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Matlab code for m-file ps8.m part_1_of_3
% determining the comparative coding states for 8 data symbols

% The truth tabel for sc8, addition over GF(8)
sc81=[01234567]+1;
sc82=[10472653]+1;
sc83=[24051376]+1;

sc84=[3750624 1]+1;
sc85=[42160735]+1;
sc86=[56327014]+1;
sc87=[65743102]+1;
sc88=[73615420]+1;
sc8=[sc81;3¢c82;5¢83;5¢84;5¢85;5¢86;8¢87;5¢88];

%The truth table for m8, multiplication over GF(8)
m81=[0 000000 0]+1;

m&2=[01234567]+1;

m83=[0234567 1]+1;

m84=[03456712]+1;

m&5=[04567123]+1;

m86=[05671234]+1;

m87=[06712345]+1;

m88=[07123456]+1;
m8=[m&81;m82;m8&3;m84;m8&5;m86;m87;m8&8];

% set-up of symbols in representative matrix xn
n=s;
inx=[22222222],
xn=ones(n,n+3);
fori=1:n
xn(i,i+3)=inx(1);
end

FIG. 21A
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Matlab code for m-file ps8.m part_2_of 3

% set-up of shift register in forward direction
shs=ones(3,n+3);

shst=ones(3,n+3,n+1);

shst(:,:,1)=shs;

% set multipliers

ab=ones(1,n+3)+5;
aS=ones(1,n+3)+4;
a8=ones(1,n+3)+3;
a7/=ones(1,n+3)+6;

% determine coding states in forward direction
% expressed in shst
% sc8t and m&t solve vector addition (sc8t) and
% vector multiplication (m8t)
for i=1:n
ins=sc8t(shs(3,:),xn(i,:));
ins3=ms8t(ins,a7);
ins2=mg&t(ins,af);
ins 1=m8t(ins,ad);
ts1=ins1;
ts2=sc8t(shs(1,:),ins2);
ts3=sc8t(shs(2,:),ins3);
shs(3,:)=ts3;
shs(2,:)=ts2;
shs(1,:)=ts1;
shst(:,:,1+1)=shs;
end

FIG. 21B
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%

Matlab code for m-file ps8.m part_3_of_3
% set-up of shift register in reverse direction
chk=[2 2 2];

shr=ones(3,n+3);
shr(1,1)=chk(1);
shr(2,2)=chk(2);
shr(3,3)=chk(3);
shrt(:,:,n+1)=shr;

% determine coding state in reverse direction in shrt
for i=1:n

ins=mg&t(a6,shr(1,:));
ins3=m&t(ins,a7);
ins2=m8t(ins,as);
ts3=sc8t(ins,xn(n+1-1,:));
ts2=sc8t(shr(3,:),ins3);
ts1=sc8t(shr(2,:),ins2);
shr(3,:)=ts3;

shr(2,:)=ts2;

shr(l,:)=tsl;
shrt(:,:,n+1-1)=shr;

end

determine comparative states in resrs

for i=1:n+1

al 1=shst(1,:,1);
a2l=shrt(1,:,1);
bl1=sc8t(all,a2l);
al2=shst(2,:,1);
a22=shrt(2,:,1);
b12=sc8t(al2,a22);

al 3=shst(3,:,1);
a23=shrt(3,:,1);
b13=sc8t(al3,a23);
resrs(i,:)=[b11 9bl12 9 bl3];

end

FIG. 21C
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Matlab program A C8.m for finding error location

% actual coder to determine check symbols
shifts=[1 1 1];
%xin=[42315678],
Xin=[22222222];
shiftst(1,:)=shifts;
fori=1:8
in=sc8(shifts(3),xin(i));
1n3=m8(in,7);
1n2=mg&(in,4);
in1=mg&(in,5);
tl=inl;
t2=sc8(shifts(1),in2);
t3=sc8(shifts(2),in3);
shifts(3)=t3;
shifts(2)=t2;
shifts(1)=tl;
shiftst(i+1,:)=shifts;
end

% ctab generated by ps8 is one shift register represented
% 1n resrs
% vr8t determines the actual result of the expression

% create error in received codeword
cin=[shifts xin];
er=[11111146111];
cin=sc8t(cin,er);
for1=1:9

al=ctab(i,:);

bl(i)=vr8t(al,cin);
end

FIG. 22
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METHODS AND SYSTEMS FOR RAPID
ERROR CORRECTION OF REED-SOLOMON
CODES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part and claims the
benefit of U.S. Non-Provisional patent application Ser. No.
11/775,963 filed on Jul. 11, 2007 which is incorporated herein
by reference in its entirety. This application also claims the
benefit of U.S. Provisional Patent Application Ser. No.
61/332,974, filed May 10, 2010 which is incorporated herein
by reference in its entirety.

BACKGROUND OF THE INVENTION

The present invention relates to error correcting coding and
decoding. More specifically itrelates to correcting symbols in
error in cyclic codes.

Error correction of digital codes is widely used in telecom-
munications and in transfer of information such as reading of
data from storage media such as optical disks. Detection of
errors can take place by analyzing symbols that were added to
the information symbols during coding. The relation between
information symbols and the added coding symbols is deter-
mined by arule. Ifafter reception of the symbols such relation
between the symbols as provided by the rule no longer holds,
it can be determined that some of the symbols are different or
in error compared to the original symbols. Such a relationship
may be a parity rule or a syndrome relationship. If the errors
do not exceed a certain number within a defined number of
symbols it is possible to identify and correct these errors.
Known methods of creating error correcting codes and cor-
rection of errors are provided by BCH codes and the related
Reed-Solomon (RS) codes. These are known as (p.,k) codes
having codewords of p n-valued symbols of which k symbols
are information symbols.

Error-correction in (p.k) codes usually involves locating
symbols in error, determining the magnitude of an error and
determining the correct value or state of a symbol. Calcula-
tions in (p.,k) codes such as RS codes can be time and/or
resource consuming and may add to a coding latency.

The inventor has described in earlier patent applications
how after determining an error location in a codeword one can
determine the correct symbol value without first determining
an error magnitude or error value as it is also called. Also
described in earlier patent applications is the up-and-down
approach in determining intermediate coding states. These
aspects are described in U.S. Provisional Patent Application
No. 60/807,087, filed Jul. 12, 2006, and U.S. Provisional
Patent Application No. 60/821,980 filed Aug. 10, 2006 which
are both incorporated herein by reference in their entirety.
U.S. patent application Ser. No. 11/739,189 filed Apr. 26,
2007 and U.S. patent application Ser. No. 11/743,893 filed
May 3, 2007 and U.S. patent application Ser. No. 11/775,963
filed on Jul. 11, 2007 are also incorporated herein by refer-
ence in their entirety.

For instance U.S. patent application Ser. No. 11/775,963
requires the creation of a state difference matrix created from
assumed symbols in error. One may write all up and down
states as a state difference vector. One may further put in the
position of a vector a 0 when corresponding states are iden-
tical and a 1 when corresponding states are different. One can
then create a matrix formed of state difference vectors for
specific error combinations. Furthermore, the vectors will be
putin descending order of number of Os in the matrix. One can
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easily create the vectors by inserting errors in codewords and
determining the state difference vectors. A representative
state difference matrix is shown in FIG. 24 of this patent
application. This method can be effective in detecting errors
in relatively short codewords. However, applying it to long
words may create a very large matrix.

Thus, one of the most time and/or resource consuming
efforts in error correction of symbols in error in a Reed-
Solomon codeword, especially in a long code-word, is the
determination of an error location. This creates a bottleneck
in high speed decoding and error correction of received code-
words in error in applications that involve high speed data
transfer.

Accordingly novel methods and apparatus that can locate
and correct a symbol in error in a faster or easier way are
required.

SUMMARY OF THE INVENTION

One aspect of the present invention presents a novel
method and apparatus that can rapidly detect and correct
errors in (p,k,n) codewords with p n-state symbols of which k
n-state symbols are data symbols and (p-k) symbols are check
symbols, with n>2, p>2 and k>p-k, and wherein each n-state
symbol is represented by a signal.

In accordance with an aspect of the present invention a
method is provided for locating at least one n-state symbol in
error in a plurality of signals representing a sequence of p
n-state symbols wherein k n-state symbols are data symbols
and (p-k) n-state symbols are check symbols, with n>2, p>2
and k>2, comprising receiving by a processor of a plurality of
signals representing the p n-state symbols, wherein k<(p-k),
evaluating by the processor of at least a first expression rep-
resenting a comparative state of an encoder in forward coding
direction and in reverse coding direction, and wherein the
expression uses a value related to a received signal that rep-
resents a single n-state symbol as an input.

In accordance with an aspect of the present invention a
method is provided for error correction, comprising receiving
by a receiver of a codeword of n-state symbols with n>2
containing a plurality of n-state data symbols and a plurality
of'n-state check symbols, an n-state symbol being represented
by a signal, each check symbol being determined by an
n-state expression wherein the n-state data symbols are vari-
ables, a processor determining a plurality of comparative
coding states, each comparative coding state being deter-
mined by combining a related forward coding state with a
related reverse coding state, the processor locating a symbol
in error in the codeword based on the plurality of comparative
coding states, the processor determining an error value for the
symbol in error in the codeword, and the processor determin-
ing a correct value for the symbol in error.

In accordance with another aspect of the present invention
amethod is provided, wherein each of the comparative coding
states is determined by the processor by evaluating a com-
parative coding expression that has the plurality of n-state
data symbols and the plurality of n-state check symbols in the
codeword as variables.

In accordance with yet another aspect of the present inven-
tion a method is provided, wherein a partial result of the
comparative coding expression is evaluated after an n-state
symbol in the codeword has been received by the receiver and
before a next n-state symbol in the codeword is available for
processing by the processor.

In accordance with yet another aspect of the present inven-
tion a method is provided, wherein an n-state symbol that is
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generated by a comparative coding expression that deter-
mines a comparative coding state is applied to determine the
error value.

In accordance with yet another aspect of the present inven-
tion a method is provided, wherein no syndrome is applied to
determine the error location.

In accordance with yet another aspect of the present inven-
tion a method is provided, wherein the comparative coding
expression applies an n-state logic function that is defined
over a finite field GF(n).

In accordance with yet another aspect of the present inven-
tion a method is provided, wherein an n-state symbol is rep-
resented by a plurality of binary signals.

In accordance with yet another aspect of the present inven-
tion a method is provided, wherein the codeword is charac-
terized by an n-state Linear Feedback Shift Register.

In accordance with yet another aspect of the present inven-
tion a method is provided, wherein the comparative coding
expression is represented by a plurality of coefficients.

In accordance with yet another aspect of the present inven-
tion a method is provided, wherein the method is imple-
mented in a mobile communication receiver.

In accordance with an aspect of the present invention an
apparatus is provided comprising, a memory to store and
retrieve data, including instructions, a processor enabled to
execute instructions to perform the steps: processing a code-
word of n-state symbols with n>2 containing a plurality of
n-state data symbols and a plurality of n-state check symbols,
an n-state symbol being represented by a signal received by a
receiver, each check symbol being determined by an n-state
expression wherein the n-state data symbols are variables,
determining a plurality of comparative coding states, each
comparative coding state being determined by combining a
related forward coding state with a related reverse coding
state, locating a symbol in error in the codeword from the
plurality of comparative coding states, determining an error
value for the symbol in error; and determining a correct value
for the symbol in error.

In accordance with a further aspect of the present invention
an apparatus is provided, wherein each of the comparative
coding states is determined by evaluating an comparative
coding expression that has the plurality of n-state data sym-
bols and the plurality of n-state check symbols in a received
codeword as variables.

In accordance with yet a further aspect of the present inven-
tion an apparatus is provided, wherein a partial result of the
comparative coding expression is evaluated after an n-state
symbol in the codeword has been received by the receiver and
before a next n-state symbol in the codeword is available for
processing by the processor.

In accordance with yet a further aspect of the present inven-
tion an apparatus is provided, wherein an n-state symbol that
is generated by a comparative coding expression that deter-
mines a comparative coding state is applied to determine the
error value.

In accordance with yet a further aspect of the present inven-
tion an apparatus is provided, wherein no syndrome is applied
to determine the error location.

In accordance with yet a further aspect of the present inven-
tion an apparatus is provided, wherein the comparative cod-
ing expression applies an n-state logic function that is defined
over a finite field GF(n).

In accordance with yet a further aspect of the present inven-
tion an apparatus is provided, wherein an n-state symbol is
represented by a plurality of binary words.
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Inaccordance with yet a further aspect of the present inven-
tion an apparatus is provided, wherein the apparatus is part of
a communication device.

Inaccordance with yet a further aspect of the present inven-
tion an apparatus is provided, wherein the apparatus is part of
a mobile communication receiving device.

Inaccordance with yet a further aspect of the present inven-
tion an apparatus is provided, wherein the apparatus is part of
a data storage device.

Inaccordance with yet a further aspect of the present inven-
tion an apparatus is provided, wherein the codeword is a
Reed-Solomon codeword.

Inaccordance with yet a further aspect of the present inven-
tion the apparatus is provided, wherein n=16.

Inaccordance with yet a further aspect of the present inven-
tion the apparatus is provided, wherein n>16.

It is another aspect of the present invention to provide
apparatus and systems that will implement the methods pro-
vided in the present invention.

DESCRIPTION OF THE DRAWINGS

FIGS. 1-6 are examples of encoders in LFSR diagram in
accordance with an aspect of the present invention;

FIG. 7 is a flow diagram of an error correcting approach in
accordance with an aspect of the present invention;

FIGS. 8-10 illustrate an implementation of an aspect of the
present invention;

FIG. 11 is an example of an encoder in LFSR diagram in
accordance with an aspect of the present invention;

FIGS. 12 and 13 illustrate a system in accordance with an
aspect of the present invention;

FIGS. 14 and 15 illustrate an implementation of an n-state
switching function in accordance with an aspect of the
present invention;

FIG. 16 illustrates a forward coder and a corresponding
reversing coder in accordance with an aspect of the present
invention;

FIGS. 17 and 18 illustrate comparative coding states in
accordance with an aspect of the present invention;

FIG. 19 illustrates a comparative decoding table in accor-
dance with an aspect of the present invention;

FIG. 20 illustrates a system in accordance with an aspect of
the present invention; and

FIGS. 21A, 21B, 21C and 22 illustrate computer code in
accordance with an aspect of the present invention.

DESCRIPTION OF A PREFERRED
EMBODIMENT

BCH-codes and more in particular Reed-Solomon (RS)
codes are among the most widely used error-correcting codes.
A BCH codeword can be formed by applying a Linear Feed-
back Shift Register (LFSR). In general, a codeword is a sys-
tematic code. A sequence of data symbols is entered into an
LFSR. A content of the shift register of the LFSR after enter-
ing the data symbols is considered to form a series of check
symbols, which are concatenated to the sequence of data
symbols to form a codeword.

The LFSR of a coder can be selected in a certain and
pre-described way. If conditions of a BCH or RS code have
been met then one may detect and correct a certain number of
symbols in error in the codeword. Detection of an error in a
codeword can be achieved by entering the data symbol part of
the codeword in an LFSR based coder to generate the check
symbols. If the newly generated check symbols are identical
to the check symbols in the codeword it may be assumed that
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no errors have occurred. If there is a difference between the
newly generated check symbols and the check symbols in the
codeword then it may be assumed that an error has occurred.

The challenge is to find which of the symbols is in error,
and to correct the error. In most of the cases the error correc-
tion has to take place in real-time applications. This can be in
the transmission, reception and/or display of voice, audio,
video or data signals. Many devices that apply error-correc-
tion such as media players and/or portable computing devices
and cell phones are also power constrained. It is beneficial to
achieve error correction as fast as possible at the lowest
energy cost.

Error correction in BCH and RS codewords requires exten-
sive calculations. One step involves the determination of syn-
drome values by substituting the roots of the generator poly-
nomial of the code into the received message polynomial.
Based on the syndrome values one can develop the error
location polynomial and determine the roots of the error-
location polynomial. The error locations are the reciprocals of
the roots of the error polynomial. Based on the location of an
error, a magnitude of the error is determined and the symbol
in error is corrected with the magnitude of the error to deter-
mine the correct value (or state) of the symbol.

The mathematics of locating an error by way of an error-
location polynomial is well known and is described for
instance in: Error Control Coding, 2"¢ edition, by Shu Lin and
Daniel I. Costello Ir.; Pearson Prentice Hall 2004. A worked
out example of an 8-valued (7,3) RS code using a Galois
configuration LFSR is described in instance in an article by
Dr. Bernard Sklar, entitled Reed Solomon codes, which is
available on-line at: “http:slash-slash-www-dot-informit-
dot-com-slash-content-slash-images-slash-art_sklar7_reed-
solomon-slash-elementlinks-slash-art_sklar7_reed-so-
lomon-dot-pdf” which is incorporated herein by reference in
its entirety.

A pre-requisite for generating a codeword is the creation of
an extension Galois Field that contains the symbols of the
code and that is an extension of a Galois Field that is gener-
ated by a primitive polynomial. The extension field contains
elements that are n-valued or n-state. An element of a binary
field can have the value or state of two possible states, in
general indicated as 0 and 1. In GF(n) an element can have
one of n states. The states are usually indicated by consecutive
digits starting at 0. For instance, one can say that GF(8)
contains the elements 0, 1, 2, 3, 4, 5, 6 and 7. It is noted that
an element of a Galois field can be indicated by a unique
indicator, which is called a symbol. Accordingly, ‘0°, ‘1°, <2°,
‘3’, ... are symbols in GF(8). A symbol in an extension field
is generated from the related primitive polynomial. In general
one expresses n as a power of the primitive element. For
instance 8=2>. This also allows one to represent a symbol or
element in an extension field as a plurality of primitive ele-
ments. For instance, the symbol ‘0” in GF(8) can be repre-
sented as ‘000’ in primitive elements. It is noted that this is a
mathematical representation.

Error correcting codes and error correcting methods and
apparatus are widely applied in computing devices and com-
munication devices and systems. Such systems and devices
receive, generate and process signals rather than symbols, and
do this at a speed that cannot be achieved manually by
humans. For instance, voice or audio processing takes place at
a speed of thousands of samples per second. A sample can be
represented by a plurality of bits, wherein a bit is represented
by a signal. A sample can also be represented by a signal that
can assume one of n-states. A state of a signal in one embodi-
ment can be distinguished from another state by a difference
in signal value (such as amplitude). A state of a signal can also
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6

be distinguished from another state by a difference in an
independent instance of a physical phenomenon, such as a
wavelength of an optical signal.

Processing of n-state symbols can take place by represent-
ing each n-state symbol (with n>2) as a plurality of binary
symbols that are processed by binary switching devices. In a
further embodiment an n-state symbol is represented by an
n-state signal and processed by n-state switching devices. In
yet a further embodiment an n-state symbol is represented by
a plurality of k-state symbols each represented by a k-state
signals with k<n and processed by k-state switching devices.

The n-state check symbols in a BCH or RS-code are in
general generated by an n-state Linear Feedback Shift Reg-
ister (LFSR) based encoder or an implementation thereof.
The n-state LFSR can be an actual shift register, enabled to
hold and shift n-state signals or a representation of n-state
symbols based on a clock signal (which is assumed but in
general not shown as to not obscure the aspects of the present
invention.) An n-state LFSR can be implemented in binary
technology or in n-state switching technology. An n-state
LFSR can also be implemented as a series of instructions on
a general processor or a digital signal processor (DSP). A
state of an element of an n-state LFSR can also be determined
by evaluating an n-state switching expression, which will be
provided herein. The term LFSR or n-state LFSR herein is
intended to mean any physical implementation thereof,
unless stated otherwise.

FIG. 1 is a diagram of a (7,3) 8-state Reed Solomon
encoder as for instance provided in FIG. 9 of the earlier
mentioned Sklar article. This encoder is provided in Galois
configuration. It is noted that RS and BCH encoders can also
be implemented in Fibonacci configurations, and such imple-
mentations are fully contemplated.

The encoder 100 of FIG. 1 has a 4 element 8-state shift
register with 4 shift register elements of which element 102 is
identified. The shift register elements are connected through
a device 103 which implements a 2-input/single output func-
tion fp, which is an 8-state adder over GF(8). The feedback
chains contain devices that implement single input/single
output multipliers over GF(8) of which 101 which is a mul-
tiplier 4 is identified.

The following truth tables describe the 8-state function fp
being an adder over GF(8).
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The truth table of the multiplication m8 over GF(8) is
provided in the following truth table.
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-continued
5 0 5 6 7 1 2 3 4
6 0 6 7 1 2 3 4 5
7 0 7 1 2 3 4 5 6

The advantage of the multiplier that the inverse of a mul-
tiplication (which one may call a division) is easy to establish.
The inverse of multiplier 1 is itself. The inverse of multipli-
cation by 2 is multiplication by 7; the inverse of multiplication
by 3 is multiplication by 6; the inverse of multiplication by 4
is multiplication by 5. This is in line with one aspect of the
present invention, wherein multipliers are considered n-state
reversible inverters.

It is noted that states 0, 1, 2, 3 etc. are consecutive states in
GF(8) as defined by a primitive polynomial. Accordingly, GF
states like 0, 1, 2, 3 etc in binary representation are in general
not conform the standard binary-to-decimal representation.
By using a different primitive polynomial one can create a
different adder over GF. It is noted that one may use other
reversible functions instead of adders and multipliers in
implementation of an encoder. However, it is beneficial to use
the adders and multipliers over GF as these in general are
associative and distributive, which makes it easier to evaluate
the LFSR states in a reversed direction.

The encoder of FIG. 1 can be operated in different ways.
The standard way is to set the content of the shift register to all
0 content, and the switch in a position so information or data
symbols [al a2 a3] on input 104 are entered into the LFSR.
After entering the three data symbols the switch is opened so
no symbols (or data symbols 0, if absence of signal represents
0) are entered and the content of the shift register which are
the check symbols are outputted on output 105. The 4 check
symbols are concatenated to the 3 data symbols to create a 7
symbol code-word, to be transmitted ultimately to a receiver
for decoding and error correction.

In accordance with a first aspect of the present invention all
the intermediate states of the LFSR are determined starting
from an initial state until reaching the end-state, wherein each
state of each LFSR element is represented as a vector built
from initial LFSR states and input signal states. The encoder
as shown in FIG. 1 depends on 7 independent elements: the
initial states of the shift register elements and the 3 input
symbols. A state vector in this case is represented by a 7-el-
ement vector. The initial state of the first element of the shift
register is 0, represented as [0 0 0 0 0 0 0]. If the initial state
of'the first element was 1, this would be represented as [0 0 0
1000]. Ifthe initial state of the first element was x, this would
be represented as [0 0 0 x 0 0 0]. Sticking to x as a possible
state (and realizing that x could be 0), the following repre-
sentations are used:

1% shift register element [0 0 0 x 0 0 0];

2" shift register element [0 0 0 0x 0 0];

3 shift register element [0 00 0 0 x O];

4 shift register element [00 000 0 x];

first data symbol al=[0 0 x 0 0 0 0];

second data symbol a2=[0x 00 0 0 0];

first data symbol a3=[x 0000 0 0];

While the initial state of the second shift register element is
[0 00 x 0 0], after a clock pulse it receives and stores the
content of the first register element which is modified by an
input symbol which was combined with the content of the 4%
shift register element and then multiplied by a factor 2 in
GF(8). One may apply the operations of addition and multi-
plication on the individual elements of the vector and evaluate
the complete state of a shift register element by adding (by
using function ‘fp’) all the individual elements of the state
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vector. It is pointed out that all the elements of the state vector
are independent and that a change in one element of the vector
does not change another element in the vector. It is also
pointed out that a change in one element of the vector changes
or may change the complete state that is represented by the
vector.

It is also pointed out that one may represent an element in
avector not being 0 by a 1. This leads to a vector representing
the 47 shift register element state after entering all the data
symbol as being [4 3 5 0 0 0 0]. This represents [4*al 3*a2
5*a3 0 0 0 0] wherein al, a2 and a3 are the 8-state data
symbols for which the codeword is determined. The function
“*” is the multiplication over GF(8) and ‘+’ is the addition over
GF(8). The last 4 Os in the state vector indicate that the initial
state of the shift register was 0. The 4” check symbol
sr4=4*a3+3*a2+5%al+0+0+0+0.

One can thus determine all the vectors representing the
intermediate states and end state of the LFSR during encod-
ing. All states in their state vectors for this coder are provided
in the following tables.

SR element 1

initial 0 0 0 0 0 0 0

1 0 0 4 0 0 0 0

2 0 4 7 0 0 0 0

end 4 7 6 0 0 0 0
SR element 2

initial 0 0 0 0 0 0 0

1 0 0 2 0 0 0 0

2 0 2 7 0 0 0 0

end 2 7 5 0 0 0 0
SR element 3

initial 0 0 0 0 0 0 0

1 0 0 1 0 0 0 0

2 0 1 1 0 0 0 0

end 1 1 1 0 0 0 0
SR element 4

initial 0 0 0 0 0 0 0

1 0 0 4 0 0 0 0

2 0 4 3 0 0 0 0

end 4 3 5 0 0 0 0

In accordance with a further aspect of the present invention
all shift register states will be determined by starting with the
end state of the shift register and reversing the direction of the
LFSR.

In the end state after all data symbols have been processed
the end state can be represented as SR1_end=[0 00x 0 0 0],
SR2_end=[0 0 0 0 x 0 0], SR3_end=[0 0 0 0 0 x 0] and
SR4_end=[000000x].

FIG. 2 shows the encoder 200 being the encoder 100 of
FIG. 1 in reverse. This means that the multiplier 201 is the
reverse of 101. The multiplier 5 is the reverse of multiplier 4
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in GF(8). As the encoder 200 reverses the encoder 100 the
input is now input 204 which is provided with [a3 a2 al]
which is the reverse of [al a2 a3].
The initial, end and intermediate states of the reverse
encoder 200 represented as state vectors of the shift register
elements are shown in the following tables.

SR element 1 reverse

initial 0 0 0 4 7 6 1

1 0 0 0 7 6 1 0

2 0 0 0 6 1 0 0

end 0 0 0 1 0 0 0
SR element 2 reverse

initial 1 0 0 2 7 5 0

1 0 0 0 7 5 0 1

2 0 0 0 5 0 1 0

end 0 0 0 0 1 0 0
SR element 3 reverse

initial 0 1 0 1 1 1 0

1 1 0 0 1 1 0 0

2 0 0 0 1 0 0 1

end 0 0 0 0 0 1 0
SR element 4 reverse

initial 0 0 1 4 3 5 0

1 0 1 0 3 5 0 0

2 1 0 0 5 0 0 0

end 0 0 0 0 0 0 1

Accordingly, one can evaluate all shift register states of the
encoder in forward and in reverse direction of encoding. In
the error-free situation (meaning none of the data symbols or
the check symbols being in error) all states in forward and in
reverse direction have to be the same. If these states are the
same, then when one adds the state of a shift register in
forward direction to a corresponding state in reverse direc-
tion, the resulthas to be zero (as ‘a+a’=0under GF(8)). Asone
aspect of the present invention a set of comparative state
vectors is created by combining the forward and the reverse
vectors of corresponding states using function “fp’. This leads
to the following set of comparative state tables.

SR element 1 Comp

initial 0 0 0 4 7 6 1 el
1 0 0 4 7 6 1 0 e2

2 0 4 7 6 1 0 0 e3
end 4 7 6 1 0 0 0 ed
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SR element 2 Comp

initial 1 0 0 2 7 5 0 e5
1 0 0 2 7 5 0 1 &6
2 0 2 7 5 0 1 0 &7
end 2 7 5 0 1 0 0 e8
SR element 3 Comp
initial 0 1 0 1 1 1 0 &9
1 1 0 1 1 1 0 0 el0
2 0 1 1 1 0 0 1 ell
end 1 1 1 0 0 1 0 el2
SR element 4 Comp
initial 0 0 1 4 3 5 0 el3
1 0 1 4 3 5 0 0 el4
2 1 4 3 5 0 0 0 el5
end 4 3 5 0 0 0 1 el6

It should be clear that each vector or row in each table
represents an n-state expression of the form expr=pl*a3+
p2*a2+p3*al+pd*x1+p5*x2+p6*x3+p7*x4. As a reminder
a3=[1000000];x1=[0001000]; x2=[0000 1 00]; etc.
The terms pl, p2, p3, . . . etc are the coefficients in the
equation as can be found in the comparative tables. If no
errors are present then each expression should be 0.

A simple example is provided by the data symbols [0 0 0].
The generated codeword is [0 0000 0 0]. Filling in the values
for each symbol in the expressions related to each state will
generate all Os. This indicates that no errors were present.

This code has a disadvantage for the up-and-down method
that it has many check symbols that can be in error. It does not
make sense to run a decoder to only correct check symbols if
all data symbols are not in error.

One may make an assumption for the error occurrence,
which is that at most two adjacent symbols can be in error.
This is not an unreasonable assumption. An 8-state symbol
can be represented by 3 bits. A burst error may affect 3 or
more bits, but never more than 6 bits. Even with 3 bits being
affected, if the affected bits are in adjacent words then two
symbols may be in error. One can diminish the chance for
errors in adjacent symbols by interleaving symbols in differ-
ent locations. However, the more symbols are interleaved the
more time-consuming and the more efforts have to be made to
re-assemble the codeword. It would be beneficial if one could
interleave packets of 2 or more symbols and error correct 2 or
more adjacent symbols in a codeword.

N-state (p,k) codes wherein k>>(p-k)

In general one appears to apply codes wherein the overall
symbol error ratio is fairly small, but wherein a burst can
affect a significant number of bits. For instance the well
known CIRC code as used on optical disks uses 8-bit symbols
wherein the expected error ratio is one in dozens of symbols.
The effect of symbol errors is diminished by symbol inter-
leaving. The challenge then becomes to quickly identify a
location of an error. It turns out that the earlier provided
up-down state tracking makes error location very simple. The
ability to include many symbols in a (p,k) codeword may
require that n in n-state is relatively large. Using Finite Field
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theory one arrives at certain bounds which dictate that n>16.
As examples (p,k) codes in GF(16) will be used.

The first example is a (15,11) code over GF(16) wherein
add16 and mull6 are defined. This code generates a codeword
of'15 16-state symbols of which 11 symbols are data symbols
and 4 symbols are check symbols. The following table is the
truth table for an addition over GF(16)

5

12

check symbols. The multiplier 301 has been reversed to a
multiplier 401 being multiplier 6, and the input 404 receives
the data symbols in reverse order.

The approach for generating the going-up states of the
LFSR and the reversing direction states in this (15,11)
16-state code is similar as explained above in the (7,3) 8-state
code. Each state is represented by a vector of 15 elements.

addl6 0 1 2 3 4 5 6 7 & 9 10 11 12 13 14 15
0 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1 0 5 915 211 14 10 3 & 6 13 12 7 4
2 2 5 0 610 1 3 12 15 11 4 9 7 14 13 8
3 3 9 6 0 711 2 413 1 12 5 10 8 15 14
4 41510 7 0 812 3 5 14 213 6 11 9 1
5 5 2 111 8 0 913 4 6 15 3 14 7 12 10
6 611 3 2 12 9 010 14 5 7 1 4 15 &8 13
7 7 14 12 4 3 13 10 0 11 15 6 8 2 5 1 9
8 8 10 15 13 5 4 14 11 0 12 1 7 9 3 6 2
9 9 3 11 1 14 6 5 15 12 0 13 2 8 10 4 7
10 10 8 4 12 215 7 6 1 13 014 3 9 11 5
11 11 6 9 5 13 3 1 8 7 2 14 0 15 4 10 12
2 1213 7 10 6 14 4 2 9 8 3 15 0 1 5 11
13 13 12 14 8 11 7 15 5 3 10 9 4 1 0 2 6
4 14 7 13 15 9 12 8 1 6 4 11 10 5§ 2 0 3
15 15 4 8 14 1 10 13 9 2 7 5 12 11 6 3 0

The following table provides a truth table for a multiplica-
tion over GF(16).

Herein 11 positions are dedicated to the data symbols. The
first 16-state data symbol entered in forward direction is [1 O

mul6 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 0 2 3 4 5 6 7 8 910 11 12 13 14 15 1
3 0 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2
4 0 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3
5 0 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4
6 0 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5
7 0 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6
8 0 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7
9 0 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8
10 0 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9
11 0 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10
2 0 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11
130 13 1415 1 2 3 4 5 6 7 8 9 10 11 12
4 0 1415 1 2 3 4 5 6 7 8 9 10 11 12 13
5 0 15 1 2 3 4 5 6 7 8 910 11 12 13 14
A diagram of'a (15,11) encoder is shown in FIG. 3. There 5o 0000000000000]. The second data symbol is represented

are different ways to construct the encoder. One way is to
assume the symbols c, o, o and o to be roots of the
generating polynomial of the encoder. This leads to (X-a)*
(X-02)*(X-0)*(X-o*) which can be evaluated to g(X)
=X*+14X>+7X>+4X+11. A diagram of the 16-state (15,11)
encoder 300 corresponding to this polynomial is provided in
FIG. 3. One 16-state multiplier 11 is identified as device 301.
The 16-state LFSR has 4 16-state shift register elements, of
which one is identified as 303 in FIG. 3. The devices fp
implement the 16-state adder over GF(16) add16 as provided
above. All multipliers implement inverters as provided by
function mull6 as provided above. The 11 16-state data sym-
bols are provided on input 304 after which the switch prevents
further entry of data symbols and the content of the 4 shift
register elements can be shifted out on 305. The initial state of
the shift register is [0 0 0 0].

FIG. 4 shows the encoder in reverse mode, starting with as
initial state of the shift register the obtained (or received)
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as[010000000000000]. The 117 16-state data symbol
is represented as [00000000001 000 0]. The initial state
of the shift register is generally 0. However, after all 11
16-state data symbols have been processed the state of the
first shift register element is assumed to be [0 00000000
0010 00]; and of the fourth shift register element is [0 0 0 0
0000000000 1]. Other states follow the same convention
as explained.

One can now express all forward going intermediate and
final states of the LFSR of FIG. 3 by executing the relevant
additions and multiplications on the vectors. The initial states
herein are all 0.

The following table shows the vector states of the first shift
register element from the initial state until the final state
(which represents a check symbol) generated in forward
direction.
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13 14
moment States of 1% shift register element after entering data symbol
inital 0 0o 0 0 0 0O 0 0O 0O 0O 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 911 0 0 0 0 0 0 0 0 0 0 0 0 0
3 2 91 0 0 0 0 0 0 0 0 0 0 0 0
4 1212 911 0 0 0 0 0 0 0 0 0 0 0
5 6 12 12 911 0 0 0 0 0O 0 0 0 0 0
6 14 612 12 911 0 0 0 0 0 0 0 0 0
7 9 14 6 12 12 911 0 0 0 0 0 0 0 0
8 6 9 14 6 12 12 911 0 0 0 0 0 0 0O
9 2 6 914 61212 911 0 0 0 0 0 0
10 7 2 6 914 61212 911 0 0 0 0 0O
l.end 9 7 2 6 9 14 6 12 12 9 11 0 0 0 0
15
The following table shows the vector states of the first shift
register element from the initial state until the final state
(which represents a check symbol) generated in reverse direc-
tion, starting with [0 00000000001 000] at moment 11,
related to the coder of FIG. 4.
moment States of 1° shift register element after entering data symbol in reverse
end 0o 0 0 1 9 7 2 6 9 14 611 9 12 12
1 00 0 0 1 9 7 2 6 914 9 12 12 6
2 00 0 0 0 1 9 7 2 6 912 12 6 14
3 o0 0 0 0 0 1 9 7 2 612 6 14 9
4 0o 0 0 0 0 0 0 1 9 7 2 6 14 9 6
5 0o 0 0 0 0 0 0 0 1 9 714 9 6 2
6 o0 0 0 0 0 0 0 0 1 9 9 6 2 7
7 60 0 0 0 0 0 0 0 0 1 6 2 7 9
8 60 0 0 0 0 0 0 0O 0 0 2 7 9 1
9 60 0 0 0 0 0 0 0 0 0 7 9 1 0
10 60 0 0 0 0 0 0 0 0 0 9 1 0 0
ll-miial 0 0 0 0 0 0 0 0 0O 0 0O 1 0 0 0
One can also generate the state matrix in forward and independent of other positions the addition is achieved by
reverse direction for the other shift register elements. add16 addition of individual positions in a vector with the

individual position in the corresponding vector. This leads to

In a next step the corresponding state in forward and ,  a matrix of comparative state vectors. The four comparative

reverse direction are added over GF(16) with the above pro- ~ vectors for this coder are shown in the following tables.
vided add16 function. Because each position in a state is For the First Shift Register
moment Comparative States of 1% shift register element
end o o0 o 1 9 7 2 6 9 14 o6 11 9 12 12
1 i1 0o o o 1 9 7 2 6 9 14 9 12 12 6
2 9 11 o0 o o0 1 9 7 2 6 9 12 12 6 14
3 12 9 11 0 O O 1 9 7 2 6 12 6 14 9
4 12 12 9 11 0 O O 1 9 7 2 6 14 9 6
5 6 12 12 9 11 0 O O 1 9 7 14 9 6 2
6 14 6 12 12 9 11 0 O O 1 9 9 6 2 7
7 9 14 6 12 12 6 11 0 0O O 1 6 2 7 9
8 6 9 14 6 12 12 9 11 0O 0O 0 2 7 9 1
9 2 6 9 14 6 12 12 9 11 0 0 7 9 1 0
10 7 2 6 9 14 6 12 12 9 11 0 9 1 0 0
11-initial 9 7 2 6 9 14 6 12 12 9 11 1 0 0 0
For the Second Shift Register
moment Comparative States of 2" shift register element
inital 0 0 1 0 12 8 7 4 13 10 5 4 9 6 14
1 4 0 0 1 0 12 8 7 4 13 10 9 6 14 5
2 9 4 0 0 1 0 12 8 7 4 13 6 14 5 10
3 6 9 4 0 0o 1 0 12 8 7 4 14 5 10 13
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-continued
moment Comparative States of 2" shift register element
4 4 6 9 4 0 0 1 0 12 8 7 5 10 13 4
5 514 6 9 4 0 0 1 0 12 8§ 10 13 4 7
6 10 514 6 9 4 0 0 1 0 12 13 4 7 8
7 13 10 5 14 6 9 4 0 0 1 0 4 7 8§ 12
8 4 13 10 5 14 6 9 4 0 O 1 7 8 12 0
9 7 4 13 10 5 14 6 9 4 0 0 8§ 12 0 1
10 8 7 4 13 10 5 14 6 9 4 0 12 0 1 0
1l-end 12 8 7 4 13 10 5 14 6 9 4 0 1 0 0
For the Third Shift Register
moment Comparative States of 3" shift register element
initial 0 1 0 0 4 4 11 14 15 15 13 7 8§ 12 14
1 7 0 1 0 0 4 4 11 14 15 15 8§ 12 14 13
2 8 7 0 1 0O 0 4 4 11 14 15 12 14 13 15
3 12 8 7 0 1 0 0 4 4 11 14 14 13 15 15
4 14 12 8 7 0 1 0 0 4 4 1 13 15 15 14
5 13 14 12 8 7 0 1 0 0 4 4 15 15 14 11
6 15 13 14 12 8 7 0O 1 0 O 4 15 14 11 4
7 15 15 13 14 12 8 7 0 1 O 0 14 11 4 4
8 14 15 15 13 14 12 8 7 0 1 0 11 4 4 0
9 11 14 15 15 13 14 12 8 7 O 1 4 4 0 0
10 4 11 14 15 15 13 14 12 8 7 0 4 0 0 1
1l-end 4 4 11 14 15 15 13 14 12 8 7 0 0 1 0
For the Fourth Shift Register
moment Comparative States of 47 shift register element
initial 1 0 0 0 6 14 12 7 11 14 4 14 2 2 1
1 4 1 0 0 0 6 14 12 7 11 14 2 2 11 4
2 214 1 0 0 0 6 14 12 7 11 2 11 4 14
3 2 214 1 0 0 0 6 14 12 7 11 4 14 11
4 1 2 2 14 1 0 0 0 6 14 12 4 14 11 7
5 4 11 2 2 14 1 0 0 0 6 14 14 11 712
6 14 4 11 2 2 14 1 0 0 O 6 11 7 12 14
7 11 14 4 11 2 2 14 1 0 O 7 12 14 6
8 7 11 14 4 11 2 2 14 1 0 0o 12 14 6 0
9 12 7 11 14 4 11 2 2 14 1 0 14 6 0 0
10 14 12 7 11 14 4 11 2 2 14 1 6 0 0 0
11-end 6 14 12 7 11 14 4 11 2 2 14 0 0 0 1

As a reminder: the vector [pl p2 p3 p4 p5 p6 p7 p8 p9 p10
p11 p12 p13 p14 p15] establishes an expression: Ex=p1*al+
p2*a2+p3*a3+pd*ad+pStaS+p6*a6+p7taT+p8*ta8+p9*ad+
p10*al0+p11*all+p12*x1+p13* x2+p14*x3+p15%x4.
Herein [al a2 a3 . . . al1] are the data symbols and x1, x2, x3
and x4 are states of shift registers 1, 2, 3 and 4 respectively.
Ifno errors have occurred then all the expressions established
by the comparative states must be zero.

One can see that the line of moment 11 in each of the
comparative matrices establishes the appropriate check sym-
bol for each shift register element. For instance, line 11 in the
fourth matrix expresses 6al+14a2+12a3+7ad4+11a5+14a6+
4a7+11a8+2a9+2a10+14a11+x4=0. Thus, x4, the fourth
check symbol can be evaluated by x4=6al+14a2+12a3+7a4+
11a5+14a6+4a7+11a8+2a9+2a10+14a11+x4. Keeping in
mind that ‘+” and ‘=’ in GF(16) are identical operations.

The sequence of 11 data symbols [00 00000000 0] will
generate check symbols [0 00 0]. The sequence[2345008
10 11 12 14] will generate check symbols [9 1 5 4]. By
applying the reversing coder of FIG. 4 starting with shift
register [9 1 5 4] and entering the data symbols in reverse
order, one will arrive at an initial state [0 0 0 0].
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The matrices reflect the imposed delay of a state to traverse
the complete shift register. This is a causal effect, as a state
cannot be generated before its cause has occurred. This is
reflected in the zeros of the vector.

The above matrices provide a very simple way and
extremely fast way to determine an error location, especially
for up to 3 adjacent errors. Error locations can be found by
filling in all equations, for instance in one or more compara-
tive matrix, with received values of data symbols and of
received check symbols. In a first step one may re-calculate
the check symbols to check if errors have occurred.

The above tables offer the opportunity to correct up to 3
adjacent errors. By filling in the values of the received sym-
bols, and assuming that all multiple errors are adjacent errors,
the expressions with O at the location of an error will of course
not include the value of the error into the expression. This
means that the expressions with coefficient O at the location of
the symbols in error will create a value 0. This is because the
expression will be 0 if no errors have occurred. Thus, when an
expression only contains correct symbols, the expression will
be 0. However, the occurrence of multiple errors may also
create a value 0. This means that one has to exclude some
potential wrong decisions.
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Clearly, the simplest situation is wherein just one error
occurs. For that situation one needs only 2 check symbols.
The forward 16-state coder 500 to generate 2 check 16-state
symbols is shown in FIG. 5 as a 16-state LFSR with two shift

register elements and two multipliers of which one multiplier s

in 501 is a multiplier 4 over GF(16) and a multiplier 6. The
data symbols are inputted in forward direction on input 504
and the check symbols can be read on output 505 after the
switch has been opened. FIG. 6 shows the reversing coder 600
corresponding to 500. The multiplier 601 (which reverses
501) is thus multiplier 13 over GF(16). For illustrative pur-
pose, the generated code is a (15,13) code, with 13 n-state
symbols. The 13 data symbols are provided in reverse order
on input 604. One may shorten the code by inserting zeros.
It should be noted that the LFSRs are provided to illustrate
the process of generating intermediate states. One may actu-
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ally implement an LFSR. However, it should be clear that all
states are deterministic. One may determine these states by
evaluating the appropriate n-state expressions. This means
that, if concurrent or parallel processors are provided, one
may evaluate all states concurrently or almost concurrently,
by using known initial states and the input data symbols. The
states of the LFSR can be evaluated consecutively or concur-
rently by a processor or by parallel processors, respectively.

The process as applied before may be applied herein again
to generate a comparative matrix for the up-and-down states
for each of the two shift register elements.

The following table provides the comparative matrix for all
14 forward and reverse states of the first shift register element
(the first row indicates the initial state, the last row is the check
symbol state and also corresponds to the initial state for the
reversing coder 1.

moment

Comparative States of 1 shift register element

initial-start

RTINS N Y T VTR S

—_
<

11
12

initial-end

o 1 3 7 7 14 15 9 15 3 14 4 4 9
4 0 1 3 7 7 14 15 9 15 3 14 4 9 1
9 4 0 1 3 7 7 14 15 9 15 3 14 1 4
1 9 4 0 1 3 7 7 14 15 9 15 3 4 14
4 1 9 4 0 1 3 7 7 14 15 9 15 14 3
4 4 1 9 4 0 1 3 7 7 14 15 9 3 15
314 4 1 9 4 0 1 3 7 7 14 15 15 9
15 3 14 4 1 9 4 0 1 3 7 7 14 9 15
9 15 3 14 4 1 9 4 0 1 3 7 7 15 14
15 915 3 14 4 1 9 4 0 1 3 7 14 7
14 15 9 15 3 14 4 1 9 4 0 1 3 7 7
7 14 15 9 15 3 14 4 1 9 4 0 1 7 3
7 7 14 15 9 15 3 14 4 1 9 4 0 3 1
37 7 14 15 915 3 14 4 1 9 4 1 0

The following table provides the comparative matrix for all
14 forward and reverse states of the second shift register
element (the first row indicates the initial state, the last row is
the check symbol state and also corresponds to the initial state
for the reversing coder).

moment

Comparative States of 2”4 shift register element

initial-start
1

R e R =) T V. R N VS R S ]

—_ =
_ O

12

initial-end

12 15 11 1 6 13
6 1 0 13 15 4 4 11 12 6 12 15 11 13 1

13 6 1 0 13 15 1 12 6 12 15 1 11

113 6 1 0 13 15 4 4 11 12 6 12 11 15
1 1 13 6 1 0 13 15 4 4 11 12 6 15 12
1511 1 13 6 1 0 13 15 4 4 11 12 12 6

12 15 11 1 13 6 1 0 13 15 4 4 11 6 12

6 12 15 11 1 13 6 1 0 13 15 12 11
12 6 12 15 11 1 13 6 1 O 13 15 4 11 4
1 12 6 12 15 11 1 13 6 1 0 13 15 4 4

4 11 12 6 12 15 11 1 13 6 1 0 13 4 15
4 4 11 12 6 12 15 11 1 13 6 1 0 15 13
15 4 4 11 12 6 12 15 11 1 13 6 1 13 0

13 15 4 4 11 12 6 12 15 11 1 13 6 0 1
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One can check the error locating process with some
examples.

As a first example one may provide the coders with 13
16-state symbols 0. This will generate the check symbols [0
0]. Entering the 15 symbol codeword into the expressions
defined by the rows of the matrices creates:

moment expressions__matrix1l expressions__matrix2

initial-start

OO O OO OO OO0 OO0
OO O OO OO OO0 OO0

initial-end

This shows that no error has occurred.

As a second example the 13 symbol data word [000000
130000 0 0] can be entered to generate the codeword with
check symbols [00000013000000 12 3]. Assume that
an error has occurred and the codeword [0 0000000000
0 0 12 3] has been received. The following table shows the
results of the expressions by filling in the received symbol
values.

moment expressions__matrix1l expressions__matrix2

initial-start 12 8
1 11 1

2 4 1

3 4 12

4 15 10

5 13 0

6 0 13

7 1 3

8 6 10

9 13 13

10 1 8

11 11 12

12 15 9
initial-end 12 3

The expression of row 6 in the first shift register matrix and
in row 5 of the second shift register matrix generates a 0. This
corresponds with the seventh symbol in the codeword, which
is determined to be in error.

Accordingly, the error location process has been reduced to
evaluating a set of simple expressions. The row in the matrix
that is 0 has the error. Each row has one symbol that does not
contribute to the value of the expression, which then is the
symbol in error if all other expressions are not 0. This means
that an error location can be determined very, very fast, espe-
cially if the expressions are evaluated in parallel.

The matrix also offers the opportunity to immediately
determine the correct value of a symbol in error. One can
achieve this by associating a row with a symbol in error with
arow in a matrix wherein the error contributes to the value of
the expression. For instance when an error has occurred in
row 6 one may associate the solution with row 9. Row 9 has
the vector [159 1531441940137 14 7], which is the
expression 15al+9a2+15a3+3ad+14a5+4a6+a7+9a8+4a9+

w
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O+all+3a12+7a13+14x1+7x2. Herein[al a2a2 a3 ...al13 x1
x2] are the received n-state symbols. The value of the expres-
sion was already determined to be O if no errors have
occurred. In fact the expression can be written as a7=15al+
9a2+15a3+3a4+14a5+4a6+9a8+4a9+all1+3al2+7a13+
14x14+7%2+0. Keep in mind that ‘+” herein is ‘add16’ over
GF(16), and thus subtracting is the same as adding. Further-
more, the difference between the already calculated expres-
sion or row 9 (which is 13) and the actual value (which is 0)
is the error magnitude. That means that the actual value is the
received value (0) added with the error magnitude (13), so the
actual value is 13.

Informula: an expression with terma?7.,,,,...,should have as
result 0. One may say that a7,,,, =a7_ ... +error_mag. One
may write the expression without error as: term1+a7,,,,..,.=0,
wherein term1 is without error, as an error only occurs in a7.
With error one can write: terml+a7,_,,,, . +error_mag=val,
wherein val the value is of the evaluated expression. One may
add the two expressions: term1+term 1+a7_,,,...+37 .o,roert
error_mag=val+0—error_mag=val. To determine the correct
value of the symbol in error one has to correct the received
value with ‘val’ using ‘+” which is ‘add16’ in GF(16). This
makes the error correction process extremely fast.

In order to determine an error magnitude of a symbol in
error in a simple manner, one should select a row in a com-
parative matrix which generates not 0 for at least one symbol
in error and has the coefficient 1 for the symbol in error. The
evaluated row in such a matrix provides directly the error
magnitude, which should be added over GF(16) with the
received symbol value to determine the correct value.

In a further example one may receive a codeword of 15
16-state symbols of which 13 symbols are data symbols. The
received codeword is [13458011215614 14153 5].
Entering the values of the 16-state symbols into the expres-
sions defined by the comparative matrices, generates the two
error vectors el and e2 as shown below.

moment expressions__matrix1l expressions_ matrix2

initial-start 6 14
1 2 12

2 15 0

3 0 15

4 3 5

5 8 12

6 15 15

7 3 10

8 13 14

9 2 11

10 14 5

11 8 11

12 14 10
initial-end 13 3

These vectors indicate that the fourth symbol is in error.
The third row (row with label 2) has an expression in the first
comparative matrix wherein the fourth symbol has coefficient
1. The error vector for that row has value 15, with is the error
magnitude. Symbol 4 as received has value 8. The correct
value is thus symbold=8+ x5, 15=2.

A flow diagram for locating and correcting errors in accor-
dance with an aspect of the present invention is provided in
FIG. 7. This flow also applies to error location of more than 1
error with more than 2 check symbols. This may require the
use of additional error vectors and reviewing more than one
row. However, the principle is the same.

FIG. 7 shows that in a first step 701 a comparative matrix,
based on all forward and reverse intermediate states of an
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encoder is implemented. This means that each row of the
matrix represents an expression and each expression can be
evaluated after entering the symbol values after receiving in
step 702.

In a step 703 a specific row in error is associated with a
corresponding error magnitude row.

Inastep 704 itis determined if an error has occurred. When
all rows generate value 0, no error has occurred. If one error
has occurred in the 2 check symbol case, at least one row will
be not zero in the matrix.

In step 705 the row in error with the symbol in error and the
error magnitude will be determined. And in step 706 the error
will be corrected.

The error location and correction process such as provided
in FIG. 7 in one embodiment is implemented on a processor,
such as a digital signal processor. One may also speed up the
error location and correction by implementing processes in
parallel. In one implementation the GF(16) multiplication
p3*a3 for instance may be implemented by having a GF(16)
multiplication circuit. It has been shown by the inventor else-
where, for instance in U.S. Pat. No. 7,562,106, issued on Jul.
14, 2009, which is incorporated herein by reference in its
entirety, that a constant n-state multiplier can be represented
by an n-state inverter. For instance the multiplier over GF(16)
by a factor 13 can be implemented by the 16-state inverter [0
123456789101112131415]—+[0131415123456
7891011 12]. FIG. 8 shows in diagram a circuit to evaluate
an expression. For instance the 47 row of the 2 check symbol
first comparative matrix isa vector [1940137714159 15
3 4 14]. This represents the expression al*pl+a2*p2+. . .
al3*p13+x1*pl14+x2*p15, wherein [al a2 . . . al3 x1 x2] is
the received codeword with [x1 x2] the received check sym-
bols. One can see that circuit 800 implements this expression.
Signals representing [al . . . x2] are provided on inputs
whereof input 813 for signal representing x2 is identified in
FIG. 8. This signal is provided to inverter 814 which repre-
sents a GF(16) multiplier 14. The resulting signal is provided
to an adder over GF(16) 815. The adder 815 in one embodi-
ment is a repetitive adder which starts with 0 and adds to a
GF(16) sum the consecutive terms, for instance under control
of a clock signal. The adder 815 in another embodiment is a
plurality of adders over GF(16), each adder adding 2 terms.
For 15 terms one has to use 7 adders for 14 terms, providing
7 output values. Following these adders are 4 additional
adders over GF(16) which reduce the 8 terms (one previous
term and the 7 sums) into 4 outputs. A final comparative state
is then achieved by reducing the number of terms 2 more
times with additional adders over GF(16). The comparative
state in such a multi-adder circuits requires about 4 adding
cycles.

The result ofthe expression is provided on output 801. This
result represents the 4” digit in the first of two error vectors
and will be named e1(4). A clock signal 816 may be provided
to provide correct timing signals.

The circuit of FIG. 9 is a decision circuit 900 to determine
if an error has occurred. The circuit receives at least result
signals provided on inputs 801 and 813 of at least two error
circuits. If at least one error signal is not O an error has
occurred, the result thereof is provided on output 909. For
instance, if signal on 909 is 0 no error has occurred. If the
signal is not 0 an error has occurred. Other ways to determine
if an error has occurred are possible. For instance, one can
recalculate the check symbols. However, if one wants to avoid
delay, one should apply circuits of which the results can be
re-used. This aspect is demonstrated in FIG. 10. Herein 13
error correcting circuits are included of which 1001 and 1013
are identified. Circuit 1001 receives signals generated on 909
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and 801. This indicated to 1001 if an error has occurred (by
909) and if the fourth symbol was in error (by 801). On
additional inputs received signal a4 and error magnitude sig-
nal e1(3) are received. One is reminded of the fact that if the
fourth data symbol is in error then the third digit in the first
error vector provides the error magnitude. Circuit 1001
includes an adder over GF(16) which adds the error magni-
tude to the received symbol value. Accordingly, output 1004
generates the corrected symbol, if the symbol was in error. If
the symbol was not in error (909 indicates an error and 801
was not 0) then the value of a4 is passed through without
modification to the output. One can implement the above
approach for each of the 13 data symbols in the codeword.
Circuit 1013 performs that error correction process for the
13? data symbol. Accordingly, the circuit of FIG. 10 gener-
ates the correct 13 symbols of the received codeword if only
one symbol was in error. This circuit as shown does not
correct check symbols in error. However, if so desired one can
implement that aspect also.

The shown methods and apparatus thus provide very fast
error location and correction.

One can detect more than 1 error by interleaving two code-
words, in one embodiment, wherein in each codeword one
error can be detected, located and corrected.

In many cases an n-state symbol is implemented in binary
form in p bits. For obvious reasons, it can happen that errors
occur in no more than p adjacent and consecutive bits and still
putting two adjacent n-state symbols in error. It is beneficial
to be able to error correct 2 or more adjacent n-state symbols
in error.

One may wonder why the error correcting method is lim-
ited to 13 data symbols as dictated by the rules for RS codes.
If one keeps 2 check symbols in a codeword but runs the coder
for more than 13 data symbols it will turn out that the com-
parative matrices are cyclic and the rows will be repeated.
This makes it impossible to determine with certainty which
symbol is in error. If one is able to provide some measure of
probability where an error has occurred one should be able to
estimate a value for a corrected error.

Increasing Security

In many applications the ability of a system (such as a data
storage system or a data transmission system) to detect, locate
and correct n-state symbols in errors is critical to the standard
operation of the system. For instance, on optical disks such as
CD or DVD players a minimal amount of resistance to errors
(for instance scratches or dust on the disk surface) is required
to allow the system to operate. If no error correction would be
available, even minor flaws would render the playback of the
data by the system completely inoperable. Reed Solomon
codes are often applied in these systems. Because of the
systematic nature of the error correction methods, there is
very little security in the operation of the error correction.

In accordance with a further aspect of the present invention
significant security is provided in the error correction process
by some simple modification of aspects provided above.

In one embodiment security is provided by starting with an
initial state of the shift register of the encoder (or with an
initial state ofthe encoding process) which is not all zero. This
means that the end state of the encoder which provides the
check symbols is modified by the effect of the initial state of
the encoder, and so are the intermediate states of the encoder.
This does not influence the zero result comparative equations
as far as the position of the symbols, but it does affect the
calculated non-zero results. To address non-zero initial values
additional (virtual) initial symbol positions are added to the
vector. These symbols strictly function as a correction, and no
‘errors’ in these initial values are detected. However, if one is
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not familiar with the initial values, it is very difficult to deter-
mine the error magnitude of an error. One may change the
initial value per codeword. Clearly, a decoder needs to be
programmed with the correct initial value.

In another embodiment one may apply at least one n-state
inverter in an encoder which is not a multiplier over GF(n) but
still leaves a state 0 unmodified. This is illustrated in FIG. 11
in encoder 1100. It looks like the encoder of FIG. 5. However,
instead of only multipliers, n-state inverters 1101 and 1102,
inv2 and inv1 respectively have been used. Assume that inv2
is a multiplier over GF(16) which can be expresses as [0 1 2
3...15]—=[0abc...p]. Assume also that inv1 is inverter [0
123 ...15]—[0k q r m] which is not a multiplier over
GF(16).

It should be clear that even though the inverters change the
value of a vector [0 x1 0 0 0 x2 0 0 0] to for instance [0 y1 O
00y200 0], the state 0 is left unchanged by the inverters. The
state 0 is also left unchanged by the addition as 0+, 5, 0=0.
Accordingly, one can generate comparative state matrices
that will have 0 value coefficients. One should preferably
select n-state inverters that are distributive with +5p,, to
make expression evaluation in forward and reverse direction
relatively simple.

In yet another embodiment, the code is shortened and at
least one n-state symbol that is dropped from the code is
non-zero. This affects the value of the check symbols. One
can change the value of at least one dropped symbol in a
shortened code per codeword.

For illustrative purposes the error location and correction
has been shown for a 2 check symbol system for a 16-state
code. One can easily expand the above approach for other
values of n. The method and system works the best when the
number of data symbols is greater than the number of check
symbols. For instance the inventor has checked the approach
for a 32-state code for a (31,29) code wherein 29 32-state
symbols are applied to generate a 31 32-state codeword with
29 data symbols and 2 check symbols to correct at least one
symbol in error. One should first generate the field GF(32)
and determine the encoder equivalent to FIG. 11, wherein fp
is the addition over GF(32) and inverter inv1 is a multiplica-
tion 4 over GF(32) and inverter inv2 is a multiplication 20
over GF(32). In the reverse direction the inverter invl is
replaced by a multiplication 29 over GF(32). One can arrive at
the inverters by first creating the generating polynomial
(X-a)*(X-a?), which leads to X*+(a'+a?)*X+a'*a. By
correctly naming the states in GF(32) this leads to X*+20%*X+
4. The inverse of multiplication 4 in GF(32) is 29. The com-
parative matrices are generated in a similar way as in the
16-state case. This leads to 30 by 31 matrices wherein in at
least one matrix wherein a row vector has only one position
with coefficient O, which is applied to find an error position.

The first row of the first of two comparative state matrices
for this codeis [0118252131412271916152415925
82023 29 17 1515202 22 15 2 3 4 24]. The 29 32-state
symbols [0800015006000800015006000800
0 15 0] will generate the two check symbols [8 2], when the
initial encoder state is [0 0]. One can easily check that the
reverse coder with initial state [8 2] and applying the data
symbols in reverse will generate initial state [0 0].

It turns out that one can use encoders that are not generated
by a generator polynomial with consecutive powers of ele-
ments of GF(32) to create a workable set of comparative
matrices. For instance, one can change multiplier 20 to mul-
tiplier 19 and still achieve a workable set of matrices. This
modification outside the scope of traditional design of RS
codes provides a further level of security as an aspect of the
present invention.
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It has been shown above that one can detect, locate and
correct at least one error.

We will now return to the 16-state encoder that generates 4
check symbols.

The location of at least 2 consecutive or adjacent symbols
in error is also possible with the approach as provided herein.
It is a bit more involved than locating a single error, but not by
much. The reason for the greater number of steps is that one
or two errors could have occurred. Furthermore, two errors
can cancel each other in at least one expression. One should
select the result of expressions that unambiguously determine
if no errors, one error or two errors have occurred. To explain
the process several representative situations will be dealt
with.

The easiest case is where no errors have occurred. In that
case all expressions will generate result 0.

The next situation deals with the first two symbols in a
codeword. The first symbol may be in error, the second sym-
bol may be in error. Or the first and the second symbol may be
in error.

One is referred to the above 4 comparative states matrices.
For the situation wherein only the first symbol of the code-
word is in error, the error values generated by the expressions
of the first row of the 4 matrices is [0 0 0 x], wherein x is
always non zero if only the first symbol is in error. One can
easily check that the expression first row of the 47 matrix if
only symbol 1 is in error can never be 0.

The next situation is wherein only the second symbol is in
error. For the situation wherein only the second symbol of the
codeword is in error, the error values generated by the expres-
sions of the first row of the 4 matrices is [0 O x 0], wherein x
is always non zero if only the second symbol is in error.
Actually, there are other combinations of error vectors that
indicate that only the second symbol is in error.

The next situation is wherein the first and the second sym-
bol are in error. For the situation wherein both the first and the
second symbol of the codeword are in error, the error values
generated by the expressions of the first row of the 4 matrices
is [0 0x y], wherein x and y are always non zero if the first and
the second symbol are in error. Actually, there are other com-
binations of error vectors that indicate that the first and the
second symbols are in error.

One has to associate pre-determined expressions with
located errors to determine error magnitudes. For instance in
case of both the first and the second symbol are in error one
can associate the expression of the first row of the 4% com-
parative matrix with the error magnitude of the first symbol,
and the first row of the 3" comparative matrix with the error
magnitude of the second symbol.

For the situation wherein only the third symbol of the
codeword is in error, the error values generated by the expres-
sions of the first row of the 4 matrices is [0 x 0 0], wherein x
is always non zero if only the third symbol is in error. Actu-
ally, there are other combinations of error vectors that indi-
cate that only the second symbol is in error.

The next situation is wherein the second and the third
symbol are in error. For the situation wherein both the first and
the second symbol of the codeword are in error, the error
values generated by the expressions of the first row of the 4
matrices is [0x y 0], wherein x and y are always non zero if the
second and the third symbol are in error. Actually, there are
other combinations of error vectors that indicate that the first
and the second symbols are in error.

One can step through the intermediate states in a similar
way to determine additional single or adjacent errors. There is
only one situation that will not generate a specific O result.
That is the situation wherein the last of the data symbols and
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the first of the check symbols are in error. This situation is
detected by exclusion. For instance, if the last and the second
to last row in the third matrix generate a result not equal to
zero and no other errors have been located, then the 117 and
127 symbol are in error. Only the 117 symbol has to be error
corrected, unless one desires to correct check symbols. One
can associate the last row of the 4” matrix with the error
magnitude of the 117 symbol (keeping in mind that this
generates 14* the error magnitude, so one has to correct by
multiplying with 3).

Most of the evaluations can be performed concurrently.
The error location of up to two errors followed by error
correction can thus be performed within a very limited num-
ber of clock cycles.

One can apply the above approach to encoders for n>16
and for (p-k)>4. The inventor has created a forward and
reverse 16-state encoder for n=16 and 5 check symbols. The
forward 16-state coder is defined by the generator polynomial
X2 +8*X*43%¥X346%X?4+2*X+1. The reverse encoder applies
the same multipliers but is operated in reverse. The detection
of'1 error, and of 2 and 3 errors which are adjacent is straight-
forward and similar to the above approach. Again, the iden-
tification of adjacent errors in data symbols and check sym-
bols requires the exclusion of other errors before these
transitional errors can be located.

One may also generate 3 check symbol codewords to locate
and correct up to two adjacent errors. This can be achieved by
using a coder associated for instance with generator polyno-
mial X>+14*X2+2*X+11. This generates a (15,12) code with
3 check symbols. One can detect up to two consecutive or
adjacent errors using the above comparative matrices of
which this code will generate three. Unfortunately, the com-
parative matrix may consistently indicate that 2 different
consecutive symbols are in error. One set is identified because
their coefficients in a row are zero. Another because two
consecutive errors will cancel each other. For instance, two
errors of equal magnitude will cancel each other in an expres-
sion that has two consecutive equal coefficients. For instance
5*X45%X,,,; will add up to be 0 in GF(16). Unfortunately,
there is no pattern in the related comparative matrices that
indicates which of the two found errors are the true errors.
Fortunately, one can still find the true errors by solving each
of the double errors and recalculating the error vectors with
the error matrices. The ‘wrong’ set of solved errors will only
generate some of the expressions defined by the rows to be
zero. The ‘correct’ corrected errors will generate all zero error
vectors for all rows. While it increases the number of calcu-
lations, it still allows the correct error location, and correction
of up to k n-state symbols in error in a code of p n-state
symbols of which 2¥k-1 symbols are check symbols.

In one embodiment n-state symbols are represented by
binary signals. In another embodiment n=16. In another
embodiment n>16.

It should be clear that the approach of recalculating error
vectors in case of ambiguous error locations can be applied in
each of the situations wherein a choice has to be made about
which n-state symbols are really in error.

The herein provided aspects of error location and correc-
tion are attractive alternatives to traditional RS error correct-
ing methods, especially in the case of single errors and of a
limited number of adjacent errors.

For illustrative purposes, the methods and apparatus pro-
vided herein have been applied for truly unknown error loca-
tions. It should be clear that in case one suspects that an error
has occurred in a certain part of a codeword, one can limit the
number of expressions to be evaluated. In case of an erasure
(one knows the error location, but not the error magnitude)
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one can evaluate the expression associated with a magnitude
of a symbol in error as provided above, and evaluate the
magnitude directly. For instance, in the code with 2 check
symbols having a first and a second erasure, one can rapidly
determine the magnitude of the first erasure, by selecting an
expression that has not the symbol of the second erasure as a
variable. One can apply the same approach for determining
the magnitude of the second erasure by selecting an expres-
sion that has not the symbol related to the first erasure as a
variable. The first and second erasure do not require to be
adjacent to be resolved if no additional errors are included.
One can thus always resolve q erasures with q=t+1, with t
being the number of O coefficient variables and at least t
erasures coinciding in position with 0 coefficient variables.

One may start the error location process by recalculating
the check symbols, with received data symbols which only
requires the evaluation of one expression. In case the gener-
ated check symbols are identical to the received check sym-
bols, it may be assumed that no n-state symbols were in error.

It is again pointed out that the methods and apparatus for
encoding and decoding are associated with an n-state LFSR.
However, no real LFSRs have to be applied as each LFSR
state including comparative states can be expressed and
evaluated by individual expressions or n-state switching
expressions implemented with n-state or binary devices. It
should also be clear that each state and/or comparative state
can be evaluated without first evaluating a preceding or suc-
ceeding state, which allows all states including comparative
states to be determined concurrently. The methods and
aspects of the present invention can be implemented in a
processor. They can also be implemented in parallel proces-
sors that determine encoding states including intermediate
states and comparative states concurrently. A processor may
be a programmable processor with a memory to store and
provide instructions that perform the steps of the present
inventions. A processor may also be customized or hard wired
circuitry that performs one or more instructions. Such cir-
cuitry can be Field Programmable Gates Arrays (FPGA) cir-
cuitry for instance. The aspects of the present invention may
also be provided as a set of instructions that are part of a
library, which can be selected by a user to program an FPGA
circuit to create a processor that performs instructions to
execute aspects of the present invention.

Tables, such as the ones representing coefficients of com-
parative coding states or of n-state truth tables such as defined
over GF(8) in one embodiment of the present invention are
stored in a RAM or a ROM device or in a flash memory, on a
magnetic, optical or magnetic-optical device or on any other
memory device that can store and retrieve n-state symbols, if
required represented by p-state symbols such as binary sym-
bols. Symbols and instructions can also be stored by hard-
wired circuitry.

It has been shown that the above approach also works for
n>16.

It is believed that the apparatus and methods provided
herein offers very fast location of single errors in relatively
long sequences of data symbols with very little overhead in
check symbols. It provides for certain types of errors an
inexpensive and very fast alternative to for instance Reed
Solomon codes.

In certain cases one may want to determine an error in a
sequence with fewer n-state symbols than is maximally pos-
sible. In for instance RS-codes, these type of codewords are
known as shortened codes. One may assume that a certain
number of symbols is equal to the 0 symbol. This is known in
the decoder and one does not have to send these Os, which are
automatically inserted for decoding. One may apply a similar
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approach as an aspect of the present invention. However, it is
not required to assume that the ‘missing’ symbols are Os. The
‘missing’ symbols may be assigned any valid n-state symbol
state. Furthermore, it is not really required to use assumed
data symbols that are not really transmitted. One may deter-
mine forward and reverse states and check symbols, based on
actually transmitted symbols. The comparative state matrix
then stops after the last transmitted n-state symbol. In one
embodiment it is required that the number of transmitted data
symbols is at least equal to the number of check symbols. In
a further embodiment it is required that the number of trans-
mitted data symbols is greater than the number of check
symbols.

The n-state functions such as the adder and the multipliers
over GF(n) can be implemented in different ways. In a first
embodiment, a truth table of an n-state function is stored in an
addressable memory. An input to such a memory is a signal
representing an n-state symbol. An output of such a memory
is a state of the truth table dependent on the input. Signals may
be binary signals or non-binary signals. N-state truth tables
may also be implemented by active switching circuits. For
instance, adders and multipliers over GF(n™) withm>1 canbe
implemented with binary circuits, which is known in the art.

The encoding, reverse encoding, error location and error
correction aspects that are provided herein can be applied in
different kind of systems wherein symbols are transmitted
and/or received and/or processed as signals. Many of these
systems require processing of symbols at a speed that requires
processors working at a clock rate of at least 1 kHz or at least
1 Mhz. This means that humans cannot reasonably perform
the steps provided herein as one or more aspects of the present
inventions and processing circuitry, which can be electronic
or other type of processing circuitry, is required. An n-state
symbol with n>2 can in one embodiment be represented by a
plurality of signals, for instance binary signals. An n-state
symbol in another embodiment can also be represented as an
n-state signal. A processor thus herein is assumed to be com-
prised of binary or n-state switching circuitry to implement at
least one binary or n-state switching function.

A system that applies aspects of the invention as provided
herein is a communication system as shown in FIG. 12,
including at least two devices that communicate of which a
first device 1201 encodes and transmits n-state symbols over
a channel 1203 and a second device 1202 receives and error
corrects n-state symbols transmitted by the first device.
Devices in such a communication system in one embodiment
transmit over a wireless channel 1203. In a further embodi-
ment the devices transmit at least over part of a transmission
channel over a wired transmission channel 1203, which may
be an optical fiber medium or a metallic medium. A system in
another embodiment is a data storage system as shown in FIG.
13 wherein a device 1301 reads n-state symbols from a
medium 1302. Such a medium in one embodiment is an
electronic memory. In a further embodiment a storage
medium 1302 is a magnetic medium. In yet a further embodi-
ment a storage medium is an optical, an electro-optical, or a
magneto-optical medium. In yet a further embodiment a stor-
age medium is a medium that can store n-state symbols and is
enabled to be read by a reader to read the n-state symbols from
the medium. An n-state symbol can be represented by a plu-
rality of binary symbols or by a single n-state symbol. A
symbol on a medium is in one embodiment a modification of
the medium at a certain location which can be called a mark.
A mark can be a change in an electronic, magnetic, optical,
chemical, quantum-mechanical, biological, or mechanical
property or a combination thereof. A mark can also be repre-
sented by a logical state of a device, which may be reflected in
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a dynamical switching property such as exhibited by a
memory latch. A mark can also be represented by a physical
state of a material.

Comparative Coding States

A comparative coding state herein is used for an expression
that uses at least a plurality of n-state symbols, including a
check symbol and a data symbol, as variables. The expression
that determines a comparative coding state will generate a
pre-determined value when all the symbols in the expression
that serve as a variable are without error. In general the pre-
determined value is 0. However, one could have another con-
stant value. The striking property herein is that the expression
has a predetermined value without errors in the variable no
matter what the values are. The easiest way to determine the
comparative expressions which may be called comparative
states, is to determine states of an LFSR related encoder in a
forward and in a reverse coding direction. For causal reasons
corresponding states either determined in forward direction
or in reverse direction have to be identical when no errors
have occurred. A comparative state may have a different value
than the predetermined value if an error has occurred in a
symbol that acts as a variable in an expression. For conve-
nience it is desirable that at least one symbol of a plurality of
symbols is not a variable in an expression, because that means
that even if that symbol is in error it would not change the
predetermined value of the expression if all other variables
are error free.

It is thus possible in some instances (for instance in short-
ened codes) to create equations that may not correspond to
actual physical forward or reverse coding states of an LFSR.
However, such a comparative state still defines a comparative
state of an encoder or of a code to which the symbols in a
codeword that is analyzed have to conform. Ultimately, all
comparative states depend upon the structure of the coder,
even if the encoder does not physically realize a related for-
ward or reverse state. A comparative state herein thus means
a state defined by an expression determined from a coder that
may be operated in forward and in reverse direction, which
assumes a constant predefined value which may be 0, that is
independent of the values of symbols if all the symbols that
are expressed in the expression are error free.

In one embodiment of the present invention a Linear Feed-
back Shift Register (LFSR)is any device that can generate the
shift register states associated with the LFSR, wherein the
LFSR is an n-state LFSR with n=2, or n>2, or n>3, or n>7 or
n>8 or any other value or state of n for which an LFSR can be
realized. If one can determine a state of a shift register of an
n-state LFSR one can determines states in a forward or a
reversing direction of the LFSR. For instance, one can imple-
ment an n-state LFSR in binary logic in a processor with a
CPU and a memory.

An expression that determines a comparative state from a
forward and a reverse state of the LFSR is developed with
intermediate results as signals representing n-state symbols
are being received by a decoder. For instance, in the earlier
above example a 15 symbol n-state (15,13) codeword is being
received by a decoder. A comparative coding state is deter-
mined by a 16-state expression: ml*al+m2*a2+m3*a3+
m4*a4+mS5*aS+mé*a6+m7*a7+m8*a8+m9*a9+m10*al0+
ml1*all+m12*al12+m13*al3+m14*s1+m15*s2, wherein
m is a constant multiplication, symbols ‘a’ are data symbols
and symbols ‘s’ are check symbols, and ‘+’ are multiplication
and addition over GF(n), where n=16 in the example. A
multiplication as applied herein is in fact an inversion of an
n-state symbol with an n-state inverter.

In one embodiment of the present invention the above
expression is evaluated as signals representing n-state sym-
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bols are received by a decoder. This means that a partial result
is evaluated as a combination of a previous partial result and
an incoming n-state symbol modified by an n-state inverter.
This can be expressed as: pr,=pr,_, sc m,*x,, wherein pr, is the
partial result after symbol x, has been processed, pr,_, is the
partial result after symbol x,_, has been processed and (m,*x;)
can be symbol x, inverted by n-state inverter m,, and sc is a
function in GF(n) for instance an addition. This evaluation of
an expression in a moving manner is illustrated in FIG. 14
1401. It is to be understood that functions sc and inverter m, in
one embodiment can be stored in a memory and retrieved for
execution at every next symbol and wherein (m,*x,) and pr,_,
are inputs to an addressable memory and x, is an input to a
memory containing an inverter.

For instance in a Matlab® instruction the truth table of an
addition over GF(16) can be stored in a matrix ‘sc’ and m, can
be stored as a vector ‘inv’. Suppose that an input symbol A=x,
is provided on the input of ‘inv’ which results in an output
C=inv(A). For instance the multiplier is 16-state inverter
inv=[0567891011 1213 14151 23 4]. The input A=7 will
generate output A=inv(7)=11 (with origin 0). The function
‘sc’ is a matrix storing the truth table of addition GF(16).
Assume that the previous stage generated a partial result P=S8.
The instruction pr,=pr,_, sc m,*x, will be executed as PR=sc
(PA)=sc(8, inv(7))=sc(8, 11)=9 (with origin 0). It should be
clear that both ‘sc’ and ‘inv’ are addressable memories.

The above “moving evaluation” of an expression can be
implemented in a processor with memory to store the
required n-state functions and inverters. It also to be under-
stood that an n-state inverter may be a column or row in a
stored multiplication table.

In another embodiment of the present invention the func-
tion sc can be modified or reduced into a single truth table
representing an n-state function sc, as illustrated in 1500 in
FIG. 15. This reduction of a 2-input n-state function in accor-
dance with an n-state inverter has been explained in U.S.
Non-Provisional patent application Ser. No. 10/935,960, filed
on Sep. 8, 2004, now U.S. Pat. No. 7,643,632 issued on Jan.
5, 2010, which are both incorporated herein by reference.
This reduction means that only the single expression pr,=(x,
sc, pr,_, ) has to be evaluated, as the inverter is reduced into the
truth table of ‘sc,’. This means that the expression is a single
use of a memory with two inputs. In general, symbols are
represented by 7 or 8 bits. That means that an 8-bit word
represents a 256-state symbol. A reduced 2-input 256-state
switching function contains 2**2® bytes=64 kB or less than a
Mbit of memory. For a (15,13) code one can optimize the
coder by having a processor for evaluating each comparative
state, wherein each processor requires about 14 Mbit in
memory. While memory is not free, present day prices make
the cost for a decoder using preferably memory based n-state
functions very affordable.

An error locating method using comparative states allows
the decoder to determine intermediate or partial decoding
states as the decoder is receiving n-state symbols. This herein
provided real-time processing or close to real-time process-
ing of symbols or substantially real-time processing of sym-
bols in decoding is different from the known method of for
instance Reed-Solomon (RS) decoding. In classical RS-de-
coding a syndrome has to be determined based on a received
codeword with check symbols and re-calculated check sym-
bols. This means that all symbols have to be received before
syndromes can be calculated. It has been shown herein, how
check symbols depend upon the individual data symbols.

As one aspect of the present invention the check symbols of
the received data symbols are determined as symbols are
being received by also determining partial results for the
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recalculated check symbols. In one embodiment an n-state
symbol in a codeword is received and is being processed by a
processor to determine a partial result of an expression that
determines a comparative coding state before a next code-
word in the codeword is available for processing a partial
result by the processor. In a further embodiment of the present
invention an n-state symbol in a codeword is received and is
being processed by a processor to determine a partial result of
an expression that determines a comparative coding state
before the final n-state symbol in the codeword is available to
determine a partial result by the processor.

In one embodiment of the present invention intermediate
values or states of the check symbols or expressions that
evaluate those states or symbols from the received symbols
are evaluated as symbols come in. In one embodiment of the
present invention an intermediate state or value of an expres-
sion is determined after a symbol is received and before the
next symbol is received. In a further embodiment of the
present invention an intermediate state or value of an expres-
sion is determined after at least two consecutive symbols are
received, but before all symbols in a codeword are received. It
should be clear that this aspect of the invention can also be
applied to calculating the value of check symbols in the
classical RS decoding method. It is believed to be novel that
an intermediate state or a final state of a comparative state is
determined.

In a further embodiment of the present invention a proces-
sor or a logic device determines not only an intermediate state
of an expression that determines a comparative state of a
decoder, but also determines an intermediate state of a cor-
rected value or state of a symbol. In such an embodiment
expressions that determine a correct state or value of'a symbol
in error are executed to generate intermediate states as sym-
bols come in despite it not yet being known or determined yet
which (if any) symbol is in error. Based on the final determi-
nation of the comparative states it is determined which sym-
bol or symbols were in error and the calculated corrected
value(s) or state(s) are selected from all calculated values or
states. This may require an overhead on processing capabili-
ties. However, it also means that errors will be corrected right
after or close to after the last symbol in a codeword has been
received. This is useful, for instance in situations wherein the
clock speed of a processor is in the same range as the symbol
speed of the received signal and symbols are required to be
processed in real-time.

The calculation of a check symbol in for instance an RS
code with an LFSR is known. An intermediate state of the
check symbol is a state of the corresponding shift register
element of the LFSR. The generated check symbols classi-
cally are determined as a result of a polynomial arithmetic. In
the LFSR an intermediate state of a shift register element is
determined by first adding (generally over GF(n)) an n-state
symbol with a symbol in a last shift register element of the
LFSR, and then feeding back that generated symbol, possibly
via a multiplier into another addition.

As an aspect of the present invention a check symbol is
being determined as a linear expression in GF(n). Such an
expression has the form: s,=m, *a,+m,*a, . . . +m,*a,, which
lends itself very well to be evaluated in intermediate steps as
symbols a,, a,, . . ., a, are being received, which is another
aspect of the present invention. An intermediate state of a
check is thus determined by fewer steps than in the LFSR.

Methods and steps provided herein, thus perform steps that
are usually performed after all symbols have been received as
intermediate steps that are performed after a symbol is
received. Accordingly, the number of processor intensive
steps after all symbols have been received can be reduced
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significantly as opposed to the prior art approach situation
wherein all or most steps are performed after all symbols have
been received. The prior standard approach requires a syn-
drome which necessarily can only be determined after all
symbols have been received and processed.

One further example is provided using an 8-state LFSR
coder as shown in FIG. 16. The coder 1600 is in forward or up
direction and 1610 is in down or reverse direction. The func-
tions “sc” as shown in circles such as 1603 are implementa-
tions of additions over GF(8); the circles such as 1601, 1607,
1608 and 1611 are implementations of multipliers over
GF(8). For instance multiplier 1601 is a multiplier “4”. One
can easily check that its reverse as shown in 1611 is multipli-
cation “5”. It is noted that the multipliers can be any reversible
n-state inverter and “sc” can be any reversible n-state func-
tion. For the method to be easily implemented it is preferred
that the functions “sc” and n-state inverters are additions over
GF(n) and multiplications over GF(n) because the finite field
properties make all operations associative and distributive.
The preferred finite fields include alternate finite fields as
defined in US Patent Pub. Ser. No. 20110064214 published on
Mar. 7, 2011 which incorporated herein by reference. Other
functions can be used. However, this in general requires care-
ful use of order of evaluation of terms.

The coder has a shift register of 3 elements of which 1602,
1604 and 1605 are shown in forward direction and are able to
store (in this case) an 8-state symbol or any representation of
such a signal, for instance a binary representation. In reverse
direction coder 1610 the inputs and outputs of the storage
elements are reversed and are elements 1614, 1615 and 1616.
In coder 1600 on input 1604 8 8-state symbols [al . . . a8] are
entered and after completion of entering result in the check
symbols [c1 ¢2 ¢3] being the content 0of 1602, 1604 and 1605.
The initial content of the shift register may be all zeros, [0 0
0]. However, one may use any initial coding state of the shift
register, which is different from prior standard practices.

In the reverse direction as shown in 1610 the content of
1614, 1615 and 1616 is the received set of check symbols [c1
c2 c3]. The received symbols are entered in reverse order.
When no errors have occurred, the reverse coding will create
the initial state of the shift register after completion.

It is assumed for this example that the initial state of the
shift register is [0 O 0]. The input sequence is all ones or [1 1
111111].

FIG. 17 show the three tables 1701, 1702 and 1703 with the
comparative states determined before and after a symbol is
entered. There are 9 states (including the initial state). Each
state is determined by [c1 c2 c3 al a2 a3 a4 a5 a6 a7 a8]
wherein [c1 c2 c3] are the received check symbols. One may
expand the states with [il i2 i3] being the initial state of the
shift register, if such a state is not zero. Because of the asso-
ciative and distributive properties of the field, the terms in the
tables are actually multiplication factors with which [c¢1 ¢c2¢3
al a2 a3 a4 a5 a6 a7 a8] should be multiplied or inverted.

As an example one may take the first row of table 1701: [5
4200174034].Oneshouldread this as 5*c1+4%*c2+2%*c3+
0*al+0*a2+1*a3+7*a4+4*a5+0*a6+3*a7+4*a8. If no error
has occurred, the forward state is identical to the reverse state
ata certain time and the expressions such as the above expres-
sion should be 0. One can easily see that a partial sum can be
evaluated for each comparative state after a symbol has been
received. The correct check symbols in this case are [2 7 3].
This means that the expression has value: 5*2+4%7+2%3+0+
0+14+7+4+0+3+4=6+3+4+1+7+4+3+4=0, which was to be
expected. One can also see thatal, a2 and a6 do not contribute
to the sum (as these symbols are multiplied by 0). Accord-
ingly, if the sum is 0, but other sums are not zero wherein al,
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a2 and a6 are not multiplied by 0, then one of these symbols
is in error, as explained above. One should keep in mind
that * is multiplication over GF(8) and + is addition over
GF(8).

In accordance with an aspect of the present invention rows
of the tables can be multiplied and added with each other to
determine the ‘0’ error state for one or more potential symbol
in error. One may also add in this manner rows from different
tables related to this coder, as each comparative state should
be zero, or a neutral zero-value if one operates in an alternate
finite field. For instance, one can derive almost directly the
location of most two consecutive errors as can be seen in
tables 1701, 1702 and 1703. However, there is no direct
expression for the case wherein the check symbol ¢3 and the
first data-symbol al are both in error. By adding the first row
ot 1701 with the first row of 1702 over GF(8) one will get [5
4200174034]+4[02201033315]-[510011163
7 7). This expression of a comparative state represents S*c1+
1*c2+0*c3+0*al+1*a2+1*a3+1*ad+6*a5+3*a6+7*a7+
7*a8. This expression will generate a 0 when only ¢3 and al
are in error.

It is possible to determine all possible error combinations
that will generate a zero (or zero-neutral value) in certain
expressions when certain errors occur and non-zero values in
other expressions for the same errors. Such an error table is
providedin FIG. 18 for the coder of FIG. 16. It shows the error
expression table for errors always in a8 and in either: a7, a6,
a5, ad a3, a2, al, ¢3, c2 and c1. It shows that errors in a3 and
a4 are indistinguishable. This is not a problem as one may just
assume that a3, a4 and all are in error and solve for these
errors.

This means that all combinations of 2 errors can be covered
by fewer than 50 expressions. It is pointed out that this num-
ber is independent of the value or state of the codeword
symbols. It is thus much more efficient than a method wherein
all possible codewords have to be generated. It is also pointed
out that the herein provided method in accordance with an
aspect of the present invention is extremely efficient for deter-
mining adjacent errors, as the required number of compara-
tive state expressions is very low, and in the case of 2 or more
consecutive n-state symbols in error for an n-state symbol
codeword with 8 n-state symbols is at most 11.

At least two methods to calculate correct states for symbols
in error after the errors have been detected are provided in
accordance with one or more aspects of the present invention.
The methods are related but can differ significantly in speed
of'execution. The solving methods both use the expressions of
a comparative state but do so in different ways. The following
table shows row 3 from table 1701 in FIG. 17 with the first
row showing the related symbol names in a codeword.

cl c2 3 al a2 a3 a4 as a6 a7 a8

Assume that it was determined that symbols a4 and a5 were
in error, for instance, because the expression of row 4 was 0
and other rows were not. The above row in the table represents
the expression 2*cl+4*c2+3%*c3+2%al+4*a2+1%*a5+7*a6+
4*a7=0 or 2*c1+4%c2+3*c3+2*al+4%a2+1*(a5+e5)+7*a6+
4*a7=rl. One is reminded that the expression without errors
is always 0. The factor r1 is calculated during execution of the
expression, for instance as symbols are being received and
new terms of added to a partial result or sum as symbols are
being processed. It was already decided that only a5 has an
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error term. The symbol a4 also, but this symbol has no influ-
ence on the expression as it is being multiplied by 0. In one
embodiment, especially if rl has already been determined.
One can reduce 2*cl1+4*c2+3*c3+2%al+4*a2+1*(a5+e5)+
7*a6+4*a7=rl to 0+1*e5=rl and determine directly that
e5=rl and the correct value of a received symbol a5r is
a5=aSr+e5. In another embodiment one can determine the
correct state of a5 from the expression a5=2*c1+4*c2+3*c3+
2*al+4*a2+7*a6+4*a7.

The above is illustrated with the following example.
Assume that a data word is [1 1 1 1 1 1 1 1] which will be
extended to a codeword with check symbols [2 7 3]. Assume
that the codeword [2 731117 611 1] was received.
Evaluating the expression with the received symbols results
into r1=>5. This means that the error value is 5 and the correct
value or state of a5 is 6+5=1, which is of course the correct
state. It may occur that the multiplication of the error value is
not 1. For instance m1*e5=r1. This then leads to e5=m1~'*rl,
which is still a very short expression as rl is already deter-
mined.

One may also evaluate a5=2%c1+4*c2+3*c3+2*al+4*a2+
7*a6+4%*a7 with the received correct symbol, which will gen-
erate also a5=1. If a5 in the expression has a coefficient not
equal to 1, the final result has to be corrected with this coef-
ficient’s inverse.

It is clear from the above that solving an error, once the
error location has been determined can be done very rapidly,
in as little as one step or basic instruction after all symbols
have been received and the error location has been deter-
mined. The extraordinary speed of determining and solving
errors is enabled by the evaluation of partial results of a
plurality of expressions as symbols are received. This means
that the results are already almost completely evaluated when
the last symbol in a codeword is being received. The comple-
tion of evaluating the expressions almost instantly allows
determination of an error location as no roots of error location
polynomials as applied in known methods have to be deter-
mined. Also, the error value or error magnitude is almost
completely determined by the evaluated expressions and only
a simple selection and addition is required, sometimes with a
simple inversion.

The use of stored truth tables in memory of specific opera-
tions such as addition and multiplication over GF(n) and
reduced truth table of an addition of two terms of which at
least one is inverted assists in speeding up the operations.

It is important to create a coder/decoder with the appropri-
ate inverters, especially if longer sequences of symbols are
used. If not the appropriate inverters are selected, the com-
parative states will repeat themselves and error detection is
limited to the non-repeating states. For illustration, the coder/
decoder of FIG. 16 is used wherein inverter or multiplier ‘3’
(1607 in 1600 and 1610) is replaced by multiplier “7”. By
using an all “1” input of [al . . . a8] the correct check symbols
are [1 1 0]. The three tables showing the comparative states
1901, 1902 and 1903 are shown in FIG. 19. One can see that
the comparative coding states of the first and second row of
the tables are repeated at rows 8 and 9.

It is further noted, that in classical RS-decoding methods
generally the roots of an error location polynomial are solved
based on the calculated syndromes, followed by correcting
errors after errors have been located. All the steps of error
location and error solving are generally started after syn-
dromes have been determined. These are relatively arithmetic
intensive steps, that all have to be performed in quite a short
time. In some cases the clock speed of the processor is at least
one or two orders of magnitude higher than the symbol speed.
In that case one may have sufficient time to solve errors. For
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instance, in situations wherein processor clock speed and
symbol speed are in relatively similar ranges, or if codewords
are very long, it may not be possible to solve errors in real-
time with classical methods. Atleast in those cases, but also in
other cases, the presently provided methods have a clear
advantage over previous methods. It should be clear that
systems and methods provided herein do in certain embodi-
ments not require the determination of a syndrome.

In one embodiment of the present invention each error
location or set of error locations is associated with an expres-
sion or set of expressions that will determine a correct value
of'the symbol(s) in error. If time is of the essence, the proces-
sor can evaluate all expressions into a partial result that cor-
rect a symbol in error as soon as a symbol is being received.
This adds to processing overhead as correct symbol states are
being evaluated for symbols that are not in error. The benefit
is that as soon as the last symbol in a codeword is received, the
error location can be determined from the finalized compara-
tive states and the associated corrected symbol states have
also been evaluated and can be provided on an output after
being selected based on the error location result. This means
that both error location and error correction take place in
real-time, in one embodiment of the present invention before
a symbol of a next codeword is being processed.

Such rapid solving is facilitated by assigning processors,
which in one embodiment of the present invention are dedi-
cated to a single task, either evaluation partial and final results
of a comparative expression or to solving partial and final
result of a correct state of a received symbol.

In one embodiment of the present invention, an n-state
function can be implemented with classical binary circuitry,
including devices that implement XOR functions.

The methods provided herein are implemented in one
embodiment of the present invention on a system containing
a general processor which performs instructions that perform
the steps of the methods. Such a system also contains a
memory that can store instructions and data that can be
retrieved by the processor. One embodiment of a system 2000
is illustrated in FIG. 20. It contains a receiver 2002 that
receives one or more signals through which the symbols are
transmitted on an input 2001 and provides on input 2003 to
the processor the symbols that can be processed by the pro-
cessor. There are different methods and apparatus known to
transmit and to receive the codewords as described herein.
These can be baseband signals. They can also be modulated
signals, included for instance Quadratic Amplitude Modu-
lated (QAM) signals, or any other modulated signals known
in the art to wirelessly transmit data signals, for instance in
cell-phone communication.

The symbols may be temporarily stored on a memory 2004
for processing by processing unit 2005 which may be an ALU
(arithmetic and logic unit). Such a processing unit may con-
tain two or more sub-processing units or cores that can work
in parallel, indicated by symbols A and B. The memory 2004
may be a distributed memory, for instance having dedicated
local memories for data storage, instruction storage and inter-
mediate results storage. The arrows inside 2000 indicate
internal connections that allow the processing cores to access
or provide data as required. At least one housekeeping signal
provided to the system 2000, which may include a power
signal and a clock signal, is provided an one or more inputs
represented by input 2007. An output 2006 provides at least
the correct data symbols.

While the symbols are n-state, they may be represented by
p-state signals with p<n and the circuitry may be p-ary cir-
cuitry.
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In one embodiment of the present invention the system is a
communication system, such as a wireless communication
system. For instance 2000 in an embodiment of the present
invention is part of mobile and wireless receiving computing
device. In a further embodiment the receiving computing
device is amobile phone, a cell-phone, a smart-phone, a PDS,
aniPAD®, a tablet, an eReader or any other digital device that
can receive error correcting coded signals. In an embodiment
of'the present invention 2000 is part of a data storage system.
The system 2000 in an embodiment of the present invention is
connected to a wireless network. In an embodiment of the
present invention system 2000 is connected to the Internet. In
an embodiment of the present invention system 2000 receives
a satellite signal. In an embodiment of the present invention
system 2000 receives signals representing an audio signal. In
an embodiment of the present invention system 2000 receives
signals representing a video signal. In an embodiment of the
present invention system 2000 receives signals representing a
data signal. In an embodiment of the present invention system
2000 receives signals representing a geo-positional or GPS
signal. In an embodiment of the present invention system
2000 is part of a smart mobile phone. In an embodiment of the
present invention system 2000 is part of a video display
system. In an embodiment of the present invention system
2000 is implemented ona mobile phone. In an embodiment of
the present invention system 2000 is implemented on a signal
processor. In an embodiment of the present invention system
2000 is implemented on a custom designed circuit. In an
embodiment of the present invention system 2000 is at least
partly implemented on a customizable circuit.

For illustrative purposes FIGS. 21A, 21B, 21C and 22
illustrate a listing of Matlab code that performs certain steps
as described herein in accordance with one or more aspects of
the present invention. FIGS. 21A, B and C illustrate a listing
of'a Matlab program called ‘ps8” captured in an m.file called
ps8. This Matlab program operates in origin 1 for vector and
matrices, and a constant 1 is added to truth tables and symbol
states. The length of the program requires a listing in 3 parts,
in FIGS. 21A, 21B and 21C but is executed on a processor as
a single program. The program refers to two functions ‘sc8#’
and ‘m8¢’ which perform operations sc8 and m8 over GF(8) in
a vector. It is assumed that one understands how such a
program works and it is not listed herein.

The program creates the table ‘resrs’ which represents the
multiplication coefficients with which the individual symbols
have to be multiplied in order to determine a comparative
state. Accordingly a row in a table represents (rows are sepa-
rated by a ‘9’ for clarity) an expression for a comparative state
of a shift register element. When a symbol of a codeword is
received, the related coefficient in one embodiment of the
present invention is retrieved from a memory or table and is
multiplied with the state of the symbol. It is pointed out that
with multiplication is intended an operation in accordance
with the truth table of that operation and the result is added (or
processed in accordance with the truth table of such an opera-
tion) with a previous partial result. In accordance with an
aspect of the present invention, a comparative state and pref-
erably a series of comparative states is developed as codeword
symbols are being received.

A program that finds errors in a codeword is illustrated by
its script listing in Matlab in FIG. 22. First a set of correct
check symbols (captured as ‘shifts’) are generated and con-
catenated to the data symbols to create a codeword. For dem-
onstration purposes an error vector ‘er’ is combined with the
codeword to create a codeword with errors. A vector ‘b1’ is
created, which by being all “0” indicates no errors, or by
having some elements zero and others non-zero indicates that
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errors have occurred. The structure of zeros in the vector ‘b1’
or in a combination of these vectors for more shift registers,
completely determines the error location in the word. Such
error location vectors in one embodiment are stored in a
memory and fully determine the error locations. This means
that in one embodiment of the present invention almost
directly after all the symbols have been received, if partial
results are determined after each symbol is received, the error
location vector points to the correct location of the errors.
Each determined error location is associated with an expres-
sion that determines a correct value of the symbol in error. As
before, an expression herein may be represented by its coef-
ficients of multiplication (which are for instance stored in a
memory) of the variables, wherein the variables are the sym-
bols that are determined not to be in error.

As described herein, two methods provided as an aspect of
the present invention can be used to solve the correct value. In
the first method the symbol in error is solved by evaluating an
expression anew that applies the variables notto be in error. In
a second method the comparative states represent an expres-
sion for the error values related to the symbols in error.
Because these states have already been evaluated it is easier to
apply these results to determine the error value or error mag-
nitude and add the result to the state of the symbol in error to
determine the correct state. No syndromes are used to deter-
mine the error location or the correct value of the symbol in
error.

The method as provided herein is extremely advantageous
to determine (k-1) symbols in error in a codeword with k
check symbols.

It is believed that the methods provided herein as an aspect
of the present invention are faster than using syndrome cal-
culations. It is contemplated that some aspects can also be
advantageously applied to syndrome based calculations. Syn-
dromes can be evaluated by creating partial results as symbols
of'acodeword are being received. In accordance with a further
aspect of the present invention, roots of an error location
polynomial, for instance as provided in Sklar’ s article “Ber-
nard Sklar-Reed-Solomon Codes” which is available on-line
at <URLhttp://ptgmedia.pearsoncmg.com/images/
art_sklar7_reed-solomon/elementLinks/art_sklar7_reed-so-
lomon.pdf> may be evaluated partially as symbols are being
received. The partial results are stored and used when a new
symbol comes in. This is substantially more complicated than
other methods provided herein, but still can significantly
speed-up the decoding process. It is noted that the syndrome
methods cannot achieve the (k-1) performance as described
earlier.

The following patent applications, including the specifica-
tions, claims and drawings, are hereby incorporated by refer-
ence herein, as if they were fully set forth herein: (1) U.S.
Non-Provisional patent application Ser. No. 10/935,960, filed
on Sep. 8, 2004, entitled TERNARY AND MULTI-VALUE
DIGITAL SCRAMBLERS, DESCRAMBLERS AND
SEQUENCE GENERATORS; (2) U.S. Non-Provisional
patent application Ser. No. 10/936,181, filed Sep. 8, 2004,
entitted TERNARY AND HIGHER MULTI-VALUE
SCRAMBLERS/DESCRAMBLERS; (3) U.S. Non-Provi-
sional patent application Ser. No. 10/912,954, filed Aug. 6,
2004, entitled TERNARY AND HIGHER MULTI-VALUE
SCRAMBLERS/DESCRAMBLERS; (4) U.S. Non-Provi-
sional patent application Ser. No. 11/042,645 , filed Jan. 25,
2005, entitled MULTI-VALUED SCRAMBLING AND
DESCRAMBLING OF DIGITAL DATA ON OPTICAL
DISKS AND OTHER STORAGE MEDIA; (5) U.S. Non-
Provisional patent application Ser. No. 11/000,218, filed Nov.
30, 2004, entitled SINGLE AND COMPOSITE BINARY
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AND MULTI-VALUED LOGIC FUNCTIONS FROM
GATES AND INVERTERS; (6) U.S. Non-Provisional patent
application Ser. No. 11/065,836 filed Feb. 25, 2005, entitled
GENERATION AND DETECTION OF NON-BINARY
DIGITAL SEQUENCES; (7) U.S. Non-Provisional patent
application Ser. No. 11/139,835 filed May 27, 2005, entitled
Multi-Valued Digital Information Retaining Elements and
Memory Devices; (8) U.S. Non-Provisional patent applica-
tion Ser. No. 12/137,945 filed on Jun. 12, 2008, entitled
Methods and Systems for Processing of n-State Symbols with
XOR and EQUALITY Binary Functions; (9) U.S. Non-Pro-
visional patent application Ser. No. 11/679,316, filed on Feb.
27, 2007, entitted METHODS AND APPARATUS IN
FINITE FIELD POLYNOMIAL IMPLEMENTATIONS;
(10) U.S. Non-Provisional patent application Ser. No. 11/696,
261, filed on Apr. 4, 2007, entitled BINARY AND N-VAL-
UED LFSR AND LFCSR BASED SCRAMBLERS,
DESCRAMBLERS, SEQUENCE GENERATORS AND
DETECTORS IN GALOIS CONFIGURATION; (11) U.S.
Non-Provisional patent application Ser. No. 11/964,507 filed
on Dec. 26, 2007, entitled IMPLEMENTING LOGIC
FUNCTIONS WITH NON-MAGNITUDE BASED PHYSI-
CAL PHENOMENA; (12) U.S. Non-Provisional patent
application Ser. No. 12/273,262, filed on Nov. 18, 2008,
entitled Methods and Systems for N-state Symbol Processing
with Binary Devices; (13) U.S. patent application Ser. No.
11/566,725, filed on Dec. 5, 2006, entitled ERROR COR-
RECTING DECODING FOR CONVOLUTIONAL AND
RECURSIVE SYSTEMATIC CONVOLUTIONAL
ENCODED SEQUENCES; (14) U.S. patent application Ser.
No. 11/555,730 filed on Nov. 2, 2006, entitled SCRAM-
BLING AND SELF-SYNCHRONIZING DESCRAM-
BLING METHODS FOR BINARY AND NON-BINARY
DIGITAL SIGNALS NOT USING LFSRs; (15) U.S. patent
application Ser. No. 11/680,719 filed on Mar. 1, 2007, entitled
MULTI-VALUED CHECK SYMBOL CALCULATION IN
ERROR DETECTION AND CORRECTION; (16) U.S.
patent application Ser. No. 11/739189 filed on Apr. 24, 2007,
entitled ERROR CORRECTION BY SYMBOL RECON-
STRUCTION IN BINARY AND MULTI-VALUED
CYCLIC CODES; (17) U.S. patent application Ser. No.
11/775,963 filed on Jul. 11, 2007, entitled Error Correction in
Multi-Valued (p,k) Codes; (18) U.S. patent application Ser.
No. 11/743,893 filed on May 3, 2007, entitled Symbol Recon-
struction in Reed-Solomon Codes; (19) U.S. patent applica-
tion Ser. No. 11/969,560 filed on Jan. 4, 2008, entitled Sym-
bol Error Correction by Error Detection and Logic Based
Symbol Reconstruction; (20) U.S. patent application Ser. No.
12/400,900 filed on Mar. 10, 2009, entitled Multi-State Sym-
bol Error Correction in Matrix Based Codes; and (21) U.S.
patent application Ser. No. 12/952,482 filed on Nov. 23, 2010,
entitled Methods and Apparatus in Alternate Finite Field
Based Coders and Decoders.

While there have been shown, described and pointed out
fundamental novel features of the invention as applied to
preferred embodiments thereof, it will be understood that
various omissions and substitutions and changes in the form
and details of the device illustrated and in its operation may be
made by those skilled in the art without departing from the
spirit of the invention. It is the intention, therefore, to be
limited only as indicated by the scope of the claims.

The invention claimed is:

1. A method for error correction, comprising:

receiving by a processor of a Reed-Solomon codeword of
n-state symbols with n>2 containing a plurality of
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n-state data symbols and a plurality of n-state check
symbols, an n-state symbol being represented by a sig-
nal;

the processor determining a plurality of comparative cod-

ing states of a coder enabled to determine the plurality of
n-state check symbols, each comparative coding state of
the plurality of comparative coding states being deter-
mined by combining one of a first plurality of interme-
diate coding states of the coder with a corresponding one
of a second plurality of intermediate coding states of the
coder, wherein each of the first plurality of intermediate
coding states is a state of the coder being operated from
a first initial state towards a first final state and each of
the second plurality of intermediate coding states is a
state of the coder being operated from a second final
state towards a second initial state;

the processor locating a symbol in error in the Reed-So-

lomon codeword based on the plurality of comparative
coding states; and

the processor determining a correct state for the symbol in

error in the Reed-Solomon codeword.

2. The method of claim 1, wherein a comparative coding
state is determined by the processor by evaluating a pre-
determined comparative coding expression that has at least a
subset of the n-state symbols in the Reed-Solomon codeword
as variables.

3. The method of claim 2, wherein the pre-determined
comparative coding expression is represented by a plurality
of coefficients.

4. The method of claim 2, wherein the coder is character-
ized by an n-state Linear Feedback Shift Register including at
least one multiplier not being 0 or 1 over a finite field GF(n)
that is operated in a forward and in a reverse direction.

5. The method of claim 2, wherein the pre-determined
comparative coding expression applies an n-state logic func-
tion that is defined over a finite field GF(n).

6. The method of claim 2, wherein a partial result of the
pre-determined comparative coding expression is evaluated
after an n-state symbol in the Reed-Solomon codeword has
been received by the processor and before a next n-state
symbol in the Reed-Solomon codeword is available for pro-
cessing by the processor.

7. The method of claim 1, wherein a partial result of the
correct state of the symbol in error is generated by an n-state
expression.

8. The method of claim 1, wherein the first initial state of a
coder to generate the Reed-Solomon codeword is not deter-
mined by all O state n-state symbols.

9. The method of claim 1, wherein an n-state symbol is
represented by a plurality of binary signals.

10. The method of claim 1, wherein the method is imple-
mented in a mobile communication receiver.

11. An apparatus, comprising:

a memory to store and retrieve data, including instructions;

a processor enabled to execute instructions to perform the

steps:

processing a received codeword of n-state symbols with
n>2 containing a plurality of n-state data symbols and
aplurality of n-state check symbols, an n-state symbol
being represented by a signal;

determining a plurality of comparative coding states of a
coder enabled to determine the plurality of n-state
check symbols, each comparative coding state of the
plurality of comparative coding states being deter-
mined by combining one of a first plurality of inter-
mediate coding states of the coder with a correspond-
ing one of a second plurality of intermediate coding
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states of the coder wherein each of the first plurality of
intermediate coding states is a state of the coder being
operated from a first initial state towards a first final
state and each of the second plurality of intermediate
coding states is a state of the coder being operated
from a second final state towards a second initial state;

locating a symbol in error in the codeword from the
plurality of comparative coding states; and

determining a correct state for the symbol in error in the
codeword.

12. The apparatus of claim 11, wherein a comparative
coding state is determined by evaluating an comparative cod-
ing expression that has at least a subset of the plurality of
n-state data symbols and the plurality of n-state check sym-
bols in the received codeword as variables.

13. The apparatus of claim 12, wherein a partial result of
the comparative coding expression is evaluated after an
n-state symbol in the codeword has been received by the
processor and before a next n-state symbol in the codeword is
available for processing by the processor.
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14. The apparatus of claim 12, wherein a partial result of
the correct state of the symbol in error is generated by an
n-state expression.

15. The apparatus of claim 11, wherein the codeword is
corrected before a symbol in a next codeword is received.

16. The apparatus of claim 12, wherein the comparative
coding expression applies an n-state logic function that is
defined over a finite field GF(n).

17. The apparatus of claim 11, wherein an n-state symbol is
represented by a plurality of binary signals.

18. The apparatus of claim 11, wherein the apparatus is part
of'a communication device.

19. The apparatus of claim 11, wherein the apparatus is part
of'a mobile communication receiving device.

20. The apparatus of claim 11, wherein the apparatus is part
of a data storage device.
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