
(12) United States Patent
Lablans

US008046661B2

US 8,046,661 B2
Oct. 25, 2011

(10) Patent N0.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(63)

(60)

(51)

(52)

(58)

SYMBOL ERROR CORRECTION BY ERROR
DETECTION AND LOGIC BASED SYMBOL
RECONSTRUCTION

Inventor: Peter Lablans, Morris Township, NJ
(Us)

Assignee: Temarylogic LLC, Morristown, NJ (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 965 days.

Appl. N0.: 11/969,560

Filed: Jan. 4, 2008

Prior Publication Data

US 2008/0104479 A1 May 1, 2008

Related US. Application Data

Continuation-in-part of application No. 11/680,719,
?led on Mar. 1, 2007, now Pat. No. 7,865,807, and a
continuation-in-part of application No. 10/935,960,
?led on Sep. 8, 2004, now Pat. No. 7,643,632.

Provisional application No. 60/779,068, ?led on Mar.
3, 2006, provisional application No. 60/883,369, ?led
on Jan. 4, 2007.

Int. Cl.
H03M 13/00 (2006.01)
G06F 11/00 (2006.01)
US. Cl. 714/757; 714/777; 714/781; 714/782;

714/784; 705/530; 705/531
Field of Classi?cation Search 714/757,

714/777, 781, 782, 784; 708/530, 531
See application ?le for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,512,020 A * 4/1985 Krol et a1. 714/781

4,553,237 A * 11/1985 Nakamura 714/778

4,928,280 A 5/1990 Nielson et al.
5,386,425 A 1/1995 Kim
5,771,245 A 6/1998 Zhang
6,851,086 B2 2/2005 SZymanski
7,000,167 B2 2/2006 Coker et a1.
7,116,250 B2 10/2006 Coene
7,493,547 B2 * 2/2009 Kim et a1. 714/758

OTHER PUBLICATIONS

Kaneko It al., Array Codes Correcting a Cluster of Unidirectional
Errors for Two-Dimensional Matrix Symbols, Nov. 3-5, 2003, IEEE.
pp. 242-249.*
Williams et al., IEEE 802.16 Broadband Wireless Access Working
Group, Jan. 18, 2001, IEEE, pp. 1-28.*
Pohlmann, Ken C., “The Compact Disc; a handbook of theory and
use”, The Computer music and digital audio series; vol. 5 A-R
Editions, Inc. Madison, WI 1989, (1989), pp. 58-61.

(Continued)

Primary Examiner * John J Tabone, Jr.
(74) Attorney, Agent, or Firm * Diehl Servilla LLC

(57) ABSTRACT
Methods and apparatus for creating codewords of n-valued
symbols with one or more n-valued check symbols are dis
closed. Associating the codewords with a matrix allows for
detection of one or more symbols in error and the location of
such symbols in error. Methods to reconstruct symbols in
error from other symbols not in error are also disclosed.
Systems for using the methods of error detection and error
correction by symbol reconstruction are also disclosed. Using
two or more matrices to determine check symbols is also
provided.

22 Claims, 9 Drawing Sheets

@L
Input symbols ofhm-izomal um mic coder.

All vertical columns checked?

Provide nnor mfummion to sch/e1 with other data

next line

nexi column

US 8,046,661 B2
Page 2

OTHER PUBLICATIONS

Rao, Wenjing et al., “Fault Tolerant Arithmetic With Applications in
Nanotechnology Based Systems”, IT C International Test Confer
ence, (Oct. 26-28, 2004), pp. 472-478.
Wong, et al., “Using Multi-Dimensional Parity-Check Codes to
Obtain Diversity in Rayleigh Fading Channels”, URL: WWW.dsp.u?.
edu/-tWong/Preprints/00965675.pdf, (2001), pp. 1210-1214.
Tee, et al., “Multilevel Generalised Low-Density Parity-Check
Codes”, Electronics Letters, vol. 42 No. 3, (Feb. 2006), 2 pages.

Sklar, Bernard, “A Primer on Turbo Code Concepts”, IEEE Commu
nications Magazine, (Dec. 1997), pp. 94-102.

Xilinx LogiCORETM, “Compatible Turbo Product Code Encoder
v1.0”, IEEE 802.16, Product Speci?cation, (Oct. 30, 2002), 5 pages.

Valles, et al., “Hamming Codes Are Rat-Ef?cient Array Codes”,
IEEE Globecom, (2005), 1320-1324.

* cited by examiner

US. Patent 0a. 25, 2011 Sheet 1 619 US 8,046,661 B2

104 ‘ 105

i I 106 I 107 I (1 108

—>
y 101 102 103

FIG. 1 PRIOR ART

204 205

v 201 202 203
209

FIG. 2

US. Patent 061. 25, 2011 Sheet 3 0f9 US 8,046,661 B2

507\ 504 505
@ G)

506

—>
y 501 502 503

509

FIG. 5

607

604 605 /

(2 606

—>
y 601 602 603

609

FIG. 6

US. Patent 0a. 25, 2011 Sheet 4 0f9 US 8,046,661 B2

703

705

702

704

701

709

FIG. 7

v1

v2

v3

V4

x1

U2

U3

FIG. 8

US. Patent Oct. 25, 2011 Sheet 5 619 US 8,046,661 B2

905 906 907

911

i 908 909 910

901 4’ 902 903 904

912

FIG. 9

solution 1 [x1 X2 x3]

solution 5 [X5 X6 X7]

solution 10 [X10 1

1010

1000
FIG. 10

US. Patent Oct. 25, 2011 Sheet 6 OH US 8,046,661 B2

Start at line 1

Input symbols of horizontal line into coder.

Errors detected ?

next line

no yes

Mark line in error.

All horizontal lines checked‘?

Start at column 1

Input symbols of vertical column into coder.

Errors detected ?

next column

no

Mark column n in error.

A
7

All vertical columns checked?

Provide error information to solver With other data

l
FIG. 11

US. Patent 0a. 25, 2011 Sheet 7 619 US 8,046,661 B2

1201 1206 1207

1202 1203 1204

1205

FIG. 12

1301 1303

1302 1304 1305

—> + Z,

FIG. 13

1402 1404 1405

FIG. 14

US. Patent 0a. 25, 2011 Sheet 8 619 US 8,046,661 B2

FIG. 15

1600

1601 1602

1603 1604

FIG. 16

US. Patent

X1

X5

X6

X7

X10

1702

Oct. 25, 2011 Sheet 9 0f 9

X1 X2 X3 ..Xk

1701

FIG. 17

1704

US 8,046,661 B2

1700

W

FIG. 18

US 8,046,661 B2
1

SYMBOL ERROR CORRECTION BY ERROR
DETECTION AND LOGIC BASED SYMBOL

RECONSTRUCTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of US. patent
application Ser. No. 11/680,719, ?led on Jan. 3, 2007, Which
claims the bene?t of US. Provisional Patent Application No.
60/779,068, ?led Mar. 3, 2006, Which are both incorporated
herein by reference in their entirety. This application is a
continuation-in-part of US. Non-Provisional patent applica
tion Ser. No. 10/935,960, ?led on Sep. 8, 2004, entitled TER
NARY AND MULTI-VALUE DIGITAL SCRAMBLERS,
DESCRAMBLERS AND SEQUENCE GENERATORS,
Which is incorporated herein in its entirety. This application
also claims the bene?t of US. Provisional Application No.
60/883,369, ?led Jan. 4, 2007, Which is incorporated herein
by reference in its entirety.

BACKGROUND OF THE INVENTION

The present invention relates to correction of one or more
symbols in error in a sequence of symbols. More speci?cally,
it relates to error correction by ?rst identifying the location of
possible errors, folloWed by reconstruction of the original
symbols from the remaining symbols believed to be not in
error.

Error correction of symbols is Well known, especially in
the ?eld of communications and information storage or trans
fer. In general, a series of symbols that is being transferred
may have experienced interference or noise on a transmission
channel. Possibly the storage medium, such as an optical or
magnetic disk, may have been damaged. As a consequence, a
received sequence of symbols may be different from the
sequence from Which it originated. The difference betWeen an
original sequence of symbols and a received sequence may be
considered to be errors.

Error control measures can be applied to detect and to
correct errors. These measures in general comprise adding
additional symbols to a sequence, based on the existing sym
bols in the original sequence. The redundancy of symbols
alloWs for detection and sometimes correction of errors.

It usually requires a greater number of redundant symbols
to correct errors rather than to merely detect that symbols are
in errors. For instance, in data communications, Wherein re
sending of information is possible and not detrimental to the
quality of data transfer, it may be su?icient to detect errors
and request the transmitter to resend the symbols. HoWever,
in many applications resending of symbols is impossible or
undesirable. In such cases error correction is desirable.

Error-correction techniques for symbols in a sequence
attempt to achieve the best result With as feW redundant sym
bols as possible, and With as limited processing requirements
and memory or storage requirements as possible. Error cor
recting redundancy is usually set to address some maximum
or optimal expected symbol error ratio. If information is
coded into codeWords, it is to be expected that many code
Words are error-free and in error-free codeWords extra sym
bols provided for error correction or detection are truly redun
dant.

Effective error correcting codes With a possibility to cor
rect a limited number of symbols in a sequence of a greater
number of symbols require signi?cant processing and/or
memory capabilities. Maximum likelihood error correction
may also require signi?cant memory or storage capabilities.

20

25

30

35

40

45

50

55

60

65

2
Accordingly, novel and improved methods and apparatus pro
viding improved error correcting performance With limited
symbol redundancy and limited processing resources are
required.

SUMMARY OF THE INVENTION

In accordance With one aspect of the present invention,
presents a novel method and system are provided that Will
correct errors in a sequence of symbols by detecting Which
symbols are in error and then reconstructing the error symbol
by reversible logic functions. An n-valued function herein
means an n-valued logic function.

In accordance With another aspect of the present invention,
a method is provided for error correction of one or more

n-valued symbols in a codeWord of a plurality of n-valued
symbols With n>2, a codeWord having at least one check
symbol calculated from data symbols, using a plurality of
codeWords comprising recalculating a check symbol in a
codeWord, evaluating if a codeWord has a symbol in error,
determining a location of a symbol in error in a codeWord
based on check symbols of at least tWo codeWords; and recon
structing the symbol in error.

In accordance With a further aspect of the present inven
tion, the method has at least one check symbol generated by
the n-valued logic expression using an n-valued non-adder
function.

In accordance With a further aspect of the present inven
tion, a method is provided for calculating check symbols by
using an n-valued Linear Feedback Shift Register (LFSR).

In accordance With another aspect of the present invention
a method is provided for the n-valued LFSR using an n-valued
logic function de?ned in GF(n:2P) With p21.

In accordance With a further aspect of the present invention
a method is provided for calculating a symbol knoWn to be in
error in a codeWord from equations for determining one or
more check symbols of the codeWord.

In accordance With another aspect of the present invention,
a method is provided for creating codeWords comprising the
steps of arranging the n-valued data symbols to be coded in a
matrix; determining check symbols along the dimensions of
the matrix; including the check symbols to codeWords in the
matrix; and completing coding of the n-valued data symbols
as a frame of codeWords.

In accordance With a further aspect of the present inven
tion, a method is provided for decoding a frame of codeWords
comprising the steps of deconstructing the frame of code
Words into a matrix; recalculating the check symbols as neW
check symbols from the data symbols; and determining data
symbols in error by comparing the check symbols With the
neW check symbols.

In accordance With another aspect of the present invention,
a method is provided for solving equations for determining
check symbols for a codeWord including data symbols in
error, Wherein the symbols in error are treated as unknoWns
for Which the equations can be solved.

In accordance With a further aspect of the present inven
tion, apparatus are provided that Will implement the methods
Which are an aspect of the present invention.

In accordance With another aspect of the present invention
systems are disclosed that provide error correction coding at
the source and error correction decoding at the target in accor
dance With the methods of the present invention.

In accordance With a further aspect of the present invention
data storage systems are provided that Will correct symbol
errors in symbols retrieved from a storage medium.

US 8,046,661 B2
3

In accordance With another aspect of the present invention,
a method is provided for error correction for a plurality of
n-valued With n>2 data symbols, comprising associating the
plurality of n-valued data symbols With a ?rst 2-dimensional
matrix, providing each n-valued data symbol With a position
in the ?rst matrix, generating a plurality of roW check symbols
along each roW of data symbols in the ?rst matrix, a roW check
symbol being generated by applying an n-valued logic
expression Wherein data symbols in a roW of the ?rst matrix
are variables, generating a plurality of column check symbols
along each column of data symbols in the ?rst matrix, a
column check symbol being generated by applying an n-val
ued logic expression Wherein data symbols in a column in the
?rst matrix are variables, and transmitting to a decoder the
plurality of n-valued data symbols, and the pluralities of roW
and column check symbols.

In accordance With a further aspect of the present inven
tion, the method has at least one check symbol generated by
the n-valued logic expression using an n-valued logic func
tion Which is not a modulo-n adder or an adder over GF(n).

In accordance With a further aspect of the present inven
tion, the method further comprises receiving by the decoder
the plurality of n-valued data symbols as received n-valued
data symbols, and the pluralities of roW and column check
symbols as received roW and column check symbols, associ
ating the plurality of received n-valued data symbols With the
?rst matrix, providing each received n-valued data symbol
With a position in the ?rst matrix, generating a plurality of
recalculated roW check symbols along each roW of received
data symbols in the ?rst matrix, a recalculated roW check
symbol being generated by applying an n-valued logic
expression Wherein received data symbols in a roW of the ?rst
matrix are variables, generating a plurality of recalculated
column check symbols along each column of received data
symbols in the ?rst matrix, a recalculated column check sym
bol being generated by applying an n-valued logic expression
Wherein received data symbols in a column are variables,
locating one or more symbols for error correction by applying
only received and recalculated check symbols.

In accordance With another aspect of the present invention,
the method further comprises error-correcting a symbol for
error correction by applying an n-valued logic expression
having the symbol for error correction as an unknown.

In accordance With a further aspect of the present inven
tion, the method further comprises associating the plurality of
n-valued symbols With a second 2-dimensional matrix, pro
viding each symbol With a position in the second matrix,
generating a plurality of roW check symbols along each roW of
data symbols in the second matrix, a roW check symbol being
generated by applying an n-valued logic expression Wherein
data symbols in a roW of the second matrix are variables,
generating a plurality of column check symbols along each
column of data symbols in the second matrix, a column check
symbol being generated by applying an n-valued logic
expression Wherein data symbols in a column in the second
matrix are variables, and adding to a transmission of symbols
to the decoder the pluralities of roW and column check sym
bols associated With the second matrix.

In accordance With another aspect of the present invention,
the method further comprises receiving by the decoder the
pluralities of n-valued data symbols as received n-valued data
symbols and the pluralities check symbols as received check
symbols, locating symbols for error correction in accordance
With the ?rst matrix, locating symbols for error correction in
accordance With the second matrix, and determining symbols
for error correction in accordance With the ?rst and the second
matrix.

20

25

30

35

40

45

50

55

60

65

4
In accordance With a further aspect of the present inven

tion, the method further comprises applying check symbols
generated in accordance With one or more additional matri
ces.

In accordance With another aspect of the present invention,
the method is provided Wherein a check symbol is generated
by using an n-valued Linear Feedback Shift Register (LFSR).

In accordance With a further aspect of the present inven
tion, the method further comprises generating one or more
n-valued check symbols from the plurality of roW symbols.

In accordance With a further aspect of the present inven
tion, the method further comprises generating one or more
n-valued check symbols from the plurality of column check
symbols.

In accordance With a further aspect of the present inven
tion, a system for error correction in a plurality of n-valued
data symbols With n>2 is provided, comprising a coding unit
for generating a plurality of check symbols from the plurality
of n-valued data symbols, a check symbol being calculated
from an n-valued expression having n-valued data symbols of
a codeWord as variables and Wherein a codeWord is formed by
associating the plurality of n-valued data symbols With a ?rst
matrix and the codeWord has n-valued data symbols of a roW
or a column of the ?rst matrix, a decoding unit for generating
a plurality of recalculated check symbols Which are recalcu
lated in accordance With the ?rst matrix from the plurality of
data symbols having one or more data symbols in error, an
error locating unit for locating one or more symbols for error
correction in the plurality of n-valued data symbols having
one or more data symbols in error by using only check sym
bols and recalculated check symbols, an error correcting unit
for calculating a correct value for a symbol for error correc
tion by solving an equation using a reversible n-valued logic
function and having a symbol for error correction as an
unknown.

In accordance With a further aspect of the present inven
tion, the system has at least one check symbol generated by
the n-valued logic expression using an n-valued function
Which is not a modulo-n adder or an adder over GF(n).

In accordance With a further aspect of the present inven
tion, the system for error correction comprises the coding unit
generating a second plurality of check symbols from the
plurality of n-valued data symbols, a check symbol being
calculated from an n-valued expression having n-valued data
symbols of a codeWord as variables and Wherein a codeWord
is formed by associating the plurality of n-valued data sym
bols With a second matrix and the codeWord has n-valued data
symbols of a roW or a column of the second matrix.

In accordance With a further aspect of the present inven
tion, the system for error correction comprises the decoding
unit generating a second plurality of recalculated check sym
bols Which are recalculated in accordance With the second
matrix from the plurality of data symbols having one or more
data symbols in error.

In accordance With a further aspect of the present inven
tion, the system for error correction comprises generating an
additional plurality of check symbols from the plurality of
n-valued data symbols, a check symbol being calculated from
an n-valued expression having n-valued data symbols of a
codeWord as variables and Wherein a codeWord is formed by
associating the plurality of n-valued data symbols With an
additional matrix and the codeWord has n-valued data sym
bols of a roW or a column of the additional matrix.

In accordance With a further aspect of the present inven
tion, the system for error correction comprises the coding unit
generating additional check symbols from a plurality of
check symbols.

US 8,046,661 B2
5

In accordance With a further aspect of the present inven
tion, the system for error correction comprises the decoder
correcting errors in the check symbols.

In accordance With a further aspect of the present inven
tion, the system for error correction is provided Wherein the
system is a data storage system.

In accordance With a further aspect of the present inven
tion, the system for error correction is provided Wherein the
system is a communication system.

In accordance With a further aspect of the present inven
tion, the system for error correction is provided Wherein
n-valued symbols are represented by binary symbols.

In accordance With a further aspect of the present inven
tion, a method for coding a plurality of n-valued With n>2 data
symbols is provided, comprising selecting a ?rst plurality of
n-valued symbols from the plurality of n-valued data sym
bols, generating a ?rst n-valued check symbol from the ?rst
plurality of data symbols by using an n-valued logic expres
sion using an n-valued reversible logic function, selecting a
second plurality of n-valued symbols from the plurality of
n-valued data symbols, generating a second n-valued check
symbol from the second plurality of data symbols by using an
n-valued logic expression using an n-valued reversible logic
function, and the ?rst and the second plurality of n-valued
data symbols having at least one n-valued data symbol in
common.

In accordance With a further aspect of the present inven
tion, the method for coding a plurality of n-valued With n>2
data symbols comprises selecting an additional plurality of
n-valued symbols from the plurality of n-valued data sym
bols, generating an additional n-valued check symbol from
the additional plurality of data symbols by using an n-valued
logic expression using an n-valued reversible logic function,
repeating the previous steps until each of the plurality of
n-valued data symbols is associated With at least tWo check
symbols.

In accordance With a further aspect of the present inven
tion, the method has at least one check symbol generated by
the n-valued logic expression using an n-valued function
Which is not a modulo-n adder or an adder over GF(n).

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an n-valued LFSR circuit With
multipliers and is prior art;

FIG. 2 is a diagram equivalent to the LFSR circuit of FIG.
1 having no multipliers;

FIG. 3 is a matrix shoWing codeWords With data symbols
and check symbols;

FIG. 4 is another matrix shoWing codeWords With data
symbols and check symbols;

FIG. 5 is a diagram of an n-valued LFSR circuit for gen
erating check symbols;

FIG. 6 is another diagram of an n-valued LFSR circuit for
generating check symbols;

FIG. 7 is another diagram of an n-valued LFSR circuit for
generating check symbols;

FIG. 8 is a matrix shoWing codeWords With data symbols
and check symbols;

FIG. 9 is a diagram of an n-valued LFSR circuit for gen
erating check symbols;

FIG. 10 is a diagram of an equation solver in accordance
With one aspect of the present invention;

FIG. 11 is a How diagram for determining check symbols in
accordance With a further aspect of the present invention;

20

25

30

35

40

45

50

55

60

65

6
FIG. 12 illustrates a system that is used to perform the steps

described herein in accordance With another aspect of the
present invention;

FIG. 13 illustrates a storage system for Writing data to a
storage medium in accordance With yet another aspect of the
present invention;

FIG. 14 illustrates a storage system for reading data from a
storage medium in accordance With yet another aspect of the
present invention;

FIG. 15 illustrates detecting symbol errors in a coding
matrix in accordance With an aspect of the present invention;

FIG. 16 illustrates coding a plurality of n-valued symbols
according to a matrix in accordance With an aspect of the
present invention;

FIG. 17 illustrates coding a plurality of n-valued symbols
in accordance With another aspect of the present invention;
and

FIG. 18 illustrates coding a plurality of n-valued symbols
in accordance With another aspect of the present invention.

DESCRIPTION OF A PREFERRED
EMBODIMENT

According to one aspect of the present invention, several
error detecting, check symbol generation and symbol recon
struction approaches for sequences including sequences of
n-valued symbols Will be combined.

N-valued herein Will mean an integer equal to or greater
than 3. It is distinguished from binary or 2-valued.

Furthermore, the terms state or value and multi-state or
multi-valued Will be used interchangeably. The logic func
tions that are provided herein represent the sWitching of
states. A state may be represented by a digit or a number. This
may create the impression that an actual value is attached to a
state. One may, to better visualiZe states, assign a value to a
state. HoWever, that is not a requirement for a state. A name or
designation of a state is just to indicate that it is different from
states With different designations. Because some logic func
tions herein represent an adder the names state and value may
be used meaning the same.

Furthermore, because of the practice in binary logic to
represent a state by a physical level of a signal such as a
voltage, one often assumes that different n-state signals have
different levels of a signal, such as voltage or intensity. While
such representations of a state are alloWed it is not limited to
that. A state may be represented by independent phenomena.
For instance, different states of a signal may be represented by
different Wavelengths of an optical signal. A state may also be
represented by a presence of a certain material, by a quantum
mechanical phenomenon, or by any other phenomenon that
can distinguish a state from another state.

Furthermore, a symbol, Which is regarded herein as a single
element, may also be represented by 2 or more p-state sym
bols Wherein p<n. For instance, a 4-state symbol may be
represented by 2 binary symbols.
The generation of check symbols, especially in sequences

of binary symbols, is known, and either a parity symbol or a
combination of symbols representing a checksum is gener
ated. One may also generate n-valued check symbols by
applying n-valued symbols to one or more n-valued logic
functions.
As an illustrative example to describe one aspect of the

present invention assume a set of codeWords of 5 n-valued
symbols. All possible codeWords of 5 n-valued symbols have
at most 4 symbols in common. Having symbols in common in
codeWords is assumed to mean having symbols in common in

US 8,046,661 B2
7

like positions. For instance the Word [0 1 2 3 4] and the Word
[3 2 1 0 4] have only one symbol (the 4) in common in like
positions.
Assume that one can add to each codeword of 5 n-valued

symbols 2 n-valued symbols in such a Way that each code
Word (of noW 7 symbols) still have at most 4 symbols in
common With another codeword. NoW assume that a code
Word of 7 symbols is transmitted to a receiver. Before or
during reception an error may have occurred in one of the 7
symbols. This means that 6 symbols are correct and one
symbol is in error. The received codeWord has then 6 symbols
in common With the correct codeWord. Because each code
Word has at most 4 symbols in common With each other
codeWord and assuming that an error has occurred in one
symbol the codeWord did not have in common With another
codeWord, then a codeWord With one error has at most 5
symbols in common With any other codeWord than the correct
codeWord. A codeWord With 2 errors has at most 6 symbols in
common With any other codeWord except the correct code
Word. It may also have just 5 symbols in common With the
correct codeWord. It should be clear that With 3 errors it Will
be possible that a codeWord With errors may have 7 symbols
in common With a codeWord not being the correct codeWord.
One may then conclude that a set of codeWords of p+k

symbols of Which each codeWord has at most q symbols in
common With another codeWord has a difference of at least
p+k—q symbols betWeen each codeWord. And at most p+k—
q-1 symbols in errors can be detected. The problem is that
one can usually only determine (detect) that up to (p+k—q—1)
symbols are in error in a codeWord. In general one can not
determine Which of the p+k symbols are in error. It is knoWn
that tWice as many redundant symbols are required to also
correct the symbols in error.

In general, error correction also requires the application of
some decoding scheme. For instance, one can apply convo
lutional coding and attempt to create a maximum likelihood
Trellis for decoding. One may also code the Words according
to a Reed Solomon scheme and correct any errors by solving
equations based on syndromes.
A preferred embodiment as one aspect of the present inven

tion, is to ?rst identify Which symbols in a sequence are in
error, and based on a selected coding scheme reconstruct the
symbols that Were detected as being in error by using revers
ing equations. The advantage is that the decoding can be done
in a fast and simple manner.

Reconstruction of symbols (including n-valued symbols)
in error based on knoWn correct symbols has been demon
strated by the Applicant in U.S. patent application Ser. No.
11/566,725, ?led on Dec. 5, 2006 entitled ERROR COR
RECTING DECODING FOR CONVOLUTIONAL AND
RECURSIVE SYSTEMATIC CONVOLUTIONAL
ENCODED SEQUENCES, Which is incorporated herein in
its entirety by reference. Reconstruction of symbols in error
in Reed Solomon codes and in What the Applicant calls Reed
Solomon like codes also are described in U.S. Non-provi
sional patent application Ser. No. 11/739,189, ?led on Apr.
24, 2007, Which claims the bene?t of U.S. Provisional Patent
Application Ser. No. 60/807,087 ?led Jul. 12, 2006; U.S.
Non-provisional patent application Ser. No. 11/743,893, ?led
on May 3, 2007, Which claims the bene?t of U.S. Provisional
Patent Application Ser. No. 60/821,980 ?led Aug. 10, 2006,
Which are all four incorporated herein by reference in their
entirety.
A reconstruction approach Will be brie?y explained in this

section. As an example a 4-valued Reed Solomon code Will be
generated of 3 4-valued data symbols. A knoWn 4-valued
Linear Feedback Shift Register (LFSR) con?guration that is

20

25

30

35

40

45

50

55

60

65

8
able to generate the code is shoWn in FIG. 1. It shouldbe noted
that the coder is shoWn in Fibonacci con?guration. An equiva
lent LFSR coder in Galois con?guration can also be con
structed. The rules for creating equivalent n-valued Fibonacci
and Galois LFSR based con?gurations are disclosed by the
Inventor in U.S. Non-provisional patent application Ser. No.
11/696,261, ?led on Apr. 4, 2007, and Which claims the
bene?t of U.S. Provisional Patent Application Ser. No.
60/789,613, ?led onApr. 5,2006 Which are both incorporated
herein in their entirety. It is understood for those skilled in the
art that When a Fibonacci con?guration LFSR is shoWn, that
an equivalent Galois con?guration of that LFSR is implicitly
disclosed. Galois con?gurations of LFSRs can inherently be
faster than Fibonacci con?gurations.
The coder as shoWn in FIG. 1 is comprised of an LFSR With

a 3 element shift register With elements 101, 102 and 103,
each of Which can store a 4-valued symbol. Not shoWn, but
assumed is a clock signal that Will advance or shift the content
of each element one position to the right. The ?rst element
101 Will assume the symbol that is also outputted on output
109 on the occurrence of a clock pulse. The content of the last
element 103 Will be lost after a clock pulse. The output of each
shift register element is also provided to a 4-valued multi
plier; that is: the output of 101 is also provided to a 4-valued
multiplier factor 2 106, the output of 102 is also provided to a
multiplier factor 1 107 and the output of 103 is provided to a
4-valued multiplier 108 representing a factor 1. The signals
outputted by the multipliers are inputted to 4-valued adding
function sc1.

In order to generate a 4-valued codeWord of 5 symbols, the
shift register is initiated With the 3 data symbols and the coder
Will be run for 2 clock pulses, generating 2 additional (redun
dant) symbols that Will be joined With the three symbols to a
codeWord of 5 4-valued symbols.
The 4-valued multipliers and the 4-valued adder sc1 are

de?ned over an extended binary Finite Field GF (22). The
truth table of the adder and the multiplier are provided in the
folloWing tables.

For reconstruction purposes, one Would need to reverse the
functions in the decoding process. The inventor has shoWn in
U.S. patent application Ser. No. 10/935,960, ?led Sep. 8,
2004, entitled TERNARY AND MULTI-VALUE DIGITAL
SCRAMBLERS, DESCRAMBLERS AND SEQUENCE
GENERATORS, Which is incorporated herein by reference in
its entirety, hoW to create n-valued functions having no mul
tipliers, equivalent to n-valued functions having n-valued
multipliers or inverters at its inputs. For several reasons, it is
easier to use n-valued functions using no multipliers. HoW
ever, it may be easier to do calculations With adders and
multipliers. In accordance With a further aspect of the present
invention one may do all calculations With adders and multi
pliers, but implement all functions in reduced form, using no
multipliers.
The con?guration equivalent to the one of FIG. 1 is shoWn

in FIG. 2. Herein no multipliers are used. The generated
redundant symbols are provided on output 209. There is still
a shift register With elements 201, 202 and 203. HoWever, the
multipliers and adders are combined into functions sc2 (204)

US 8,046,661 B2
9

and adder sc1 (205). Because multipliers 107 and 108 in FIG.
1 are a factor 1, the function 205 in FIG. 2 is identical to
function 105 in FIG. 1. The function sc2 (204) in FIG. 2 is the
adder sc1 modi?ed by a multiplier 2. The truth table of sc2 is
provided in the following table.

Accordingly, one can create a set of 64 different codewords
of 5 4-valued symbols using the coder of FIG. 2 wherein each
codeword has at most 2 symbols in common with another
codeword from the set. The following table shows part (50%)
of the generated set of codewords.

p: a.

wwwwNNNNHHHHOOOOE,
p: H 0

wwwwNNNNHHHHOOOOE, UJNHOUJNHOUJNHOUJNHO OP-‘NUJP-‘OUJNNUJOb-‘UJNP-‘O WHONONUJHNOHUJb-‘UJNO wwwwwwwwwwwwwwww UJNHOUJNHOUJNHOUJNHO HOUJNOHNUJUJNHONUJOH MOP-‘Wb-‘LHNOWP-‘ONONWb-‘g O

O

O

O

O
O

O
O

O

O

0
O
O

O
O
O

The data symbols are in the columns under data. The redun
dant symbols are in the columns under ‘redun’ in the table. It
should be clear that combination of the redundant symbols
with the data symbols is trivial. They can be put before or after
(as in the table) the data symbols. The order of the symbols
can be changed or the redundant symbols can be inserted
between the data symbols. However, no matter how the
redundant symbols are combined with the data symbols, it
should be done in an identical fashion for all the codewords.
One can arrange the data symbols of codewords in a matrix

and calculate the redundant symbols over the dimensions of
the matrix. An example is shown in FIG. 3 wherein the sym
bols are arranged in a 2-dimensional matrix. For illustrative
purposes, 2 dimensional matrices will be used. However, the
matrices can also be arranged in three dimensional or higher
dimensional matrices. Furthermore, the matrices do not have
to be square or rectangular. For instance one may fold a
sequence of n-valued symbols as a series of columns of a
matrix, wherein a the end of a previous column is connected
to the end of the next column, as for instance shown in FIG. 4
by line 401. In that case errors may spill over from one
column to the other (or from one row to another row) and one
should perhaps use more redundant symbols at the end of a
column or row than in the middle.

FIG. 3 shows a matrix of codewords. The columns and
rows comprise 3 data symbols, of which the columns have 2
redundant or check symbols, while the rows have only one
check symbol. Such an approach may be selected when 2
consecutive errors can be expected to occur in at most one of

20

25

30

35

40

45

50

55

60

65

10
4 columns. This is equivalent to a symbol error ratio of 2* 10'
2. One can then use the check symbols q1, q2, q3, q4 and q5
to determine which of the rows has a single error. By recal
culating the check symbols of the columns one can determine
in which of the columns one or two errors have occurred

(assuming for this example that only one of the 4 columns will
have one or two errors). This determines which of the sym
bols is in error.

It should be understood that the number of check symbols
and the siZe and dimension of the matrix depends on factors
such as desired correction capability and expected symbol
error ratio. For instance, if symbols are represented as true
multi-valued signals one may want to focus on detecting and
correcting single errors. However if n-valued symbols are
represented by words of lower valued (such as binary) sym
bols, one has to address the fact that errors may occur in two
adjacent symbols. It should be clear that within the con
straints of expected errors one can identify the location of a
symbol in error.
The technique of using parity or check bits in two dimen

sional or multi-dimensional matrices comprising data bits
and checkbits is known. For instance US. Pat. No. 3,831,144,
issued on Aug. 20, 1974, inventor John En, entitled MULTI
LEVEL ERROR DETECTION CODE, discloses a two-di
mensional matrix with horiZontally and vertically determined
check bits. The advantage of binary codes is that once the
position of error is known one can determine the correct
symbol, by ?ipping the symbol in error.
Independent Equations for Determining Check Symbols

Binary check symbols or parity bits are based on a limited
relationship between the constituting bits. The relationship is
commonly established by the binary XOR function. N-valued
check symbols can have more varied reversible relationships
as was explained in the earlier cited application Ser. No.
1 1/ 680,719. For instance one may have a word of 4 n-valued
symbols [a b c d]. One may create a ?rst n-valued check
symbol c1:a (aGBbGBcGBd. One may also create a second
check symbol c2:a®o ®c ®d®. If only one of the symbols a,
b, c or d is in error one can reconstruct the symbol in error both
from c1 or c2 if these are not in error and both 69 and ® are
reversible operations. It should also be clear that two symbols
in error can be reconstructed if the equations for c1 and c2 are
independent and the operations are reversible. Calculation of
c1 and c2 by 69 and ® may be independent because the
operations are totally different. The equations for c1 and c2
may be independent because the symbols a, b, c and d are
processed with the same function but with for instance dif
ferent n-valued inverters. For instance, c2:a€92b€93c€92d in
an n-valued code. The advantage of using n-valued coders
with LFSRs either in Galois or in Fibonacci con?guration is
that each next generated check symbol has an independent
equation from another check symbol in the code. That is a
reason why Reed Solomon (RS) codes work as error correct
ing codes.
The advantage of using an LFSR is that one does not need

to execute each expression or equation in full to generate a
check symbol. The appropriate con?guration of the LFSR
takes care of generating the check symbols in accordance
with independent expressions or equations. The drawback of
the RS code is that the location of an error ?rst has to be found
by for instance solving an error correction polynomial. In
order to be able to do that for each error there have to be 2
check symbols. By knowing where the errors occur, for
instance by using a matrix with error symbols derived from
columns and rows, one may be able to use just one check
symbol per error.

US 8,046,661 B2
11

In accordance with a further aspect of the present inven
tion, one can calculate the correct value of a symbol in error
of which the location is determined. In general, one can not
correct two errors occurring in a 7 4-valued codeword as

generated by the coder of FIG. 2. However, this error correc
tion becomes possible when one knows which symbols are in
error.

As an illustrative example assume 2 consecutive errors to

occur in the code word [3 3 2 3 2]. The codeword is formed by
the coder ofFIG. 2 as [sig 4 pl p2], wherein sig4 is a 4-valued
data word sig4:[x2 x3><3]:[3 3 2] and [pl p2]:[0 0]. The
equations that are used to generate [pl p2] are: p1:{x1 sc2
(x2 sc1 x3)} and p2:{p1 sc2 (x1 sc1 x2)}. The function sc2 is
non-commutative, so care should be taken with the order of
execution.

One needs to show that the data word can be recovered with
any two consecutive errors. This means for received code

words [e1 e2 2 0 0], [3 e1 e2 0 0], [3 3 e1 e2 0] and [3 3 2 e1
e2]. The last codeword is of course the simplest to decode as
only the check symbols [pl p2] are in error, but not the data
symbols. Consequently, the correct data word is of course [3
3 2].
Methods for Solving N-Valued Error Equations

There are actually several slightly different methods to
solve the n-valued error equations. Which method one applies
may depend on the complexity of the equations, the proper
ties of the functions and which of the symbols are in error. The
complexity and properties of functions is directly related to
the value of n. For instance, if n:2p then one can use a function
sc1 which is an addition over GF(2P) and multipliers over
GF(2P). In that case sc1 is self-reversing, commutative and
associative. This makes solving equations much easier. An
illustrative example will be provided.
Under conditions where the position of an error symbol can

be determined unambiguously, it is also possible to solve the
equations unambiguously. If for some reason it is impossible
or undesirable to solve equations in an algebraic fashion, one
can solve the equations iteratively by using all possible values
for the symbols in error. One will ?nd only one combination
of values that solves all equations correctly. Illustrative
examples will be provided.
One method is to solve the equations in an algebraic fash

ion. In order to solve equations it is useful to review the rules
for reversible, non-commutative and non-associative n-val
ued logic functions. Assume n-valued logic function ‘ sc’ to be
reversible, non-commutative and non-associative.

When (a sc b:c) then (b scT a:c), with the truth table of scT
being the transposed of the truth table of sc.

When (a sc b:c) then (c scrc b:a), with the function ‘scrc’
being the reverse of ‘sc’ over constant columns.

When (a sc b:c) then (a scrr c:b), with the function ‘scrr’
being the reverse of ‘sc’ over constant rows.

When (b scT a:c) then (b scTrr c:a), etc
For the coder of FIG. 2 the following two equations apply

for generating pl and p2: p1:{x1 sc2 (x2 sc1 x3)} and
p2:{p1 sc2 (x1 sc1 x2)}.

Algebraic method. As a ?rst example, assume that of [x1
x2x3 pl p2] x3 and pl are in error. Clearly a ?rst simple step
is to solve p2:{p1 sc2 (x1 sc1 x2)} which has pl as unknown.
One can rewrite the equation as: {p2 sc2rc (x1 sc1 x2)}:p1.
Herein the function sc2rc is the reverse of sc2 over constant
columns. Its truth table is provided in the following table.

25

30

35

40

45

50

55

60

65

12

The assumption was that x3 and p1 were in error, so in the
example the received codeword was [3 3x3 pl 0] using the
earlier example. Filling in the values in the equation provides
p1:{0 sc2rc (3 sc1 3)} or p1:0 sc2rc 0:0.
From p1:{x1 sc2 (x2 sc1 x3)} wherein now only x3 is an

unknown one can derive: (x2 sc1 x3):{x1 sc2rr p1} wherein
sc2rr is the reverse of sc2 over constant rows. Keeping in mind
that sc1 is self reversing: x3q2 sc1 (x1 sc2rr p1). The truth
table of sc2rr is provided in the following table.

Thus, x3q2 sc1 (x1 sc2rrp1) leads to: x3:3 sc1 (3 sc2rr 0)
or x3:3 sc1:2.
One may apply the same approach when x2 and x3 are in

error. In that case, one may apply p2:{p1 sc2 (x1 sc1 x2)} to
achieve (x1 sc1 x2):p1 sc2rr p2 and thus achieve x2q1 sc1
(p1 sc2rr p2). This will provide x2:3. Etc.
A more dif?cult situation occurs when x1 and x2 are deter

mined to be in error. The equations will be fairly dif?cult to
solve. Assume that x1:e1 and x2:e2. The equations will then
be:

The value of p1 and p2 are correct. So one way to solve the
equation in an iterative manner is to solve the equations:

for all values of el and e2, and determine for which values of
(e1,e2) the value (p1-t1) and (p2-t2) are both 0. Not surpris
ingly this will be the case for (e1,e2):(3,3). This is a time
consuming and not very elegant way to solve the problem,
and should be a solution of last resort.

Fortunately for LFSRs de?ned within GF(2P), one can also
use a different approach. Within GF(2P) the addition can be a
self reversing, commutative and associative function. As is
shown in FIG. 1, an LFSR in GF(2P) can be realiZed with
functions which are a combination of adders with multipliers.
One can reduce the functions by reduction of the truth tables
according to the multipliers, as was shown in FIG. 2. This
makes the execution of the coder quicker. In order to solve the
equations one can revert back to associative adders with mul
tipliers.

This is shown in FIG. 5 wherein the coder of FIG. 2 is
equivalent to the coder as shown in FIG. 5. The shift register
has elements 501, 502 and 503 which will be initiated with (in
this illustrative example) the 4-valued symbols [x1 x2 x3].
The functions 504 and 505 are both the adder sc1 over GF(2P).
One input of 504 has a 4-valued multiplier 506 representing
x2, which is equivalent to a 4-valued inverter inv2:[0 2 3 1]

US 8,046,661 B2
13

according to the truth table of the multiplier over GF(2P). The
input of 507 of function 504 is here a symbol Xt, Which is an
inverted value of the content of 501. This is, of course, dif
ferent from FIG. 2 Where the input to 204 is the value of 201.

The equations noW become:

Herein Xt1Iinv2(X1) and pt1Iinv2(p1). Because sc1 is com
mutative, self-reversing and associative, one can change
order of input, remove parentheses (or ignore order of eXecu
tion) and move parts of the equation to the other side of the I
Without changing the function. Consequently: plqtl sc1 X2
sc1 X3 and p2Ipt1 sc1 X1 sc1 X2.
Assume again that X1 and X2 are in error. So the equations

have to be solved for X1 and X2 and Xt1. This leads to (Xt1 sc1
X1)I(pt1 sc1 pl) sc1 (p2 sc1 X3). The parentheses are pro
vided for the neXt step, but are not required When only using
function sc1. It should be clear that (Xt1 sc1 X1) is in fact (X1
sc2 X1), as a function sc1 With an inverter inv2 at the input can
be reduced to sc2. One may also use (X1 sc1Xt1)I(X1 SC2TX1).
Also (pt1 sc1 p1)I(p1 sc2 p1). Consequently: (X1 sc2 X1)I(p1
sc2 p1)sc1(p2 sc1 X3). Or (X1 sc2 X1)I(0 sc2 0)sc1(0 sc12),
Whichis (X1 sc2 X1)I0 sc1 2I2. The solution (X1 sc2 X1) is the
diagonal [0 3 1 2] of the truth table of sc2. The solution for (X1
sc2 X1)I2 belongs to X1I3, Which is of course correct. One
can noW also determine X2 and calculate that X2I3.

The need for solving errors of 2 symbols in a Word is
because of the spill-over effect When one codes a symbol as
for instance a binary Word. One can never be sure that only an
error in one symbol has occurred, so one should be prepared
to solve the equations for tWo adjacent symbols in error. It is
also possible that tWo errors have occurred in non adjacent
symbols in a Word. This assumes a different error behavior
than for adjacent errors. Especially codeWords generated by
LFSRs (Galois and Fibonacci) that can be created by addi
tions (With or Without multipliers) over GF (21”), have easier to
solve equations because of the associative properties of the
addition function.

For instance, assume using the current 4-valued illustrative
eXample With a coder as illustrated by FIG. 5, that X1 and p1
are found to be in error. Using again the equations p1I{Xt1
sc1 (X2 sc1 X3)} and p2I{pt1 sc1 (X1 sc1 X2)}. Herein
Xt1Iinv2(X1) and pt1Iinv2(p1) and sc1 is a commutative,
self-reversing and associative function. The Way to approach
this is to use arithmetic in GF(22). The folloWing rules apply
using + and x in GF(22).
Multiplication:

For instance, in GF(22) under the earlier de?ned multiplica
tion 2><2 X1I3X1, etc.
Addition

The distributive property applies to a><(b+c)Ia><b+a><c.
Division is the inverse of multiplying.

20

25

30

35

40

45

50

55

60

65

14

Accordingly, division by 1 is multiplying by 1; division by 2
is multiplying by 3; and division by 3 is multiplying by 2.
One can then Write the equations as p1I2><X1+X2+X3 and

p2I2><p1+X1+X2.

As another eXample, one may assume that not adjacent
symbols X1 and p1 are in error. One must solve the equations
then for X1. This leads to 2><X1I3><X2><2><X3+p2; or X1I2><
X2+X3+3><p2I2><3+2+0I1+2I3. One achieves this result by
applying the arithmetic rules in GF(22) as stated before.

Galois ?eld arithmetic may be preferred for solving the
equations for in error symbols. HoWever, these easy solutions
may only be available for codeWords de?ned in eXtension
binary ?elds. As an illustrative eXample, a 5 symbol 5-valued
code Will be generated With 3 data symbols from a 5-valued
LFSR as shoWn in FIG. 6

The coder in FIG. 6 is a 5-valued LFSR With shift register
elements 601, 602 and 603. The taps have functions sc5 at 604
and 605. The end tap has a 5-valued multiplier factor 2, Which
is a 5-valued inverter [0 2 4 1 3]. The functions sc5 is addition
modulo-5 of Which its truth table is shoWn in the folloWing
table.

This coder Will generate 5-valued codeWords by providing
the data symbols as initial shift register content and running
the coder for tWo clock pulses. The check symbols Will be
generated on 609. The codeWords thus generated have at mo st
2 symbols With another codeWord in common. That means
that 2 errors can be detected, and knoWing the position of tWo
errors, tWo errors can also be corrected. The ?rst 25 code
Words of this coder are provided in the folloWing table.

0

0

0

0

0

0

0

0

0

0

0

0

US 8,046,661 B2
15

-continued
0

0

0

0

0

0

0

0

0

0

0

0

0

The coder of FIG. 6 Will be used for developing the equa
tions to solve the errors. It should be clear that When a symbol
X3 is in shift register element 603 a symbol value 2><X3 is
provided to input 607 of function sc5 at 605. The 5-valued
equations are then: p1:{X1 sc5 (X2 sc5 2><X3)} and p2:{p1
sc5 (X1 sc5 2><X2)} to generate codeWord [X1 X2 X3 p1 p2].
Because sc5 is an addition (mod-5) one can Write the equa
tions as:

One can reduce the coder of FIG. 6 to the coder of FIG. 7.
The coder of FIG. 7 has 5-valued shift register elements 701,
702 and 703. The functions sc51 at 705 is the original function
sc5 modi?ed according to the multiplier and function sc5 at
704 remains sc5. The check symbols are generated on 707 and
are identical to the ones generated on the coder of FIG. 6.

For the 5-valued arithmetic the folloWing truth table need
to be used for multiplication x and subtraction —, meaning
(a-b) Wherein ‘a’ is the roW and ‘b’ is the column of the truth
table.

One should further keep in mind that dividing by 2 is
multiplying With 3, dividing by 3 is multiplying by 2 and
dividing by 4 is multiplying by 4. Further more 3><3I4 and
4><4:1, etc.

Accordingly one Will ?nd for X1: p2:2X1+3X2+2 X3 or
3p2q1+4X2+X3 or X1:(3p2—4X2)—X3. Assume from the
table that [X1 X2X3 p1 p2] Was [0 4 3 0 3] With X1 and p1 in
error. The equation provides: X1:(3><3—4><4)—3:(4-1)—3:0.
As another eXample assume from the codeWord table that the
codeWord Was [0 2 3 3 2] With X1 and p1 in error, so X1 has to
be calculated from (X2, X3 and p2). The equation then pro
vides X1:(3><2—4><2)—3:(1—3)—3:0. The tables shoW that
3><2:1 and 4><2:3 and 1—3:3 in modulo-5 arithmetic as
de?ned by the tables.

The methods here presented as different aspects of the
present invention also apply to detection and correction of
more than 2 errors, such as three errors. In order to detect k
errors in a codeWord of n symbols, each codeWord in a set of
codeWords must have at least k+1 different symbols in com
mon positions from any other codeWord in the set. Or each
codeWord may at most have (n-k-l) symbols in common

20

25

30

35

40

45

50

55

60

65

16
positions. The best one can do in a 7 symbol codeWord to
detect 3 errors is having at most 3 symbols in common. Such
a code Would require 8-valued symbols and is generally
knoWn as an RS-code. It is possible to meet the error detection
requirement in a loWer valued symbol codeWord. HoWever,
that Would require a codeWord With more symbols. It is then
understood that other and different eXamples of detection 3
errors in a codeWord can be provided according to different
aspects of the present invention. As an illustrative eXample, an
8-valued 7 symbol codeWord With 3 check symbols Will be
provided to demonstrate error correction When the position of
errors is knoWn.

One can identify the positions of the errors for instance by
establishing a matriX as shoWn in FIG. 8. The data symbols
occur sequentially as X1 . . . X4, y1 . . . y4, v1 ...v4, Z1 ...Z4.

The symbols are broken up as 4 columns of 4 data symbols
and horiZontal check symbols t and tt are generated as Well as
vertical check symbols p, q, r and s. The assumption in the
eXample is that errors Will occur as at most 3 adjacent errors

in a column. One skilled in the art may, of course, design 2 or
3 dimensional matrices for different (also non adjacent) errors
and different symbol error ratios as Well as different code
Word siZes.

Assume that all symbols in the illustrative eXamples are
8-valued. By running 8-valued coders on the received data
symbols one can check the neWly generated check symbols
against the received check symbols and determine Which
roWs and columns are in error, thus determining the position
of the errors. Based on the knoWn error positions and the
coder one can reconstruct the correct symbols in the error
positions.
Assume that the 3 check symbols in the column of FIG. 8

are generated by the 8-valued Fibonacci coder of FIG. 9. This
is an 8-valued LFSR With 4 shift register elements 901, 902,
903 and 904 With three identical 8-logic functions 905, 906
and 907 Which is an addition sc1 over GF(23). Also included
are 4 multipliers 908, 909, 910 and 911 Which are multipliers
respectively of a factor 4, 1, 1 and 2 over GF(23). At each
clock cycle a check symbol in generated on output 912.
According to earlier disclosed methods, the coder can be
reduced in number of elements by reducing the addition
according to the multipliers. One can also modify the
Fibonacci con?guration to a faster Galois con?guration. All
providing the same check symbols. HoWever, for reconstruct
ing the error symbols, especially applying GF(n) arithmetic,
a Fibonacci con?guration With multipliers may be preferred
for error correction, though probably not for generating check
symbols.
The truth tables of the addition sc1 and multiplier over

GF(23) are provided in the folloWing truth tables.

1

0

l

2

3

4

5

6

7

US 8,046,661 B2
17

The following table shows the division rule in GF(23).

Or division by 2 is multiplying by 7, division by 3 is multi
plying by 6, etc.

The initial state of the shift register of the coder of FIG. 9
is [X1 X2 X3 X4]; in three clock cycles the coder will generate
3 check symbols [pl p2 p3]. The equations for generating the
check symbols are:

One can solve these equations for any of the 3 symbols to
be unknown. As one eXample assume [X1 X2 X3] to be in error.
One can solve the linear equations by matrices or by substi
tution. Applying substitution one will ?nd:

and thus with [X4 p1 p2 p3] known one can solve the equa
tions.
A partial set of 7 8-valued symbol codeword generated by

the coder of FIG. 9 is shown in the following table.

XlX2X3X4 l 2

472 O

l

2

3

4
5

6

7

One can easily check for the provided codewords using [X4
p1 p2 p3] in the equations to determine [X1 X2 X3].
One can provide the solution set for any of 3 or less sym

bols in a codeword being in error.
One may also determine solutions for independent sets of

unknowns by applying Cramer’s rule. As an eXample, the set
of equations for the coder of FIG. 9 will be used. For appli
cation of Cramer’s rule one should apply all additions and
multiplications of in this eXample GF(8). When applying
Cramer’s rule using for other radiX-n one should apply the
appropriate arithmetic. In this eXample, one should apply
addition and multiplication over GF(23) of which the truth
tables are provided above.
Assume that it is determined that X1, X2 and X4 are in error.

The codeword in error is [X1 X2 X3 X4 p1 p2 p3]:[e1 e2 7 e4
5 6 3]. One should the create three equations with unknowns
X1, X2 and X4 from the known equations as:

20

25

30

35

40

45

50

55

60

65

18
Cramer’s rule then solves the above equations as:

d112

d210

3320

4d12

ldZO

i1d30
x2:

41in

11(12

i12d3
x4 :

Herein

:5,

as the rules of GF(8) are used.

Furthermore,

Accordingly

5

This is in accordance with the elements in the word as gen
erated by FIG. 9.

One may also apply Cramer’s rule to other n-valued codes,
such as the 5-valued coder of FIG. 6. Herein, one should use
the rules of modulo-5 addition and modulo-5 subtraction in
the provided eXample, as well as the multiplication. Assum
ing that X2, p 1 and p2 are correct and X1 and X3 are in error the
equations become:

The determinant

12 1):]

