start position. In order to make
‘dec1 ’ in this case a usable transposition rule one should add

a 1 to all positions. In that case the transposition rule

becomes: [71412 81513 912 3 6115104].
The Rule for Reversing the Transposition
The ‘transpose from’ rule is used to illustrate one aspect of

the present invention. It should be clear that the ‘transpose to’
rule Will in fact reverse the transposition. If one transposes a

sequence for instance tWice then the resulting sequences has
to be reverse transposed tWice to recreate the original
sequence. One can also recreate or inverse the transposition

by applying the transposition rule a pre-determined number
of times. This is demonstrated in the folloWing Table 5.

TABLES

orig- start [0 1 1] start [0 1 0]

mal 1 2 3 4 5 6 7 1 2 3 4 5 6 7

t1 3 7 6 5 2 4 1 2 4 1 3 7 6 5
t2 6 1 4 2 7 5 3 4 3 2 1 5 6 7
t3 4 3 5 7 1 2 6 3 1 4 2 7 6 5
t4 5 6 2 1 3 7 4 1 2 3 4 5 6 7
t5 2 4 7 3 6 1 5
t6 7 5 1 6 4 3 2
t7 1 2 3 4 5 6 7

The left side of the table shoWs the transposition rule gener
ated by the sequence generator of FIG. 1 With initial shift
register content [0 1 1]. This table shoWs that after 7 transpo
sitions the original situation has been recreated. The right side
of the table shoWs the transposition rule generated by the
same circuit but With initial condition [0 1 0]. It takes 4
transpositions to recreate the original situation.

This shoWs that a neW transposition rule can be created by
using the same transposition rule more than once. HoWever
one should be careful not to use the transposition rule too

many times and thus recreate the original. Also changing the
initial state of the LFSR Will create a different transposition
rule.

Another Way to change a transposition rule of n positions is
by determining the modulo-n residue of the rule and then
adding a 1.
One can interpret the generated LFSR Words Which Will

form the transposition rule in reverse. That is: instead of
interpreting [0 0 1] as decimal 1 one can read this a decimal 4.
This Will change the transposition rule for a speci?c initial
value of the LFSR, hoWever it does not change the principle.
In that case a binary LFSR With an n-element shift register

Will also generate (2”—1) different numbers ranging from
either 1 to (22-1) or from 0 to (2”—2).
The Effects of Transposition
One Way to shoW the effects of transposition is to submit a

knoWn binary pseudo-noise sequence to a transposition rule.
The quality of transposition can be demonstrated by the auto
correlation and cross-correlation graphs. The sequence that
Will be transposedis seqbini31 :[1 1 1 1 1 0 1 0 0 0 1 0 0 1
01011000011100110].Thissequenceisa
pseudo-noise sequence of Which the auto-correlation graph is
shoWn in FIG. 6. This sequence Will be transposedusing a rule
generated by a 5 element binary shift register With initial
content [0 1 1 0 0].

US 7,930,331 B2
9

The transposition rule is:

[12631168202613221121105217242814232729
303115 719 9 418 25].
Transposing sequence seqbini31 With this rule creates:

seqbini31_trans:[00111001001001101010011
0 0 1 1 0 1 1 1]. The auto-correlation graph of seqbini
31trans is shown in FIG. 7. The cross-correlation graph of
the sequences seqbini31 and seqbini31_trans is shoWn

10
tions. An aspect of the present invention is to generate a
transposition rule that can transpose sequences With an even
number of symbols.

The invention of the ‘Word’ method to generate binary
sequences of even length is described in detail in US. Provi
sional Patent Application No. 60/695,317 ?led on Jun. 30,
2005 entitled CREATION AND DETECTION OF BINARY

AND NON_BINARY PSEUDO-NOISE SEQUENCES
NOT USING LFSR CIRCUITS. One example Will be in FIG. 8. 10

It should be clear that correlation betWeen the original repeated here for lnustranve purposes only‘
sequence and the transposed sequence Will not be helpful in In this example unique 4-bits binary Words are used in such
detecting the sequence. a Way that the last three bits of a Word are identical to the ?rst

The inverse rule of a transposition rule can be expressed in three bits of a next Word. For instance the ?rst bit of each Word
the following PSBUdO-COdBI 15 Will also be a bit in the sequence. There are of course 16 4-bit

Words. There are many Ways to create partial solutions
Wherein less than 16 Words are used. Well knoWn solutions

FOR 1:1: n are pseudo-random sequences, formed in such a Way that [0 0
1ND = RULE (i) 0 0] or [1 1 1 1] are not used. In that case the resulting

END INVERSEUND) = i 20 sequence Will have a length of 15 bits.

There is at least one Way to create a solution of 16 Words,
Which is shoWn in the folloWing table.

b1 b2 b3 b4 dec

Wordl 1 1 1 1 15

Word2 1 1 1 0 14

Word3 1 1 0 1 13

Word4 1 0 1 1 1 1

Word5 0 1 1 0 6

Word6 1 1 0 0 12

Word7 1 0 0 1 9

Word8 0 0 1 0 2

Word9 0 1 0 1 5

WordlO 1 0 1 0 10

Wordl 1 0 1 0 0 4

Word12 1 0 0 0 8

Word13 0 0 0 0 0

Word14 0 0 0 1 1

Word15 0 0 1 1 3

Word16 0 1 1 1 7

seq161111011001010000

The vector RULE is the transposition rule vector. The vector The 4-bit Words are shoWn as decimal numbers in the table in
INVERSE is the inverting rule. This approach applied to the the column under ‘dec’. This column contains 16 numbers,
above transposition rule for a 31 symbol sequence Will gen- 50 including 0. It may be considered as a sequence generator
erate1NVERSE:[4 15 3 29 14 2 26 6 28 13 11 1 9 19 25 5 16 With no forbidden state. In order to make the column a valid
30 27 7 12 10 20 17 31 8 21 18 22 23 24]_ Applying rule transposition rule, all numbers have to be increased With 1.
INVERSE to Sequence ‘ 5eqbini31_tran5’ W111 recreate The transposition rule 15 1116111 transi16:[16 l5 l4 l2 7 l3 10
sequence ‘seqbini31’. 3 6 11 5 9 1 2 4 8]

It should be clear that absolute synchronization of 55 7 1gb: i6m3le2rs?rule is: invlransil 6:[13 14 8 15 11 9 5 16 12
sequences 1s requ1red 1n apply1ng the transpos1t1on rules. superimposing Different Transposition Rules
The Word Method It should be clear that it is possible to ‘superimpose’ dif
One problem With using LFSR related methods for gener- ferent transposition rules on a sequence. Additional security

ating Transposition Rules is that it can only generate Rules of 60 may be obtained by using transposition rules of different
length (n"— 1) or in the binary case (2P—1) When the LFSR has lengths. For instance a sequence of 32 symbols can be broken
shift registers With p elements. The inventor has demonstrated up in tWo contiguous sequences of length 7 and 25. As Will be
in the earlier cited Provisional PatentApplication that one can shoWn as another aspect of the present invention one can
use the so called ‘Word’ method to extend the sequence With generate transposition rules of length 25 by using multi
one symbol or the number of ‘Words’ With one more. In that 65 valued methods. A transposition rule of length 7 can be gen
case the number of Words is a multiple of n. Or in the binary
case a multiple of 2. This is advantageous in some applica

erated by for instance a 3-element LFSR. And a 32 symbol
transposition rule can be generated by a 5-bit Word method.

US 7,930,331 B2
11

One Way to create a super-imposed method is to transpose
the ?rst 7 symbols of a 32 symbol sequence With a length 7
rule. Then transpose the remaining 25 symbols With a 25
length rule. And next transpose the combined transposed
sequences With a 32 length rule.

Another Way to create a super-imposed transposition
method is to ?rst transpose the 32 symbol sequence With a
length 32 rule and then execute the 7 symbol and the 25
symbol transposition. All transpositions according to the
present invention are reversible if the transposed sequence
remains synchronized With the original ‘not transposed’
sequence. A sequence that Was enciphered by using superim
posed rules can be recovered in its original form by applying
the inverses of each rule in reverse order of their application.
Ternary Transposition Rules

Another aspect of the present invention is the creation of
transposition rules based on generating ternary or 3-valued
pseudo-noise or pseudo-noise like sequences.

The inventor has shoWn in US. Non-Provisional patent
application Ser. No. 10/935,960, ?led on Sep. 8, 2004,
entitled TERNARY AND MULTI-VALUE DIGITAL

SCRAMBLERS, DESCRAMBLERS AND SEQUENCE
GENERATORS Which is incorporated herein by reference in
its entirety, hoW one can generate ternary or 3-valued maxi
mum length sequences With LFSR methods. Consequently, as
Was shoWn in US. Provisional Patent Application No.
60/695,317 ?led on Jun. 30, 2005 entitled CREATION AND
DETECTION OF BINARY AND NON_BINARY
PSEUDO-NOISE SEQUENCES NOT USING LFSR CIR
CUITS, all consecutive ‘Words’ formed by the content of the
ternary shift register Will be unique and non-repeating for
(3P—1) Words. The factor p is the length of the shift register.
The folloWing illustrative example of a transposition rule

base on a ternary LFSR generated m-sequence is provided. A
ternary LFSR based sequence generator is shoWn in FIG. 9.
The shift register comprises 3 elements of Which each can
hold an element With one of three states. The initial state of
elements 903, 904 and 905 is [0 1 2]. The truth table of the
applied ternary logic function in device 902 is ‘terl’ and is
shoWn in the folloWing table:

terl 0 1 2

0 0 2 1
1 1 0 2
2 2 1 0

The truth table is non-commutative. The columns of the truth
table of ‘ter1 ’ are determined by the output signals provided
by the shift register element 905. The transposition rule is
formed by the decimal value of each Word formed by the
content of the shift register at each different and consecutive
state of the LFSR.
The generated sequence by the circuit of FIG. 9 is seq3:[2

2200101211201110020212210]andhasalength
of 26:(27—1) symbols. The rule formed by the consecutive
states ofthe LFSR is: Rule3:[5 19 24 26 8 2 9 3 10 21 1614
22 7111213 4118 6 2015 23 25 17]. The inverting rule is
[1968181211457915161712231126202221013
24 3 25 4].

The forbidden state of this circuit is [0 0 0]. So the decimal
number 0 Will not occur in the transposition rule. One can
create additional rules by either changing the initial state of
the LFSR or by repeatedly applying the rule on itself. Apply

20

25

30

35

40

45

50

55

60

65

12
ing the rule once upon itself Will create [8 1 23 17 3 19 10 24

216127209161422265421811152513].
ElseWhere, such as in US. Non-Provisional patent appli

cation Ser. No. 10/935,960, ?led on Sep. 8, 2004, entitled
TERNARY AND MULTI-VALUE DIGITAL SCRAM
BLERS, DESCRAMBLERS AND SEQUENCE GENERA
TORS Which is hereby incorporated by reference herein in its
entirety, the inventor has shoWn that by using different ternary
logic functions in LFSRs additional ternary m-sequences can
be created. These additional ternary m-sequences can in prin
ciple also be used to create orthogonal transposition rules.
One potential problem can occur if the all 0 state is not the
forbidden state. In that case the all 0 Word is alloWed and Will
be a transposition state. Because it is assumed that the
sequences to be transposed and the transposed sequences start
at position 1, the occurrence of a position 0 is problematic.
The folloWing illustrative example Will be used to demon
strate hoW the potential problem can be addressed.
Assume that an LFSR as shoWn in FIG. 9 Will be applied,

With the device 902 executing ternary logic function ‘ter2’ of
Which the truth table is shoWn in the folloWing table.

ter2 0 1 2

0 1 0 2
1 2 1 0
2 0 2 1

The LFSR state [1 1 1] equivalent With decimal value 13 is
the forbidden state While [0 0 0] is alloWed and Will occur.
Starting With [0 1 2] the folloWing 26 unique Words or repre
sented by the shift register content Will be generated and
shoWn in the folloWing table. The decimal equivalent value of
the ternary Words is also included.

Word

15

There are several Ways to make this a valid transposition
rule. One Way is to replace 0 With the forbidden state (Which
represents 13). The transposition rule then becomes: [5 1 13 9
12221623720248112125261714410319621815].

US 7,930,331 B2
13

The following illustrative examples Will show the results of
several transposition rules. In the ?rst example the ternary
m-sequence generated by the circuit of FIG. 9 With 902 real
iZing function ‘ter2’ Will be transposed by the rule generated
by the circuit of FIG. 9 With 902 realiZed by ‘ter1 ’ and initial
state [0 1 2]. The LFSR has shift register elements 903, 904
and 905; a tap 906; and an output 907. The ternary m-se
quencetobetransposedis:[001121202201222110
1 0 2 0 0 2 1 0]. The applied transposition rule is: Rule3:[5 19
24268293102116142271112134118620152325
17] Which is generated by the circuit of FIG. 9 With device 902
realiZed by ternary function ‘ter1’. The transposed sequence
is: [2120002122120201210010201 1].

The auto-correlation graph of the transposed sequence is
shoWn in FIG. 10. The cross-correlation graph of the original
sequence With the transposed sequence is shoWn in FIG. 11.

It is one aspect of the present invention to create a neW
transposition rule from an existing rule of n positions, by
determining the modulo-n residue of all rule values and add
ing 1 . Applying this method to the illustrative ternary example
Will createtherule: [6 202519 310411221715 23 81213
14 5 219 7 2116 24 26 18]. While it appears to be easy to
determine this rule from its source, the same is not true for the
transposed sequences. Applying the ‘modulo-n and plus-1’
rule to the sequence that Was the result of the previous trans
position Will create the sequence: [0 0 1 2 2 2 2 0 1 0 2 0 2 1
2 0 2 0 1 0 2 1 1 0 1]. The auto-correlation graph of this
sequence is shoWn in FIG. 12.

There are no obvious recognition or synchronization points
betWeen this neWly transposed sequence and the previous
one. FIG. 13 shoWs the cross-correlation graph of the trans
posed sequence With the sequence created by transposition
the transposed sequence again With the ‘modulo-n+1 ’ rule.
There is no clear alignment betWeen the tWo sequences. FIG.
14 shoWs the cross-correlation of the sequence created by the
‘modulo -n+ 1 ’ rule With the original ternary m-sequence. Also
in this case there is no clear alignment.

The application of the transposition rules derived from
ternary LFSR based sequences to other LFSR generated ter
nary sequences is for illustrative purposes only as to make
sure that the sequences as Well as rules have the same number
of positions and to demonstrate that apparent positional rela
tionships (as shoWn in correlation graphs) Will be broken up
by the transposition rules. The transpositions of course Work
for any sequence of n-valued symbols. The requirement is
that one can create a sequence of (nP—1) n-valued symbols or
n‘’ n-valued symbols from Words of p n-valued symbols in
such a Way that each Word of p consecutives n-valued sym
bols in the sequence are unique With regards to one another.
This is a different Way to say that the sequences should be
pseudo-random.
One should make sure that the sequences to be transposed

contain suf?cient symbols to apply the relevant transposition
rules. When a sequence does not contain enough symbols one
may have to stuff or pad a sequence With additional symbols
When a transposition rule requires additional symbols.
Sequences of Length 3*’

In the cited US. Provisional Patent Application related to
generating sequences not using LFSR methods the inventor
has shoWn it to be possible to generate n-valued sequences of
length n‘’ Wherein Words are used of p n-valued symbols. It is
possible to arrange the Words in such a Way that for instance
the last (p-1) symbols of a Word coincide With the ?rst (p-1)
symbols of the next Word. It is then possible to use all n‘’
Words just once in creating a sequence. One can actually
recreate the used Words from the sequence by starting to take
the ?rst p symbols, shift one position and take again the p

20

25

30

35

40

45

50

55

60

65

14
consecutive symbols, etc. Each Word is then unique. One can
create Words of more than p symbols. In that case all Words
Will be unique. HoWever When sorted these Words (of more
than p symbols) do not have to form a mainly contiguous
series of numbers, With only the forbidden Word(s) missing.

It Was shoWn in the cited patent application that the auto
correlation of these maximum length sequences canbe attrac
tive, by having one central high peak and much loWer non
peak values. One of these sequences of length 27 Will be used
as an illustrative example to generate transposition rules. The
sequenceis[00010111210200212022201221
1]. This sequence of 27 ternary symbols Was created by the
‘Word’ method using 27 different Words of 3 symbols. This
sequence can be translated into a rule of 27 different decimal
numbers: [013 10413 141621 11 6182723 152082624
19 5 17 25 22 12 9]. Because of the nature of the method to
generate the sequence all 27 Words (including all 0s) Will be
used. Consequently one has to add 1 to all numbers to create
atranspositionrule:[12 4115141517 2212 719 3 8 2416
21 9 27 25 20 6 18 26 23 13 10]. All previously mentioned
methods (inverting, shifting positions, repeated application
and ‘modulo-n+1’) can be applied using this rule.

For illustrative purposes the initial state of sequences in the
examples Were selected as [0 0 0]. This means that a self
mapping ?rst state of the transposition Will be created. It
should be clear that one may start With a different state to
prevent the ?rst state to be self mapping.
Hiding One Sequence in Another Sequence
As an illustrative example it is shoWn What Will happen

When the sequence is analyZed using Words of 4 elements
rather than 3. The created rule Will then be: Rule4:[2 6 19 58
1443 49 67 39 38 35 26 79 77 715172 55 515 47 612164
30 9 27]. This rule is not complete. The rule can not be applied
in ‘transpose from’ mode Without ?rst generating a complete
79 symbols originating sequence. HoWever in the ‘transpose
to’ mode this rule can be used to hide symbols in another
sequence in a recoverable Way.
The highest number in Rule4 is 79. Assume, as before, that

the starting position of a transposition is 1.Assume also that
asequence[12345 67891011121314151617181920
21 22 23 24 25 26 27] is going to be ‘hidden’ in a sequence of
all 0s. Clearly this is not really hiding the sequence. HoWever
for illustrative purposes the symbols to be ‘hidden’ need to
stand out. So a sequence of 27 different symbols is going to be
transposed (or is going to overWrite or replace) 27 0s in a
sequence of 79 0s. The sequence With the second sequence
transposedintoitWillbe:[010019 2 002600005 2000
03023000012270025000011001090006000
21070160001800400220024008000151700
0 0 14 0 13]. By inverting the Rule4 the original sequence can
be recovered.

Another ‘hiding’ scheme is provided as an illustrative
example. The folloWing ternary sequence Original:[0 0 0 1 0
1112102002120222012211]With27elementsWill
be hidden in a ternary sequence Long79:[0 1 0 1 1 1 2 1 0 2
002120222012211000102220200211101
121201221000200101212011122202211
0 2 1] With 79 elements. By applying Rule4 in ‘transpose to’
mode the sequence Original is transposed into Long79 With
resulting sequence Hide:[0 0 1 2 0 2 1 1 2 0 0 2 0 2 0 2 2 0 0
122112101222200001211011212012110
00201100212011122222211020].Byapplying
the inverse of Rule4 in ‘transpose to’ mode one can recover
Original from sequence Hide.
The effect of hiding a smaller sequence by transposition in

a larger one is shoWn in FIG. 15. Herein the combined auto
correlation of the sequence Long79 in thick line and the

US 7,930,331 B2
15

cross-correlation of Long79 With sequence Hide in thin line
are shown. The effect of the Original sequence on the overall
cross-correlation is minimal. The peak of the cross-correla
tion coincides With the peak of the auto-correlation. Its peak
is about at 65 and is loWer than the 79 of the auto-correlation.
But detection by correlating Hide With Long79 is still fairly
simple. One can do of course additional transpositions on the
sequence Hide.
One can hide even one element in a multi-element

sequence.
The hiding technique Was demonstrated in an illustrative

example using ternary sequences. It should be clear that the
method, being another aspect of the present invention, can be
applied using any n-valued sequence to generate the hiding
rule. Also the hiding sequence and the sequence to be hidden
can be any n-valued sequence. Clearly the length of the
sequences and the statistical make-up of the sequences and
the hiding rule Will in?uence hoW Well a sequence can be
hidden.
Using 4-valued Sequences

For illustrative purposes it Will be shoWn that 4-valued
sequences can also be applied to create orthogonal transpo
sition rules. Using 4-valued ‘Word’ methods one can create
orthogonal transposition rules of different length. One can for
instance create m-sequences of length (4P—1). Herein p is the
length of the applied Words (or the length of an LFSR 4-val
ued shift register. Some of the sequences Will have the desir
able 2-level auto-correlation graph. For the illustrative
example a rule created by 2 4-valued element Words Will be
used.
One sequence thus generated is the 16 elements sequence

[2 0 0110 3 3 2 3 0 21312].One can derive atransposition
rule from this sequence by ?rst putting a copy of the ?rst
element of the sequence (2) at the end of the sequence and by
considering each of 2 consecutive 4-valued elements repre
senting a decimal value. In 4-valued representation the rule
thenis:[20;00;01;11;10;03;33;32;23;30;02;21;
l3;31;12;22]orindecimalform:[8015 4315141112
2 9 7 13 6 10]. In order to make this a transposition rule
Working from origin 1 a 1 has to be added to all numbers thus
creating: Rule42:[9 1 2 6 5 416151213 310 814 711].

Another 16 elements sequence is [0 0 1 0 2 2 1 1 2 0 3 3 1
3 2 3]. An auto-correlation graph of this sequence is shoWn in
FIG. 16. Using rule Rule42 in ‘transpose from’ mode on the
sequence Will create the sequence [2 0 0 2 2 0 3 2 3 1 1 0 1 3
1 3]. The auto-correlation of that sequence is shoWn in FIG.
17. The cross-correlation of the original sequence With the
transposed sequence is shoWn in FIG. 18. It should be appar
ent to one of ordinary skills in the art that any reversible
n-valued pseudo-random sequence can be used to transpose
and reverse a transposed sequence of symbols.
Other Applications of Transposition Rules

The transposition rules as developed in the present inven
tion transpose symbols from one position in a sequence to
another position Which sometimes can be the same position.
It is another aspect of the present invention to interpret the
generated rule of decimal numbers as actual positions. The
numbers represent individual slots or positions in a series or
frame of positions. A slot or a position may represent a spe
ci?c frequency band or a time slot. Each position or slot has a
speci?c number. While in a transposition one changes the
position of a symbol, in this aspect of the invention a symbol
is exchanged With What Will be called a ‘user’. The ‘user’ is in
essence a message or part of a message that requires for
instance a ‘time-slot’, a pulse, an assigned bandWidth or an
assigned code to transmit the message or part of a message.
The transposition rule [a b c d] then has the folloWing mean

20

25

30

35

40

45

50

55

60

65

16
ing: there are 4 users; each user Will be assigned a transmis
sion resource (potentially for a ?nite time). There are 4
resources named ‘a’, ‘b’, ‘c’ and ‘d’. User 1 is assigned
resource ‘a’. User 2 is assigned resource ‘b’. User 3 is
assigned resource ‘c’. User 4 is assigned resource ‘d’. In
general one Will assign a single resource (or a series of
resources that may be considered a single resource) to a single
user. In order to prevent interference one Will Want to prevent
multiple users having access to the same resource at the same
time. This concept is knoWn as orthogonality. It is possible to
assign more resources to a single user. As long as orthogo
nality is observed having access to more resources should not
be a problem.
The folloWing illustrative example Will shoW hoW a trans

position rule (in this case the 4-valued sequence based
Rule42) can be applied in a time-hopping system. In a time
hopping system a transmission period is divided in a frame
With a discrete number of time slots. A user is represented by
a sequence of pulses, Wherein each user has at least one pulse
in a time-slot in each timeframe. In general one Wants each
user to occupy a pulse in a different time slot in each con
secutive timeframe. Assuming that there are an equal number
of users and time-slots it should be clear that the assignment
rule should be orthogonal (or non-con?icting).
Assume that there are 16 time slots and 16 users. The rule

Rule42:[912 6 5 416151213 310 814 711]canthenbe
applied to assign time-slots. Because it may be required that
the assigned time-slots differ in each frame additional assign
ment rules are then required. One can use different assign
ment rules generated by for instance other 16 element 4-val
ued sequences, generated by 2-element 4 valued Words. The
advantage is that unrelated sequences can be used. One can
also derive the next to be applied rule from the present rule.
One Way derive the next assignment rule from the present is
by shifting all elements one position to the right and move the
last element to the ?rst position. This Will create Rule42sr1:
[11912 6 5 416151213 310 814 7] folloWed by
Rule42sr2:[711912 6 5 416151213 310 8 14]. One can
create 16 different consecutive assignment rules. The results
of the ?rst 3 rules are shoWn in the pulse diagram With three
consecutive timeframes in FIG. 19. The x-axis shoWs three
timeframes With 16 time-slots. The y-axis shoWs the users.
The thick short vertical lines tell Which time-slot is assigned
to Which user. Clearly this scheme is orthogonal. It repeats
itself after 16 timeframes. Also the relations betWeen users
and time-slots become predictable.

Another Way to create orthogonal ‘hopping’ or placement
rules is by adding a number ‘modulo-16+1 ’ to the elements of
a previous rule, Which makes each position shift by 1 in each
next timeframe. The ?rst 3 timeframes as a result of this
method are shoWn in FIG. 20. While the patterns are orthogo
nal in each timeframe they are folloWing a clear pattern. One
can add also odd numbers to make the jumps seemingly less
predictable.

Another Way to create ‘n’ seemingly random ‘hopping’
patterns for ‘n’ users is another aspect of the present inven
tion. The method is explained by using as an illustrative
example based on a 16 elements 4-valued sequence created
by the 2 4-valued elements ‘Word’ method. This sequence,
taking all consecutive 2 elements Words and extending the
sequence With a copy of the ?rst element, can create a
sequence of 16 different decimal numbers. As there is no
forbidden state among the Words the loWest decimal number
in the sequence is 0 and the highest is 1 5. To make the decimal
numbers equivalent to positions each number is increased by
one. One can thus generate thousands and thousands of dif
ferent decimal sequences. The next step is to use a generated

