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Start 701

arithmetic to Reed Solomon codewords have been disclosed.
Reconstruction methods by applying n-valued reversing logic
functions are also provided. A correct codeword can be
selected from calculated codewords by comparing a calcu-
lated codeword with the Reed-Solomon codeword in error. A
correct codeword can also be found by comparing a codeword
in error with possible (p,k) codewords. Non Galois Field
Reed Solomon coders are disclosed. Methods for correcting
symbols in errors that have been identified as being in error
are provided. Apparatus that implement the error correction
methods are disclosed. Systems, including communication
and storage systems that use the disclosed methods are also
provided.

21 Claims, 11 Drawing Sheets
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1
SYMBOL RECONSTRUCTION IN
REED-SOLOMON CODES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application claims the benefit of the priority of
U.S. Provisional Application 60/821,980, filed on Aug. 10,
2006 which is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

The present invention relates to error correcting coding and
decoding. More specifically it relates to Reed-Solomon cod-
ing and decoding.

Error correction of digital codes is widely used in telecom-
munications and in transfer of information such as reading of
data from storage media such as optical disks. Detection of
errors can take place by analyzing symbols that were added to
the information symbols during coding. The relation between
information symbols and the added coding symbols is deter-
mined by arule. Ifafter reception of the symbols such relation
between the symbols no longer holds, it can be determined
that some of the symbols are different or in error compared to
the original symbols. Such a relationship may be a parity rule
or a syndrome relationship. If the errors do not exceed a
certain number within a defined number of symbols it is
possible to identify and/or correct these errors. Known meth-
ods of creating error correcting codes and correction of errors
are provided by BCH codes and the related Reed-Solomon
(RS) codes. These codes are known to be cyclic codes. Error-
correction in RS-codes usually involves calculations to deter-
mine the location and the magnitude of the error. The calcu-
lations in RS-codes error correction can be time and/or
resource consuming and may add to a coding latency.

Accordingly methods that can decode Reed-Solomon
codes in a faster or easier way are required.

SUMMARY OF THE INVENTION

One aspect of the present invention provides a method for
error correcting decoding a codeword generated as a (p,k)
Reed-Solomon codeword comprised of p n-valued symbols
of which k symbols are information symbols and having no
more than (p-k)/2 symbols in error into a correct codeword
by determining calculated codewords.

It is another aspect of the present invention to provide a
method of error correcting decoding of a Reed Solomon
codeword wherein calculated codewords are determined by
applying Galois Field arithmetic operations in GF(n).

It is a further aspect of the present invention to provide a
method of error correcting decoding a Reed Solomon code-
word wherein the GF(n) is an extended binary field.

It is another aspect of the present invention to provide a
method for error correcting coding of a Reed Solomon code-
word wherein calculated codewords are determined by apply-
ing reversing n-valued logic functions.

It is a further aspect of the present invention to provide a
method of error correcting decoding a Reed Solomon code-
word wherein calculated codewords are determined in paral-
lel.

It is another aspect of the present invention to provide a
method for generating a Reed Solomon encoded (p.k) code-
word of n-valued symbols by applying a k element n-valued
LFSR in Fibonacci configuration wherein at least one feed-
back tap includes a reversible inverter not representing a
GF(n) multiplier.

20

25

30

35

40

45

50

55

60

65

2

It is a further aspect of the present invention to provide a
method for generating a Reed Solomon encoded (p.k) code-
word of n-valued symbols wherein applied logic functions in
an LFSR are equivalent to logic functions and multipliers and
at least one reversible inverter not representing a GF(n) mul-
tiplier.

It is another aspect of the present invention to provide a
method for correcting an error in a RS codeword when it is
known which symbol in a codeword is in error.

It is a further aspect of the present invention to provide a
method for generating a Reed Solomon encoded (p.k) code-
word of n-valued symbols wherein the applied LFSR is an
Galois equivalent of a Fibonacci LFSR that includes at least
one reversible inverter not representing a GF(n) multiplier.

It is another aspect of the present invention to provide a
method and apparatus for reconstructing a symbol in error by
executing one or more n-valued logic expressions when the
position of a symbol in error was previously determined.

It is a further aspect of the present invention to provide
apparatus that implement the methods provided as aspects of
the present invention.

It is another aspect of the present invention to provide
systems that apply methods of error correction provided
herein.

DESCRIPTION OF THE DRAWINGS

FIG.1is a diagram of an LFSR in Fibonacci configuration
with no multipliers or inverters.

FIG. 2 is a diagram of an LFSR in Fibonacci configuration
comprising multipliers.

FIG. 2a is another diagram of an LFSR in Fibonacci con-
figuration enabled for direct initialization.

FIG. 3 is a diagram of an LFSR in Galois configuration.

FIG. 4 is a diagram of another LFSR in Fibonacci configu-
ration.

FIG. 5 is a diagram of an LFSR demonstrating a Reed
Solomon coder.

FIG. 6 is another diagram of an LFSR in Fibonacci con-
figuration.

FIG. 7 is a diagram illustrating a Reed Solomon coder.

FIG. 8 is another diagram illustrating a Reed Solomon
coder.

FIG. 9 is a diagram illustrating a Reed Solomon coder in
Fibonacci configuration with multipliers.

FIG. 10 is a diagram illustrating a Reed Solomon coder in
Fibonacci configuration not having multipliers.

FIG. 11 is a flow diagram illustrating steps according to one
aspect of the present invention.

FIG. 12 is a flow diagram illustrating steps according to
another aspect of the present invention.

FIG. 13 is a diagram illustrating a Reed Solomon coder in
Fibonacci configuration with multipliers and inverters.

FIG. 13a is a diagram illustrating a Reed Solomon coder in
Fibonacci configuration with no multipliers or inverters.

FIG. 14 is a diagram of a known Reed Solomon coder.

FIG. 15 is a truth table of an adder over GF(8).

FIG. 16 is a truth table of a multiplier over GF(8).

FIG. 17 is a truth table of an 8-valued division.

FIG. 18 is a diagram of a decoder in accordance with an
aspect of the present invention.

FIG. 19 is a diagram of a communication system in accor-
dance with an aspect of the present invention.

FIG. 20 is a diagram of a data storage system for writing
data in accordance with an aspect of the present invention.
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FIG. 21 is a diagram of a data storage system for reading
data in accordance with an aspect of the present invention.

DESCRIPTION OF A PREFERRED
EMBODIMENT

Reed-Solomon (RS) codes are often designated as (p,k)
error-correcting codes. This means that a codeword consists
of p symbols of which k symbols are the information or
message symbols. The remaining (p—k) symbols are “over-
head” symbols or check symbols to enable error correction.
The “overhead” symbols in RS codes are generally remainder
symbols generated by an LFSR. The LFSR used in RS coders
are generally applied in Galois configuration. It is also pos-
sible to generate RS codes by using LFSRs in Fibonacci
configurations.

In an earlier invention by the inventor as described in US
Non-Provisional Patent Application entitled: ERROR COR-
RECTION BY SYMBOL RECONSTRUCTION IN
BINARY AND MULTI-VALUED CYCLIC CODES, Ser.
No. 11/739,189 and filed on Apr. 24, 2007 and which is
incorporated herein by reference it was shown that (p,k) error
correcting codes can be generated by LFSRs wherein a num-
ber of t errors can be corrected in a codeword when the
codeword consists of k information or data symbols and
2*t+1 overhead symbols. The advantage of the coded method
provided in the cited invention is that with using n-valued
symbols one can generate an (p,k) code for error correcting t
errors when p>n. This comes with the disadvantage that 1
more symbol has to be used than in a true RS-code. In a true
RS-code the relation p—k=2*t applies.

While it may appear that using one more symbol than in
RS-codes is a disadvantage, the method as provided in the
cited patent application Ser. No. 11/739,189 also has advan-
tages. For instance one of the constraints of an RS code over
GF(q) is, according to the literature, that the codeword should
have the same symbols or at least one symbol less than the
logic wherein the code is developed. In other words: when
one wants to develop an RS code in 7-valued logic, then the
codeword should not be comprised of more than 7 7-valued
symbols. The method provided by the inventor in patent
application Ser. No. 11/739,189 does not have such a strin-
gent constraint. As an example one can create a codeword of
11 symbols in a S-valued logic using an LFSR with 6 ele-
ments. The codewords, using the appropriate functions, will
have at most 6 symbols in common and thus may correct up to
2 symbol errors.

One such code-generator configuration is shown in FIG. 2.
This LFSR can generate a sequence of 15524 5-valued sym-
bols. The multipliers are [1 1 2 0 2 2]. The multipliers can be
combined with fp (5-valued addition) into single 5-valued
reversible functions. So, in fact the advantage of the method is
that one can create codewords with more symbols than the
value of the applied logic that can correct multiple errors. For
some applications that can be a significant advantage, as it
may prevent going into large value logic approaches.

One disadvantage of the RS-code in Galois configuration is
that RS codewords are created individually: they can not be
created by letting the coder run and pick out a new codeword.
In fact in an RS-coder in Galois configuration one has to start
with a shift register with content of all 0s. As disclosed by the
earlier cited patent application if one has very cheap or fast
means for analyzing a very long sequence, one can use a
codeword as generated according to cited patent application
Ser. No. 11/739,189 and test if the received codeword has a
certain number of symbols in common with a tested portion of
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4

the sequence. If such comparison generates a minimum num-
ber then one has detected and corrected the codeword.

There is known literature available that describes the gen-
eration of RS-code. One book is: Error Control Coding by
Shu Lin and Daniel Costello, second edition, Prentice Hall,
2004. The conditions for an (p.k) RS-codeword over GF(q) to
be able to correct t errors are:

P=q-1;
overhead p—k=2%¢;
k=q-1-21;

minimum distance d=2*z+1;

In many cases the variable q is created from m bits so that
GF(q)=GF(2™). In that case the Galois Field is called an
extended binary Galois Field. The extended field allows cre-
ating for instance an GF(8) wherein each 8-valued symbol
can be expressed as a binary word of 3 bits.

RS (p,k) codewords, meeting earlier cited conditions can
be created by a method using an LFSR in Galois configura-
tion. In that case the LFSR has (p-k) elements, with initial
content of the shift register being all Os. The k information
symbols are shifted into the LFSR for k clock pulses, thus
filling the (p-k) shift register elements with a new content.
The RS codeword is the combination of k information sym-
bols with (p-k) symbols of the final state of the shift register.
Because in practical applications k>>(p-k) one tends to pre-
fer the Galois configuration.

Less known, but equally workable is the Fibonacci LFSR
configuration for the RS coder. In that case the coder has an
LFSR of k elements. The initial value of the shift register is
formed by the k data symbols. By running the LFSR for p
clock cycles the complete information word is entered and the
remaining (p-k) symbols for the RS codeword are generated.

The Fibonacci configuration has a further advantage. The
LFSR in an RS coder should run for p clock cycles to produce
the (p-k) check symbols providing k information symbols
into the LFSR. Usually this is done by shifting the informa-
tion symbols into the shift register. This is followed by shift-
ing out the check symbols out of the register of a Galois
LFSR. Combined the coding (and decoding process) with a
Fibonacci LFSR may take p+(p-k)=2p-k clock cycles. It
should be noted that all LFSRs work under a clock signal.
Such a clock signal is assumed in all the drawings and
descriptions though not always shown or identified.

FIG. 2 shows a Fibonacci LFSR. One can see that produc-
ing (p-k) check symbols requires running the LFSR for (p-k)
cycles after the register was completely filled. The check
symbols will be available immediately at an output and do not
require to be shifted out. In a Fibonacci LFSR the coding
process may take just p clock cycles including shifting in the
symbols into the LFSR. It should be clear that this number is
only correct if all function operations are completed with a
clock cycle.

FIG. 2a shows how the shift register elements can also be
filled in one instance. For instance at an enabling signal pro-
vided to all individual elements of the shift register, each
element is provided with its individual initial state. For
instance when an enabling signal is provided on a common
input 200 the shift register element 202 assumes the symbol
that is provided on input 201 as is shown in FIG. 2a. The time
for creating a codeword can thus be reduced to (p-k) clock
cycles, provided that all function operations of the LFSR can
be completed within a single cycle.
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The difference between the Galois and Fibonacci LFSR
configuration is that in practical terms the Galois LFSR is
smaller (if k>>(n-k)) but may have to run for more clock
pulses. The Fibonacci LFSR (for k>>(n-k)) is larger, but may
have to run for a fewer number of clock pulses if the number
of'feedback taps is small. This is illustrated in FIG. 3 and FIG.
4 for a (7,3) RS code which is a Reed Solomon code of which
a codeword is 7 symbols and of which 3 symbols are infor-
mation symbols.

How to create equivalent Galois and Fibonacci LFSR con-
figurations has been demonstrated by the inventor in an inven-
tiondescribed in U.S. Non-Provisional patent application Ser.
No. 11/696,261 entitled: BINARY AND N-VALUED LFSR
AND LFCSR BASED SCRAMBLERS, DESCRAM-
BLERS, SEQUENCE GENERATORS AND DETECTORS
IN GALOIS CONFIGURATION filed on Apr. 4, 2007 and
which is incorporated herein by reference in its entirety.

FIG. 3 shows a structure that resembles an RS-coder in
Galois configuration. One skilled in the art will recognize that
this is not really an RS-coder as it does not comprise the
switches required to allow entering the data symbols on 301
and then switching to a situation where the content of the shift
register elements are outputted on 302. However it shows that
symbols are provided on 301 and 302. What will happen
during coding is that initially the shift register content is all Os.
Then during k clock cycles the k data symbols will be inputted
on 301. Immediately after the first clock cycle there can be a
non-zero element in the last element 304 of the shift register,
creating feedback symbols on 303 through n-valued adder fp
305. After k clock cycles no more data symbols will be
entered. Because in this configuration the n-valued adder fp is
used, one may also say that after k clock cycles only 0 sym-
bols are entered. This means that after k clock cycles the
content of the shift register is only shifted and will not change.
One may say that in clock cycles after k clock cycles the
remainder is shifted out of the shift register.

The (7,3) configuration in FIG. 3 shows the classical mul-
tiplier and adder functions fp. The adder fp is an 8-valued
adder over GF(2%) as provided in an article by Bernard Sklar,
entitled Reed-Solomon Codes and available on-line at http://
www.informit.com/content/images/art_sklar7_reed-so-
lomon/elementLinks/art . 7_reed-solomon.pdf. The multi-
pliers are also defined over GF(2%). The truth table of fp and
the multiplier are provided in the following truth tables. A
multiplier as shown in FIG. 3 at 307 (multiplier 4) is defined
as the row (using origin 0) in the multiplier truth table ‘mul’
ei:[04567123].

c b

fp 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 0 4 7 2 6 5 3

a 2 2 4 0 5 1 3 7 6

3 3 7 5 0 6 2 4 1

4 4 2 1 6 0 7 3 5

5 5 6 3 2 7 0 1 4

6 6 5 7 4 3 1 0 2

7 7 3 6 1 5 4 2 0

c b

mul 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
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-continued

c b
mul 0 1 2 3 4 5 6 7
a 2 0 2 3 4 5 6 7 1
3 0 3 4 5 6 7 1 2
4 0 4 5 6 7 1 2 3
5 0 5 6 7 1 2 3 4
6 0 6 7 1 2 3 4 5
7 0 7 1 2 3 4 5 6

The same 8-valued adding function fp and multiplier ‘mul’
are used in the (7,3) RS-coder in the Fibonacci configuration
in FIG. 4 which is identical to the code generator of FIG. 3.

As was shown by the inventor in an earlier invention as
described in U.S. Non-Provisional patent application Ser. No.
10/935,960, filed Sep. 8, 2004 entitled: TERNARY AND
MULTI-VALUE DIGITAL SIGNAL SCRAMBLERS,
DESCRAMBLERS AND SEQUENCE GENERATORS,
and which is incorporated herein by reference in its entirety,
it is possible to combine an n-valued logic function with
n-valued multipliers or inverters into a single n-valued logic
function. When the function and multipliers or inverters are
reversible then the combined function is also reversible.
Accordingly the Galois configuration as shown in FIG. 3 can
be replaced by the Galois configuration as shown in FIG. §
and the Fibonacci configuration as shown in FIG. 4 can be
replaced by a Fibonacci configuration as shown in FIG. 6.
Error Correction by Symbol Reconstruction

The following will describe error correction by symbol
reconstruction. The principle thereof is straight forward. One
may assume that in this illustrative case 2 symbols in a code-
word in a certain position are in error. For simplicity it is
assumed that 2 adjacent symbols are in error. However errors
may occur in any order of course. If these particular symbols
are in error in the illustrative example, then clearly one also
may assume that the other symbols are not in error. Accord-
ingly one can calculate the supposedly “in error” symbols
from the supposedly “error-free” symbols. A reconstructed
codeword then has at most 2 symbols in difference with the
original codeword. Based on the characteristics of the coding
method one can not construct more than one valid codeword
that has only 2 or less symbols in difference with the original
codeword with errors. If it turns out that the original code-
word had no errors then all symbols of the reconstructed and
the original codeword are in common.

“Symbols in common” between a calculated codeword and
an RS codeword is intended to mean symbols in common in
like or corresponding positions. For instance the codewords
[012345]and [543 21 0] have 6 symbols in common, but
have no symbols in corresponding positions in common.

It is of course possible in the assumption that not the
selected 2 symbols but 2 different code symbols were in error.
Based on the assumption and according to the characteristics
of the code one will then have created a codeword on that
assumption that has a difference of more than 2 symbols with
the original codeword and thus should be rejected as an incor-
rect solution.

Accordingly one has to either create all possible errors, or
only those errors that matter. For instance in a (7,3) code there
are 3 information symbols that determine the 4 remainder
symbols. Assuming that the errors occur in the remainder and
not in the information symbol one can just take the three
information symbols and recalculate the remainder. The
newly recalculated codeword can then at maximum only have
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atwo symbol difference with the original codeword. If that is
the case then the calculated codeword is the error-free code-
word.

Because the functions as used in FIG. 5 and FIG. 6 can be
reversed one can then apply the method of error correction by
reconstructing of symbols. In a (7,3) RS-code there are 3
information symbols and 4 overhead symbols. The properties
of'the RS-code are such that each 7 symbol word in that code
only has 2 symbols in common in like or corresponding
positions with each other codeword.

In order to perform error correction a set of equations has to
be solved. As shown in the earlier cited patent application Ser.
No. 11/739,189 it is assumed for ease of formula manipula-
tion that potential errors that occur are adjacent to each other.
That condition is not required for the method here provided as
one aspect of the present invention to work, however it will
limit the number of formulas and makes the process easier to
follow for illustrative purposes. The assumption then is that 2
errors will have occurred in two adjacent symbols of the 7
symbol codeword and that 5 symbols are correct. Based on
the assumed to be correct symbols one can calculate the
assumed to be in error symbols. Accordingly one has then
calculated an assumed to be correct 7 symbol codeword. One
then determines how many symbols in the calculated word
and in the “in error” codeword in like positions are in com-
mon. If calculated and received overhead symbols (or remain-
der symbols) are identical, then no errors have occurred. If at
least 5 symbols in the original (7,3) codeword and the calcu-
lated (7,3) codeword are in common in like positions, then the
calculated codeword is the correct codeword and the 3 infor-
mation symbols in the calculated codeword are the error free
information symbols.

First it is shown how the equation set is determined for the
Galois configuration. FIG. 7 shows how the intermediate
results are determined in the LFSR. When the circuit starts the
content of the shift register is all Os. The circuit will run and
shift for three clock pulses. The input is [al a2 a3]. Atthe end
of'the 3 pulses the overhead symbols (from back to front of the
shift register) should be [b1 b2 b3 b4]. The total codeword
thenis [al a2 a3 bl b2 b3 b4]. FIG. 8 shows how [b1 b2 b3 b4]
are the generated result.

The following equations are determined after entering a
symbol at 501. First symbol al entered:

11=0
2=0
13=0

#4=0,

wherein tl, t2, t3 and t4 are the outputs of the shift register
elements.

in=al
inl=4*in=4*q1
ul1=2*in+0=2*al
u2=in+0=al

u3=4*in+0=4%al
After clock pulse:

t1=inl=4al

12=2al

—
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13=al

t4=4al
Second symbol a2 entered:

in=t4+a2=4al+a2
inl=4*in=4*4q1+4*a2
ul=2*in+t1=2(4al+a2)+4al
u2=in+12=(4al+a2)+2al
u3=4*in+13=4*(4al+a2)+al

After the clock pulse:
t1=in1=4*(4al+a2)
2=ul=(2*(4al+a2)+4al)
13=u2=(4al+a2)+2al
t4=u3=(4*(4al+a2)+al)

Third symbol a3 entered:
in=t4+a3=(4*(4al+a2)+al)+a3
inl=4*in=4*((4*(4al+a2)+al)+a3)
ul=2*in+r1=2*((4*(4al+a2)+al)+a3)+4*(4al+a2)
u2=in+12=(4*(4al+a2)+al)+a3+(2*(4al+a2)+4al)

u3=A*in+13=4*((4*(4al+a2)+al)+a3)+(4al+a2)+2al

The result [in]l ul u2 u3] is the remainder achieved by the
Galois configuration. It should be noted that the +° function
is provided by fp and the * or multiplication by ‘mul’. Due to
the fact that addition with 0 does not affect the result and
multiplication by 0 is 0 one can actually apply Galois arith-
metic to these equations. One can also combine addition with
the multipliers and create single functions that are reversible.
The same approach can be used for creating the equation
set for the Fibonacci configuration. In the Fibonacci configu-
ration as shown in FIG. 4 the shift register will contain the 3
data symbols as [s3 s2 s1]. The configuration has to run for 4
cycles to generate the 4 overhead symbols. This can be
described by the following equation set. Before first pulse:

sl=a3
s2=a2
s3=al
1=5%s3+3%s2=5al+3a2

bl=t+4%s1=5al+3a2+4a3
After a clock pulse:

s1=b1
s2=a3
s3=a2
1=5%s3+3%52=5a2+3a3

b2=1+4%s1=5a2+3a3+4b1
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After next clock pulse

s1=5b2
s2=b1
s3=a3
t=5a3+3b1

b3=5a3+3b1+4b2
After next clock pulse

s1=b3
§2=b2
s3=b1
1=5bh1+3b2

b4=5b1+3b2+4b3

It should be clear that once one knows what the information
symbols [a3 a2 al] are, one can calculate the overhead sym-
bols [b4 b3 b2 bl] from the expressions, without actually
running an LFSR. If one so desires one can actually store the
relevant codewords in a memory and use the information
symbols for example as a memory address. This applies to
actually all LFSR generated symbols or words and not only to
the (7,3) code which is used as an illustrative example. It is
assumed that sometimes LFSR generated symbols or words
are pseudo-random which some may interpret as the words
being undetermined until generated. However it should be
clear that LFSR generated symbols are deterministic.
Galois Field Arithmetic

In the earlier cited provisional patent application Ser. No.
11/739,189 it was shown that reversing functions can be used
to reconstruct the symbols. This will be repeated here again as
one embodiment for RS-code reconstruction. However as
another embodiment one may also apply Galois Field Arith-
metic. To those skilled in the art it should be clear that opera-
tions such as replacing subtraction by addition and division
by multiplication etc depend on the Galois Field and have to
be determined accordingly. However the principles are the
same for extended Galois Fields and can be extended to any
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Second rule: The reverse of fp is the function itself. Or the
function fp is self-reversing. Or again in the terms of arith-
metic of this GF(2?): c=a+b—a=c—-b or a=c+b=b+c.

Third rule: Dividing by a factor o is identical to multiplying
by a factor f§. In fact multiplying a variable x by a constant o
in the GF(2?) is identical to inverting the variable x=[0 1 23
4 5 6 7] by the inverter representing the factor a.. Assume that
a=5. In the multiplier this means the row representing o=5 in
multiplier truth table ‘mul’; or the inverter [0 567 12 3 4].
Dividing by 5 in the GF(2*) is multiplying by p=5"". In that
case a*B=5*5"'=1. Or in terms of inversion one may con-
clude that the inverter represent P=5"" in the GF(2*) should
reverse the inverter representing a=5. One can easily check
that the reversing inverter is then =4 or [04 567 1 2 3]. The
following table shows the division table ‘div’ as the inverse to
‘mul’ in the GF(2%).

c b
div 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
a 2 0 7 1 2 3 4 5 6
3 0 6 7 1 2 3 4 5
4 0 5 6 7 1 2 3 4
5 0 4 5 6 7 1 2 3
6 0 3 4 5 6 7 1 2
7 0 2 3 4 5 6 7 1

Or: 171=1; 271=7; 371=6; 471=5; 571=4; 671=3; 77'=2

Fourth rule: The fp and mul functions are distributive: or
a*(b+o)=a*b+a*e

Fifth rule: The function fp is associative: or
a+(b+c)=(a+b)+e

Sixth rule: the functions fp and mul are commutative: or
a+b=b+a and a*b=b*a.

In the above + is set equivalent with fp and * with mul.

For convenience the following relations are provided in the
GF(2%). One can check these relations by applying the truth
tables:

x+x=0

X +2x=4x
X+3x=7x
X +4x=2x
X +5x=6x
X+ 6x =5x
X+ 7x=3x

2x +3x =5
2Xx +4x =%
2x + 5x =3x
2x + 6x =T7x
2x + 7Tx = 6%

3x +4x = 6x

3x+5x=2x 4x+5x=7x

3x+6x=4x 4x+6Xx=3x 5x+6x=X

3x+7x=X 4x+7x=5x 5x+7x=4x O6x+7x=2x

GF(q) or GF(2™). Some operations, such as an addition being
self reversing only applies in extended GFs.

One approach is to solve the equations for the Galois con-
figuration. Another approach is to solve the equations for the
Fibonacci configuration. The results are identical. One can
easily check this by running both coders and comparing the
results.

The following will provide rules for arithmetic in GF(2*)
using the definition of ‘fp’ for addition and ‘mul” for multi-
plication as shown in the respective truth tables. There are
several rules that can be derived from the truth tables.

First rule: For every x (wherein X is a variable that can have
one of 8 states) ‘x fp x=0’. Or fp(x,x)=0. Or, to use the terms
of +, * and +x+x=0 in this GF(2%).

55

60

65

One can make a similar table for multiplications.

2%2=3

2*%3=4 3%3=5

2*%4=5 3%4=6 4%*4=17

2*%5=6 3%5=7 4*5=1 5%*5=2

2*%6=17 3%6=1 4*6=2 5*%*6=3 6*6=4

2*%7=1 3%7=2 4*7=3 5*7=4 6*7=5 7T*7=6

It is an advantage of addition functions over GF(q=2")
with m=2 that x+x=0 for any of the GF(q) fields. That makes



US 8,103,943 B2

11

arithmetic over GF(q=2"") relatively easy, as addition is then
a self-reversing function that is associative.

An example according to one aspect of the present inven-
tion of reconstructing the symbols in an (7,3) RS-code with
errors using error assumptions and applying the GF arith-
metic rules on the Fibonacci equation set will be provided
next.

The simplest error-occurrence is when the two errors
appear in [b4 b3 b2 b1] and [a3 a2 al] has no errors. The error
situations then can be:

[b4 b3 e2 el a3 a2 al]

[b4 e2 el bl a3 a2 al]

[e2 el b2 bl a3 a2 al]

One can address this situation by calculating [b4 b3 b2 b1]
from the equations. Comparing the calculated word can pro-
vide the following situations:

1. 5 or more symbols between the calculated and original
word are identical in identical positions. In that case the
calculated word is the correct word and [a3 a2 al] are the
correct information symbols

2.lessthan 5 symbols are identical. In that case there are more
than 2 errors (this violates the assumption of at most 2 errors)
or the errors occurred in at least one different place than
assumed.

It is next assumed that the errors occur in bl and a3 or the
codeword is [b4 b3 b2 el e2 a2 al]. Earlier the equation was
determined for calculating b4 in Fibonacci configuration (not
having errors) by b4=5b1+3b2+4b3. In this case b1 is in error.
One can then calculate b1 from:

5b1 = b4 +3b2 + 463 to

bl=5"ubd+ 57 w3ub2+ 5 wdu b3
=4xbd +4+3+b2+4%4+b3

=4b4 + 662 + 763

One can exhaustively test the above expression. One
example would be to use the 8-valued word [al a2 a3]=[0 6 7].
One may use either the Galois configuration of FIG. 3 with
initial shift register or the Fibonacci configuration of FIG. 4
with initial shift register [a3 a2 al]=[7 6 0] to create the
RS(7,3) codeword [al a2 a3 b1 b2 b3 b4]=[06 7 72 6 2].
Substituting the values of [b2 b3 b4] in the equation b1=4b4+
6b2+7b3 will generate the calculated value b1=7.

The next step (as a3 was assumed also to be in error) is to
calculate a3 from symbols in the RS(7,3) codeword which are
assumed to be correct. For example one can use: b3=5a3+
3b1+4b2 to solve a3. However one can only execute this
expression after b1 was calculated. Ifit is required to calculate
bl and a3 in parallel one may use the earlier equation for
calculation of bl. For the illustrative example it may be
assumed that b1 is first calculated. This can then be followed
by: 5*a3=b3+4*b2+3*b1 (working under + is fp and * is mul)
and a3=5""%b3+57 *4¥b2457 1 ¥3%h | =4¥h3+4*4%b2+
4*3%b1=4b3+7b2+6b1. Using Galois arithmetic this will
generate a3=7.

After calculating b1 and a3 one then should compare the
calculated codeword with the original codeword with errors.
Ifin comparing the calculated and original codewords have at
least 5 symbols in like positions in common, the calculated
codeword is the correct codeword and [al a2 a3] wherein a3
was reconstructed is then the correct set of information sym-
bols.
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One may repeat this approach when a3 and a2 or a2 and al
arein error. However when one may assume that [b1 b2b3 b4]
was error free one can directly calculate [a3 a2 al] using the
reversed equations as shown before.

It is also possible to use the methods according to one
aspect of the present invention to correct non-adjacent errors.
The correction of adjacent errors has been shown as an illus-
trative example of RS error correction according to one aspect
of the present invention. Because errors are adjacent one can
use equations wherein just one of the assumed errors will
participate. Solving the problem is then just solving an equa-
tion with one variable. To show a wider applicability of
aspects of the present invention assume two errors that are
separated by an error-free symbol, for instance assume the
original codeword [b4 b3 €2 bl el a2 al] wherein b2 and a3
are assumed to be in error.

Use the following two earlier equations from the Fibonacci
(7,3) coder to solve this problem:

b3=5a3+3b1+4b2 and

b2=5a2+3a3+4b1.
One can rewrite the equations as:

0+5a3+351+452+53=0 (rs-1) and

S5a2+3a3+4b1+b2+0=0. (rs-2)

The problem of solving a3 and b2 can be done in the normal
way, adjusted for the rules for + and * in the present Galois
Field.

How to use the equations in matrix form in limited form for
the illustrative example is shown in the following tables. First
one solves the equations for b2 by eliminating a3. One can do
that by multiplying equation (rs-1) by 3 and (rs-2) by 5. One
can achieve the same by multiplying (rs-2) with a factor § so
that $*3=5. This can be achieved with $=3. This is shown in
the following table:

a2 a3 bl b2 B3 *

0 5 3 1 1

5 3 4 1 0 3
+

0 5 3 4 1

7 5 6 3 0

7 0 4 6 1 +

a2 a3 bl b2 b3 *

0 5 3 4 1

7 5 6 3 0

7 0 4 6 1 +

2 0 6 1 3 /6=%*3

Accordingly b2=2a2+6b143b3=2%6+6*7+36=7+5+1=2.
One has to execute a similar process to eliminate b2:

a2 a3 bl b2 b3 *
0 5 3 1 1
5 3 4 1 0 4

+
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-continued
a2 a3 bl b2 b3 *
0 5 3 4 1
1 6 7 4 0
1 1 1 0 1 +

Accordingly a3=a2+b1+b3=6+7+6=7.

It should be clear to those skilled in the art that one can use a
matrix representing the equations for generating the (p.k)
code for instance in Fibonacci form to solve equations for
different error situations. Such a matrix method, as shown in
the illustrative example also does not require for the errors to
be adjacent.

Reversing Functions Methods

Galois Field methods as presented here in error correction
methods as one aspect of the present invention rely upon
certain aspects of Galois Field arithmetic and allow to be
manipulated in matrix format. However this is a convenience
factor that is not really required. The reason for that is that as
demonstrated in earlier inventions by the inventor such as in
earlier cited patent application Ser. No. 10/935,960 that a
reversible n-valued two input/single output logic function
with reversible n-valued inverters at inputs and/or at the out-
put can be combined into single n-valued reversible logic
functions with no inverters. Accordingly the RS codeword
generators as shown in FIG. 3 and FIG. 4 are equivalent to the
Galois and Fibonacci codeword generators as shown in FIG.
5 and FIG. 6. In FIG. 5 the Galois configuration of replaces
multipliers and adders fp of FIG. 3 by Galois configuration
reversible 8-valued functions fgl, fg2 and fg3. The function
fp at the input of the coder remains and so does the multiplier
m=4. In FIG. 6 the two functions fp and the three multipliers
of FIG. 4 have been replaced by the two reversible 8-valued
functions {f1 and ff2. For illustrative purposes creating the
reversible equations will be limited to the Fibonacci configu-
ration of FIG. 6. It should be clear that the reversing can also
be applied to the Galois configuration of FIG. 5.

The following equations apply to the Fibonacci configura-
tion of FIG. 6 to generate the codeword [b4 b3 b2 bl a3 a2 al |
when starting with content [a3 a2 al] in the shift register.
t=a2 {12 al
bl=a3 ffl t
Next cycle:
t=a3 {2 a2
b2=b1 ffl t
Next cycle:
t=bl {2 a3
b3=b2 ff1 t
Next cycle:
t=b2 {2 bl
b4d=b3 ffl t
The variable t provides an intermediary value for the next step
in determining a new output value.

For example assume that an RS(7,3) codeword [b4 b3 b2
bl a3 a2 al] has two adjacent errors so that symbols bl and a3
are in error. The last equations can be applied to solve bl and
assuming that symbols b4, b3 and b2 are correct. The follow-
ing rules apply: ffl and {f2 are reversible, possibly they are
not commutative. Further more in an equation a ff b, the
function {f can be represented by a truth table wherein ‘a’
indicates a row in the truth table and ‘b’ represents a column.
Accordingly if ‘c=a ff b’ then ‘b=a ffrc ¢’ and ‘a=c ffr b’.
Herein “ffrc’ represents the reversing truth table of ‘ff> over
the columns and ‘ffrr’ represents the reversing truth table of
‘ff” over the rows.
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With that “b4=b3 {f1 t’ provides ‘t=b3 fflrc b4’. And ‘t=b2
ff2 b1’ provides ‘b1=b2 ff2rc t’. Calculating t from ‘t=b3 fflrc
b4’ and substituting into ‘b1=b2 ff2rc t’ will provide the value
of bl under the present assumptions. One can in a similar
fashion determine the value of a3 and generate a calculated
codeword. One should then compare the calculated codeword
with the original codeword. If the calculated and the original
(7,3) codewords have at least 5 symbols in like positions in
common then the calculated codeword is the correct code-
word and the calculated a3 together with the original a2 and
al are the correct information symbols.

One can repeat the methods here provided with single
reversible n-valued logic functions for any of the assumptions
of' symbols in [b4 b3 b2 b1 a3 a2 al] being in error within the
constraints of a (7,3) Reed-Solomon code. While the initial
effort appears to be different from using Galois arithmetic, it
should be clear that both methods will lead to identical
results. The difference may be that the Galois expressions
may be simplified and may be comprised of fewer expres-
sions. However in achieving the correct reconstruction there
is no difference.
7-Valued Examples

For illustrative purposes the two methods: error correction
in RS(p.k) by reconstructing symbols by Galois arithmetic
and by reversing functions will be applied to a 7-valued
RS(6,2) code. The 7-valued RS(6,2) codeword has 6 7-valued
symbols of which 2 are 7-valued information symbols. With
this code one can correct up to two errors.

The following truth table shows the 7-valued function fp
representing an addition in GF(7).

p 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

This function is created from the modulo-7 addition.
The following truth table shows the 7-valued function ‘mul’
representing a 7-valued multiplication in GF(7).

=3
—
S}
w
N
w
=N

mul

AU A W RO
cooco0o00OO
AU A W RO
MW RNOD
DU WO
WA U~ AO
NBR OV WO
—RNWR U O

The function ‘mul’ is created from the modulo-7 multiplica-
tion. The functions are distributive and associative.

The following truth table shows the 7-valued function ‘div’
representing a 7-valued division.

div 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6
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-continued -continued
div. 0 1 2 3 4 5 6 minc 0 1 2 3 4 5 6
2 0 4 1 5 2 6 3 2 5 6 0 1 2 3 4
3 0 5 3 1 6 4 2 5 3 4 5 6 0 1 2 3
4 0 2 4 6 1 3 5 4 3 4 5 6 0 1 2
5 0 3 6 2 5 1 4 5 2 3 4 5 6 0 1
6 0 6 5 4 3 2 1 6 1 2 3 4 5 6 0

From the functions ‘mul’and ‘div’ one can see that dividing
by a number is identical to multiplying by a number. For
instance x/3=5%x. or 37'x=5%x. Further more multiplication
and addition are commutative in GF(7). For illustrative pur-
poses the following tables of addition and multiplication in
GF(7) are provided.

X+X=2X

X +2x=3x

X+3x=4x 2x+3x=5x

X+4x=5x 2x+4x=06x 3x+4x=0

X+5x=6x 2x+5x=0 3x+5x=%x 4x+5x=2x

X+6x=0 2Xx+6x=X 3X+06X=2x 4x+6x=3x Sx+06x=4x

One can make a similar table for multiplications in GF(7).

2%2=4

2%3=6 3%3=2

2%4=1 3%4=5 4%4=2

2%5=3 3*¥5=1 4%5=6 5*%5=4

2%6=5 3%6=4 4%6=3 5%6=2 6%6=1

The following truth tables show the reversing functions for
fp. It is clear that fp is not self reversing as in the 8-valued
example. Accordingly the 7-valued function has two revers-
ing functions: one over the rows and one over the columns of
the truth table of fp. The expression c=a+b can be considered
as a function with two inputs: ‘a’ and ‘b’. The variable ‘a’
represents the row of the truth table and ‘b’ the columns. One
can then write c=fp(a,b). Because fp is commutative this
would generate the same result as fp(b,a). However in dealing
with the reversing function it is important to keep track of the
order of ‘a’and ‘b’. First the reversing function ‘minr’ will be
determined over row ‘a’. In formula: when c=f(a,b) then
a=minr(c,b). This generates the following truth table:

minr 0 1 2 3 4 5 6
0 0 6 5 4 3 2 1
1 1 0 6 5 4 3 2
2 2 1 0 6 5 4 3
3 3 2 1 0 6 5 4
4 4 3 2 1 0 6 5
5 5 4 3 2 1 0 6
6 6 5 4 3 2 1 0

The reversing function ‘minc’ of fp over the columns is
determined by: when ¢ fp)(a,b) then b=minc(a,c) with the
truth table of ‘minc’:

mine 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 6 0 1 2 3 4 5
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The functions ‘minr’ and ‘minc’ (which are subtractions)
are not associative, but they are distributive for both ‘mul” and
div’.

FIG. 9 shows the Fibonacci configuration of the Reed-
Solomon or RS(p,k) code generator for 7-valued symbols.
The RS coder is a RS(7,3) coder with 7 symbols of which 3
are the information symbols. A codeword according to this
RS(7,3) coder is generated by initiating the shift register with
the 3 information symbols and generating 4 additional sym-
bols by the LFSR of FIG. 9. It should be clear that one may
also create 7-valued RS codewords generated by an Galois
configuration, of which an illustrated example will be pro-
vided next.

Each codeword thus generated will have 7 7-valued sym-
bols. Each of the possible 7#7%7=343 codewords has only 2
symbols in common in like positions of any other codeword.
One way to find the correct configuration is by running all
possible values for the multipliers and check if the generated
codewords meet the requirement of having only 2 symbols in
common. One configuration that will work has the multipliers
[1 2 6] as shown in FIG. 9. The requirement of 2 symbols is
needed to enable the correction of up to 2 errors in a code-
word.

The following equations apply for generating a codeword
[b4 b3 b2 bl a3 a2 al] with the coder of FIG. 9 with initial
content [a3 a2 al]. In the following equations ‘fp’ is the same
as ‘+” and ‘mul’ is the same as
Generate symbol bl:

1=2%a2+6%al; or t=fp(2a2,6al)

bl=a3+t; or b1=fp(a3,t)

The notation fp(a3,t) may be more convenient for determin-
ing a reversing function. Generate symbol b2:

1=2%a3+6%a2

b2=bl+t
Generate symbol b3:

1=2%b1+6*a3

b3=b2+t
Generate symbol b4:

1=2%b2+6*b1

bA=h3+1

Using the arithmetic rules of GF(7) one can reconstruct the
symbols in error applying pre-set assumptions and by con-
sidering all relevant assumptions. Because the code is an
RS(7,3) code one can reconstruct 2 errors. For instance
assume that ‘b1’ and ‘a3’ as adjacent symbols are in error.
This means that it is assumed that ‘b4’, ‘b3’, ‘b2’, ‘a2’ and
‘al’ are not in error. There are different ways to solve this
problem. As an illustrative example the following steps are
used:

1=2%b2+6*b1

bA=b3+t
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So: b4=fp(b3,1) or =minc(h3,b4).

t=2b2+6b1 or 6b1=minc(262,)

Dividing by 6 is multiplying by 6 or b1=6*minc(2b2,t).
For a3 the following is applied:

1=2*b1+6%a3
b3=b2+t
b3=fp(b2,f) or t=minc(h2,53)

t=fp(2b1,6a3) or 6a3=minc(2b1,t) or a3=6*minc(2b1,
0.

A valid codeword generated by the RS(7,3) coder of FIG. 9 is
[b4 b3 b2 bl a3 a2 al]=[13 02 1 4 0]. Applying this to the
above equations will generate:
For bl: t=minc(3,1)=5
b1=6*minc(2*0,5)=6*minc(0,5)=6*5=2 (all in GF(7)).
Applying b1=2 to calculating a3:
t=minc(b2,b3)=minc(0,3)=3,
a3=6*minc(2b1,t)=6*minc(2%2,3)=6*minc(4,3)=6*6=1.

This confirms that b1 and a3 can be reconstructed from the
other symbols. The Galois arithmetic method can also be
applied to reconstruct assumed symbols in errors. The here
provided example is intended to be illustrative to this method.
One skilled in the art should be able to apply the method to
other error assumptions as well to all other (p,k) Reed-So-
lomon codes.
A 7-Valued Galois Configuration

One can use the Galois configuration RS coder as provided
in FIGS. 7 and 8 for a 7-valued example. In this example all
functions and multipliers are 7-valued. The shift register ele-
ments can store and shift 7-valued symbols. All functions fp,
fgl, fg2 and fg3 are the 7-valued function fp or adder over
GF(7) as provided earlier. The multiplier 4 is the 7-valued
multiplier 4 over GF(7) and was also provided earlier in a
truth table. The following relations hold between the infor-
mation symbols [al a2 a3] and the check symbols [b1 b2 b3
b4] generated by the coder of FIGS. 7 and 8:

bl=al+4a2+4a3
b2=6al+5a2+a3
b3=2a2+a3

b4d=4al+2a2+a3

One may check that all words [al a2 a3 bl b2 b3 b4]
generated with the 7-valued coder have at most 2 symbols in
common in like positions, so each codeword meets the
requirements of the RS-code.

From the above it should be clear that it is not really
required to apply an LFSR to generate a codeword. One may
also evaluate the n-valued expressions using the available
information symbols to generate the check symbols as an
aspect of the present invention. It should be clear that by using
the earlier provided dividers (which by themselves are mul-
tipliers) one may solve above equations for assumed errors.
For instance assuming that al and bl are in error: from
b2=6al+5a2+a3 one may determine: al=6""(b2—(5a2+a3))

Using valid codeword [6 6 6 5 2 4 0] one can determine
from the above expression that al is indeed 6. One can deter-
mine the appropriate codeword from a set of calculated error
corrected codewords by comparing a calculated codeword
with a received codeword. If the calculated codeword and the
received codeword have at least 5 symbols in common in like
positions then the calculated codeword is a correct codeword
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and the information symbols in the calculated codewords are
the correct information symbols.

For completeness the method of reversing functions, not
using multipliers or n-valued inverters will also be illustrated.

As shown in previous inventions by the inventor such as in
the earlier cited U.S. patent application Ser. No. 10/935,960,
which is incorporated herein by reference, it is possible to
reduce a 2 input/single output n-valued function with n-val-
ued multipliers or inverters at its inputs by a single 2 input/
single output logic function having no inverters or multipli-
ers. The equivalent Fibonacci configuration of the RS(p,k)
code generator of FIG. 9 is shown in FIG. 10. The function fp
(902 in F1G. 9) with multipliers 2 (908) and multiplier 6 (909)
can be reduced to a single function fp26. The truth table of this
7-valued function is provided in the following truth table.

fp26
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The equivalent coder to the coder of FIG. 9 is shown in FIG.
10. The function {p26 1002 in FIG. 10 replaces function 902
and multipliers 908 and 909. The function fp26 is non-com-
mutative so one should be careful in maintaining the correct
order of inputs. For this function the rule is that of two inputs
the right input (coming from the last shift register element in
this) determines a column of the truth table.

The function fp 901 in FIG. 9 remains fp 1001 in FIG. 10 as
the multiplier is a factor 1.

The following equations apply for generating [b4 b3 b2 bl
a3 a2 al] with the coder of FIG. 10 when the initial state of the
shift register is [a3 a2 al].

For generating b1:

1=fp26(a2,al)

bl=fp(a3,?)

For generating b2:

1=fp26(a3,a2)

b2=fp(b1,9)

For generating b3:

=fp26(b1,a3)

b3=fp(b2,0)

For generating b4:

=fp26(b2,b1)

ba=fp(b3,1)

Assume again that of [b4 b3 b2 b1 a3 a2 al] the symbols bl
and a3 are in error. Accordingly one has to calculate the
elements bl and a3 using the assumed to be correct symbols
b4, b3, b2, a2 and al.

For calculating b1l one may use:

=fp26(b2,b1)

ba=fp(b3,1)
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From the last equation one may determine:

t=tprc(b3,b4). Herein “fpre’ is the reverse of function fp over
the column, which is identical to the previously developed
function ‘minc’.

From t=fp26(b2,b1) one may then calculate: b1={p26rc(b2,t),
wherein ‘fp26rc’ is the reverse of function ‘fp26° over the
column. The truth table of “fp26rc’ is shown in the following
truth table.

fp26rc 0 1 2 3 4 5 6
0 0 6 5 4 3 2 1
1 2 1 0 6 5 4 3
2 4 3 2 1 0 6 5
3 6 5 4 3 2 1 0
4 1 0 6 5 4 3 2
5 3 2 1 0 6 5 4
6 5 4 3 2 1 0 6

The truth table of fp26rc is identical to fp26. This means that
fp26 is self reversing over the columns. This can be easily
verified because all the rows of {p26 are self reversing 7-val-
ued inverters.

Using the earlier [b4 b3 b2 bl a3 a2al]=[1302 14 0] will
create: t=fprc(b3,b4) or t=minc(3,1)=5; and b1==fp26rc(b2,
)=fp26rc(0,5)=2. This of course agrees with the actual value
of b1=2.

For calculating a3 one can use:

=fp26(b1,a3)

b3=fp(b2,1)

Or t=minc(b2,b3)=minc(0,3)=3. And
(b1,t)=tp26rc(2,3)=1. This is also correct.

One may repeat determining the calculated codewords
under different assumptions of errors and compare these
words with the original codeword. A calculated codeword
with 5 or more symbols in common with the original code-
word is the error corrected codeword. The methods of error
correction by symbol reconstruction here provided according
to different aspects of the present invention work for any
Reed-Solomon code. One may either apply Galois arithmetic
or reversing function methods.

The above method using reversing functions appears to be
similar as the one using Galois arithmetic. However in case
one uses reversible inverters in FIG. 9 which are not Galois
Field multipliers the Galois arithmetic method may not work.
One has to check if inverters and functions have distributive
properties. One can still create reversible functions that will
eliminate the inverters and will create a reduced configuration
such as is shown in FIG. 10. Of course FIG. 10 is an illustra-
tive example, and one can use a different n-valued logic, a
different length shift register and different functions.

It should further be clear that the here provided reconstruc-
tion methods according to one aspect of the present invention
will work for any Reed-Solomon (p.k) or RS(p.k) code. The
method of error-correcting symbols in a Reed-Solomon code
of'p symbols from k information symbols is shownin FIG. 11.
The method starts at 701, after one checks the codeword
rse(p.k) against a codeword RS(p,k) generated from the first
k symbols of the codeword rse(p,k). If rse(p,k) and RS(p.k)
are not identical then errors are present in rse(p.k). If rse(p,k)
and RS(p,k) differ in (p-k)/2 symbols but the first k symbols
of both codewords are identical then one may use these k
symbols as the correct information symbols.

If the procedure enters at 701 one has detected errors of
which at least one occurs in the information symbols. In step

a3=fp26rc
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702 one makes an assumption about the occurrence of the
errors. This depends on the known distribution of the errors,
forexample is it known that errors occur in adjacent positions.
Based on the length ofa codeword one may also make ‘smart’
assumption about the errors. For instance errors may occur if
adjacent at the beginning or end of a codeword. By making
several assumptions one may limit the maximum number of
cycles to reconstruct a codeword.

Based on the assumptions one can then reconstruct the
symbols that were assumed to be in error by applying either
the Galois arithmetic or the reversing logic functions from the
symbols that are assumed to be error free in step 703. From
those reconstructed symbols one can then create the recon-
structed codeword rrs(p,k) in step 704. In step 705 one should
determine the symbols in words rse(p,k) and rrs(p.k) in like
positions to be identical.

In step 706 one determines if the number of identical sym-
bols inlike positions in rse(p,k) and rrs(p.k) is equal or greater
than k+(p-k)/2. If the answer is yes one has then successfully
reconstructed RS(p,k) for rse(p,k) and one can determine the
k error-free information symbols in 708. If that is not the case
then the assumption on the errors was wrong and in 707 one
should assume a new combination of errors in rse(p.k) and
repeat the process.

In order to speed up the process one can create a system or
a solution wherein all possible error combinations are evalu-
ated in parallel. This is shown in FIG. 12. The elements of a
received Reed-Solomon codeword with errors rse(p,k) are
provided to p different units covering all relevant error com-
binations to generate all relevant reconstructed codewords
ranging from rrs1(p,k) in 802 to rrsp(p.k) in 803. Within the
constraints of the errors and the codewords at least one of the
units will generate a codeword rrs(p,k) that has at least k+(p-
k)/2 symbols in common with RS(p.k) in like or correspond-
ing positions. There may actually be more than 1 codewords
rrs(p.k), however they all will be identical. They appear at the
outputs 804 to 805. All other outputs may generate for
instance a signal O.

In the earlier patent application Ser. No. 11/739,189 it was
shown how truly cyclical codes can be generated by first
generating an n-valued pseudo-random sequence (based on
words of p n-valued symbols) and by extending each word by
additional symbols generated by the method of the generated
pn-sequence. For convenience this method of generating a
codeword of p n-valued symbols of which k symbols are
information symbols will be called a pn(p.k) method. This
method is different from generating a RS(p.k) codeword for a
Reed-Solomon code.

Generating pn(p,k) words in a Fibonacci configuration can
be a continuous process. One may so to speak take for
instance n consecutive symbols out of the n-valued sequence.
If one uses the correct generating method as described in
patent application Ser. No. 11/739,189 then one will gener-
ally find that each word of the selected pn(p,k) method has at
most k symbols in common with each other pn(p,k) code-
word. When (p-k)Z2*t+1 then one can error-correct without
ambiguity t occurring errors.

An RS-code is comprised of a plurality of code-words;
each codeword is comprised of a plurality of symbols. The
symbols in general are n-valued, but are coded in binary
symbols. Alternatively binary signals may be divided into
series of binary words, wherein each binary word is com-
prised of more than 1 bit. A binary sequence may then be
interpreted as representing a word comprised of a plurality of
n-valued symbols.
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Extending Error Correction for Reed Solomon Codes

The theory of Galois Field arithmetic is known to persons
skilled in the art and does not need further explanation. The
RS codes are usually written as (p,k) wherein n is the total
number symbols in a word and k is the number of information
symbols. In the present invention the letter n will be used for
the radix or base of'a logic. The letter p will be used to indicate
the total number of symbols in a code word. There are k
information symbols in a (p.k) code. Consequently there are
(p-k) symbols that can be used to detect and/or correct errors.
In essence the remainder that is attached to a code-word is an
extension of the word formed by the information symbols so
that the new word has an increased distance to all other valid
code-words.

An important element of Reed-Solomon (p,k) error cor-
recting coding is that each (p,k) codeword has at most (k-1)
symbols in common with another codeword. (For efficiency
reasons it is assumed that (p-k) is an even number.) That
means that the distance of two codewords is (p—k+1). Assum-
ing that (p—k)/2 errors have occurred that will create symbols
in common the remaining distance is (p—k+1)-(p-k)/2. Italso
means that a codeword in error and its calculated correct
codeword should at most differ only by (p-k)/2 symbols.
Accordingly they have at least (p—(p-k)/2) symbols in com-
mon. Under assumption of (p-k)/2 errors one can then find
the correct codeword by comparing the codeword in error
with all possible (p,k) codewords. This is clearly not attractive
for an Reed-Solomon (p.,k) with a large number of code-
words. Because the way Reed Solomon codes are constructed
one has to first generate each codeword, or generate it and
store it in order to make the comparison. Certainly for a
smaller number of (p,k) codewords this method of comparing
with all possible codewords can be potentially used.

As was stated before one can not create all RS codewords
by starting with a single series of information symbols. While
this is possible for the pn(p,k) method as shown in patent
application Ser. No. 11/739,189, this does not work for RS
codes. The advantage is that RS codewords have a “one
symbol advantage” over pn(p.k) codes. It is another aspect of
the present invention to extend the reach of the RS code in
number of symbols. One can actually let the RS coder run for
additional clock cycles and generate additional overhead
symbols. Unfortunately in that situation the RS code in gen-
eral loses its “one symbol advantage™ as each codeword of the
extended RS code usually has at maximum k symbols in
common with each other codeword, rather than (k-1). This
lowers the distance between codewords. However on the
positive side the extended RS(p.k) code is no longer limited
by the fact that p<n where n is the radix of the used symbol or
of the n-valued logic. These codes were the subject of appli-
cation Ser. No. 11/739,189.

Another extension is that one can actually generate RS
codes that are RS(p+1,k) codes. Or in other words the code-
words in these codes have for many codewords k-1 of (p+1)
symbols in common. That means that one may sometimes
actually correct up to 1+(p-k)/2 errors. One example for
instance is a (8,3) 7-valued code generated with the generator
of FIG. 9 with 7-valued multipliers 1, 4, and 5. The codewords
thus generated at max only have 2 symbols in common.
Non Traditional Galois Field Reed Solomon Codes

It is another aspect of the present invention to extend the
use of RS codes by using reversible inverters instead of mul-
tipliers. In most cases these inverters will not create a Galois
Field, however they will create an RS (p,k) code of which a
codeword has at most (k-1) symbols in common with another
codeword. Galois Field arithmetic can then not be applied to
reconstruct symbols in error. It should be clear that the
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method of reconstruction by the method of reversing func-
tions which is one aspect of the present invention can be used
for error correction in this case. The use of a reversible
inverter that is not a Galois Field multiplier still leads to a
reversible logic function according to the earlier cited patent
application Ser. No. 10/935,960. This will be illustrated with
the following 7-valued example.

The following 7-valued reversible inverters will be intro-
duced:
mul(8,:)=[2 10654 3]
mul(12,:)=[6543210]
It should be understood that these inverters are from a list of
7! possible reversible 7-valued inverters. The numbers 8 and
12 are indicators and are of course not 7-valued numbers. One
(7,3) Reed Solomon coder in Fibonacci configuration has the
multipliers or inverters [2 2 12] and also using the 7-valued
function fp. The 7-valued multipliers 0 to 7 were shown
earlier in the truth table ‘mul’. The RS coder in LFSR with
multipliers/inverters is shown in FIG. 13. As before one can
reduce the combination of inverter/function by a single func-
tion, in this case fp21 and fp212. The truth tables are provided
in the following tables. The LFSR with the equivalent func-
tions is shown in FIG. 13a.

p21 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 2 3 4 5 6 0 1
2 4 5 6 0 1 2 3
3 6 0 1 2 3 4 5
4 1 2 3 4 5 6 0
5 3 4 5 6 0 1 2
6 5 6 0 1 2 3 4
p212 0 1 2 3 4 5 6
0 6 5 4 3 2 1 0
1 1 0 6 5 4 3 2
2 3 2 1 0 6 5 4
3 5 4 3 2 1 0 6
4 0 6 5 4 3 2 1
5 2 1 0 6 5 4 3
6 4 3 2 1 0 6 5

For illustrative purposes the following table shows 10 3 sym-
bol words coded as a (7,3) RS word and also as an (8,3) word
by extending the word with 1 symbol.

al a2 a3 bl b2 b3 b4 b5
0 0 1 1 3 6 2 5
1 0 1 0 1 0 1 0
2 0 1 6 6 1 0 2
3 0 1 5 4 2 6 4
4 0 1 4 2 3 5 6
5 0 1 3 0 4 4 1
6 0 1 2 5 5 3 3
0 1 1 3 6 2 5 0
1 1 1 2 4 3 4 2
2 1 1 1 2 4 3 4
3 1 1 0 0 5 2 6

One can check that each word has only 2 symbols in com-
mon in like positions.

Another example is wherein the multipliers [1 4 8] are
used. One then applies the configuration of FIG. 13 with
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multipliers [2 2 12] from the 7-valued function ‘mul” now
replaced by [1 4 8]. This configuration can also be reduced to
using only functions and no multipliers or inverters. For illus-
trative purposes the following table shows the (7,3) and (8,3)
10 codewords generated from the same 7-valued symbols
words [al a2 a3] as before but with a different coder.

al a2 a3 bl b2 b3 b4 b5
0 0 1 3 2 1 1 5
1 0 1 2 1 3 0 6
2 0 1 1 0 5 6 0
3 0 1 0 6 0 5 1
4 0 1 6 5 2 4 2
5 0 1 5 4 4 3 3
6 0 1 4 3 6 2 4
0 1 1 0 5 6 0 0
1 1 1 6 4 1 6 1
2 1 1 5 3 3 5 2
3 1 1 4 2 5 4 3

One can see that the codewords of both the (7,3) and (8,3)
code have only 2 symbols in common in like positions. The
codewords are different from the ones generated by using the
previous multipliers. The here generated codes are Reed
Solomon codes as they can be error corrected, if not with the
Galois Fields methods or other methods they can be corrected
with the reverse function method according to one aspect of
the present invention. It should be clear that the shown coding
methods using reversible inverters instead of Galois Field
multipliers can be applied to all n-valued (p.k) Reed-Solomon
type error correcting codes wherein p is prime or a number
achieved by raising a prime to a power m wherein m is a
positive integer.
Error Location

The here provided method of error location by assuming
symbols in error, calculating a corrected word and determin-
ing the number of symbols in common in like positions
between a received and a calculated corrected word is fastand
can be executed in parallel for all assumptions. Traditionally
the process of error correction in RS codes as provided for
instance in the earlier cited book of Lin and Costello on page
242-252 and may comprise the following steps:
1. Compute the syndromes
2. Determine the error-location polynomial
3. Determine the error-value
4. Evaluate the error-location and error-value
5. Correct the errors

A similar approach is also explained in the earlier cited
article of Bernard Sklar and should be familiar to one of
ordinary skill in the art. The fundamental background of the
ability to solve errors is that the error corrupted codeword
polynomial is a combination of the uncorrupted codeword
polynomial and the error polynomial. The uncorrupted code-
word polynomial is 0 for substituting the roots of a generator
polynomial. One can find the syndromes by substituting the
roots of the generator polynomial in the codeword polyno-
mial. From the syndromes one can create the error location
polynomial. By finding the roots of the error polynomial one
has identified the location of the errors. Related approaches
depending on syndrome calculations and error location poly-
nomials exist of which an example is the well known Berle-
kamp-Massey algorithm.

If one is looking for a maximum number of errors it may
actually be attractive to determine all relevant assumptions,
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calculate the related error calculated words and determine a
valid error corrected word, instead of calculating all syn-
dromes.

Another advantage is that location and corrected errors are
determined at the same time in the methods here provided.

To demonstrate that the error location methods of the prior
art can be used in the example the notation of the Sklar article
will beused. The coder is provided in FIG. 14. This is equiva-
lent to FIG. 9 on page 20 of the Sklar article. A signal [x3 x2
x1] is provided on input 1400, wherein the signal elements are
provided from the right to the left. The initial state of the shift
register is [0 00 0]. After entering [x3 x2 x1] the content of the
shift register is [b1 b2 b3 b4]. The gate 1403 is made non-
conducting after three clock cycles thus assumed to provide a
symbol 0 and the content of the shift register is shifted out on
output 1404 to output 1401 when a switch is set in the right
position.

Herein the elements of the extended binary field GF(8)
used are {0,0°, ', @, &, o*, &®, a°}. The relations between
elements of the field are provided by a primitive polynomial.
The + and x operations are defined by the truth tables of FIG.
15 and FIG. 16. The + operation is self reversing, commuta-
tive and associative. The + and x operations are also distribu-
tive. The division + or reverse of x is provided in the table of
FIG. 17. Of importance are the columns in FIG. 17 which are
the inverters of multipliers by a constant. It shows that the
inverse of multiplying by o is itself; the inverse of multiply-
ing by o' is multiplying by .%; the inverse of multiplying by
a? is multiplying by o”; the inverse of multiplying by o is
multiplying by o*; and of course the inverse of multiplying by
o* is multiplying by o, the inverse of multiplying by o is
multiplying by o and the inverse of multiplying by a is
multiplying by o

An aspect of the present invention is to provide the rela-
tionship between [bl b2 b3 b4] and [x3 x2 x1]. These rela-
tions are:

bl=a3x3+ax2+a’x1
b2=a'x3+ax2+a*x1
b3=a’x3+a%%2+a%1

ba=aPx3+a’x2+0%3

One can check by using [x3 x2 x1]=[a' o® &’] one will
generate [bl b2 b3 b4]=[a’ o a* a].

In the Sklar article an example is provided where the posi-
tion of 2 symbols in error are calculated from the roots of an
error location polynomial when x1 and b1 are in error. The
next step in the known method is to calculate an error value.

It is an aspect of the present invention to calculate the
correct symbol directly if it is known which symbols are in
error. First of all b1 is a check symbol. One may calculate bl
for further checking purposes. However x1 is an information
symbol and is really the critical symbol to solve. One may
solve x1 from different equations of b2, b3, b4. Once x1 is
solved one may solve bl.

Apply b2=a'x3+0°x2+0*x1. This equation can be rewrit-
ten as:
a*x1=b2+a'x3+0x2 because + is self reversing. The opera-
tions are distributive, thus: x1=(a*)~'(b2+a'x3+0x2) or
x1=0®(b2+a'x3+a%x2)=a’b2+a’a' %3+’ a’%2. By substi-
tuting x2=a.>, x3=a.* and b2=0.* and using the truth tables for
+ and x of FIG. 14 and FIG. 15 one finds that x1=c.>, which is
of course the correct answer.

Slightly more involved is a calculation wherein two of the
three information symbols are in error. However one skilled
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in the art can readily see that solving two equations with 2
unknowns can be easily achieved. For example assume that
x1 and x2 in the Sklar example are determined to be in error
by solving the roots of an error location polynomial. One can
use the equations for b1 and b2 and add both:

bl=c’x3+ax2+a’x1

b2=a'x3+abx2+a'x1
(b1+b2)=(a'+a® w3 +(aS+adx2+(a*+a)x1, or
(b1+b2)=a®3+0°1, or

x1=(a®)" L (h1+52+0%3), or

x1=a°b1+a%2+0C%3. Substituting the known, and
correct, values for b1, 52 and x3 will provide
x1=a’. Etc. for x2

Accordingly one can provide the different expressions for
calculating symbols in error when it is known which symbols
are in error. An illustrative example how to generate the error
corrected 3 symbols of a (7,3) error correcting RS code is
providedin FIG. 18. Herein 1800 represent the received code-
word of'7 symbols of which up to two symbols can be in error.
The codeword is first provided to a unit 1801 that can deter-
mine an error polynomial. If no error in an information sym-
bol is detected the unit 1801 provides the information sym-
bols [x1 x2 x3] on an output 1807. If errors are detected in an
information symbol the unit enables one of a plurality of
output lines. Each line signifies a certain combination of
errors. Each relevant combination is identified in FIG. 18. For
instance the first line is enabled when x1 and b1 are detected
in error. The second line is enabled when x1 and not b1 are in
error. This situation covers ifonly x1 isin errororifx1 and for
instance b2 are in error. In both situations x1 can be deter-
mined from the first equation related to b1. The other combi-
nations are self explanatory.

An enabled line activates a unit that will execute the proper
expressions, using error free symbols, to calculate the infor-
mation symbol determined to be in error. For instance unit
1804 has as input the received codeword. Line 1803 when
active enables 1804 to perform the necessary expressions and
provides on an output the error corrected word [x1 x2 x3]. For
clarity only the first unit 1804 and the last unit 1806, which is
enabled by a line 1805 when x2 and x3 are in error, are shown.

One may for instance use a series of multiplexers con-
trolled by enabling lines to provide on a final output the
corrected information symbols [x1 x2 x3].

As one aspect of the present invention one may use existing
error locating methods and calculate the corrected error. The
methods of error correction can be implemented in general
microprocessors or signal processors. The individual steps
can also be realized as dedicated switching circuits and pro-
grammable circuits such as Programmable Arrays or Look-up
Table methods. For smaller values of n in n-valued numbers
one can apply dedicated n-valued switching devices. For
large values of n one can also apply binary coded n-valued
symbols and apply binary coded n-valued truth tables. In all
situations one may represent an n-valued symbol by binary
symbols. In all embodiments a processor is considered to be
a circuit that can execute a step or more steps of a method
provided as an aspect of the present invention. A program or
software that executes a step of a method is considered herein
to be first instructions saved and retrievable from a memory.
Also a configuration of circuitry that executes a step of a
method may be considered in the context of the present inven-
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tion as a program or software. Even if such a step is hard wired
it may be considered herein to be equivalent to a program or
software.

There is a very wide field of application in error correcting
coding, and especially in binary coded n-valued symbols.
Aspects of the present invention can easily be applied in these
areas, such as wireless and wired communication and in areas
such as storage of data such as optical disks. Accordingly it is
contemplated to use one or more aspects of the present inven-
tion in communication systems and in communication
devices. One device that is specifically contemplated is a
mobile phone. Another device using one or more aspects of
the present invention is a wireless communication device for
use in or with a computing device. A further device using one
or more aspects of the present invention are devices or sys-
tems applying one of the IEEE 802 series of communication
protocols. Another device contemplated for using one or
more aspects of the present invention are data storage devices,
such as magnetic, optical and magneto-optical storage
devices. Bar coding devices are also contemplated.

In FIG. 19 a diagram of a communication system using
methods of the present invention is provided. Herein an infor-
mation source 1901 provides data that may be already trans-
formed into digital representation and that may be audio,
video, or any other type of data is provided to a coder 1902.
The coder may chop up data in sequences of information data
symbols of a fixed length of symbols. The coder then creates
codewords by adding check symbols to information symbols
in accordance with the rules of Reed Solomon coding. A thus
formed RS codeword may be comprised of n-valued symbols
or n-valued symbols represented by binary symbols. A RS
codeword is then provided to a transmitter 1906. The trans-
mitter may add further symbols for housekeeping purposes
such as frame synchronization or other purposes. A transmit-
ter may also provide other processing steps such as further
coding. One additional step provided by the transmitter may
be a modulation steps that conditions the RS codeword for
transmission over a channel. When a codeword is ready for
transmission it is provided for transmission over a channel
1903. This channel may be a wireless channel, such as a radio
channel or an infrared optical channel. It may also be a wired
channel such as coaxial or twisted cable. It may also be a
wired optical channel of optical fiber, or any other transmis-
sion medium. The signal is then received, demodulated and
readied for decoding by a receiver 1907 and provided to a
decoder 1904, which will provide the error decoding steps as
provided as aspects of the present invention. The error cor-
rected data is then provided to a device 1905 which may use
the data and for instance display it on a computer display,
process it in a processor, play it as an audio signal or display
it as a video signal.

In FIG. 20 a diagram of a data storage system using meth-
ods of the present invention is provided to write data to a
storage medium. Herein an information source 2001 provides
data that may be already transformed into digital representa-
tion and that may be audio, video, or any other type of data is
provided to a coder 2002. The coder may chop up data in
sequences of information data symbols of a fixed length of
symbols. The coder then creates codewords by adding check
symbols to information symbols in accordance with the rules
ofReed Solomon coding. A thus formed RS codeword may be
comprised of n-valued symbols or n-valued symbols repre-
sented by binary symbols. A RS codeword is then provided to
awriter 2003. The writer may add further symbols for house-
keeping purposes such as frame synchronization or other
purposes. A writer may also provide other processing steps
such as further coding or signal shaping. One additional step
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provided by the writer may be a modulation steps that condi-
tions the RS codeword for transmission over a channel. When
a codeword is ready for writing it is provided for writing over
a channel 2004 on a medium 2005. The signal may be an
electrical, an optical, a magnetic or any other information
carrying signal that can be used to transform a state of a
medium 2005. For information retrieving a system as shown
in diagram in FIG. 21 can be used. A reader 2103 through a
channel 2104 reads a signal from a medium 2105. A reader
may provide a reading signal to be able to read from a
medium. For instance data stored on an optical disk may use
a light source to read the stored data. The read data and
retrieved RS codeword is then provided to the error correcting
decoder 2102 that will perform the error correcting methods
as disclosed herein. The error corrected data is then provided
to a device 2101 that will process or display the data or play
it for instance as an audio signal.

While there have been shown, described and pointed out
fundamental novel features of the invention as applied to
preferred embodiments thereof, it will be understood that
various omissions and substitutions and changes in the form
and details of the device illustrated and in its operation may be
made by those skilled in the art without departing from the
spirit of the invention. It is the intention, therefore, to be
limited only as indicated by the scope of the claims appended
hereto.

The invention claimed is:

1. A method for decoding a (p,k) Reed-Solomon (RS)
codeword having p n-valued symbols with n>2 and n being an
integer, k of the p n-valued symbols being information sym-
bols with p>1 and k>1, comprising evaluating a predeter-
mined expression implemented on a processor, which con-
tains at least one n-valued logic function defined by a truth
table that determines an n-valued output symbol based on at
least a first and a second n-valued input symbol and includes
one or more n-valued symbols of the (p,k) Reed-Solomon
(RS) codeword that are not in error as variables of which at
least one is multiplied with an n-valued factor not being 0 or
1 and which generates a corrected n-valued symbol in the
codeword, wherein each symbol is represented by a signal
and wherein the predetermined expression is defined by at
least one of a plurality of n-valued check symbol expressions
with fixed n-valued coefficients and each n-valued check
symbol expression in the plurality of n-valued check symbol
expressions determines a value of an n-valued check symbol
in the Reed-Solomon (RS) codeword.

2. The method as claimed in claim 1, further comprising:

determining a number of common n-valued symbols that a

calculated codeword has in common with n-valued sym-
bols in corresponding positions in the (p,k) RS code-
word; and

determining the calculated codeword as a correct code-

word if the number of common n-valued symbols is at
least k+(p-k)/2.

3. The method as claimed in claim 1, further comprising
selecting the predetermined expression from a plurality of
predetermined expressions based on an n-valued symbol in
the (p,k) RS codeword known to be in error.

4. The method as claimed in claim 1, further comprising
correcting up to (p-k)/2 errors.

5. The method of claim 1, wherein n is a multiple of 2.

6. The method of claim 1, wherein an n-valued symbol is
represented by one or more binary symbols.

7. The method of claim 1, further comprising:

creating a plurality of calculated codewords; and

selecting from the plurality of calculated codewords as a

correct codeword a calculated codeword that has at least
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k+(p-k)/2 symbols in corresponding positions in com-
mon with the (p,k) RS codeword.

8. The method of claim 1, further comprising:

inputting k n-valued symbols on an n-valued Linear Feed-

back Shift Register (LFSR) having at least one n-valued
logic function which is not an adder over GF(n);
outputting (p-k) n-valued symbols on an output of the
LFSR; and
combining the k n-valued symbols with the (p—k) outputted
n-valued symbols to form the (p,k) Reed-Solomon (RS)
codeword with p n-valued symbols.

9. The method as claimed in claim 8, wherein the n-valued
logic function in the LFSR is implemented by an adder over
GF(n) with two inputs with an n-valued inverter at an input,
the n-valued inverter not being a multiplier over GF(n).

10. The method as claimed in claim 8, wherein the applied
LFSR is in Galois configuration.

11. An apparatus for decoding a (p,k) Reed Solomon (RS)
codeword of p n-valued symbols with n>2 and n being an
integer of which k n-valued symbols are information symbols
with p>1 and k>1 with at least one n-valued symbol in error,
including:

a processor enabled to execute instructions to perform a

step:

the processor evaluating a predetermined expression which

includes one or more n-valued symbols of the (p,k) RS
codeword not in error as variables of which at least one
is multiplied with an n-valued factor not being O or 1 and
which generates a correct value of the at least one n-val-
ued symbol in error in a calculated codeword, wherein
each symbol is represented by a signal and wherein the
predetermined expression is defined by at least one of a
plurality of n-valued check symbol expressions with
fixed n-valued coefficients and each n-valued check
symbol expression in the plurality of n-valued check
symbol expressions determines a value of an n-valued
check symbol in the Reed-Solomon (RS) codeword.

12. The apparatus as claimed in claim 11, the processor
further enabled to perform the steps:

determining a number of n-valued symbols that the calcu-

lated codeword has in common with n-valued symbols
in corresponding positions in the (p,k) RS codeword;
and

determining the calculated codeword as a correct code-

word if the number of n-valued symbols is at least k+(p—
k)/2.

13. The apparatus as claimed in claim 11, the processor
further enabled to perform a step of selecting the predeter-
mined expression from a plurality of predetermined expres-
sions based on an n-valued symbol in the (p,k) RS codeword
known to be in error.

14. The apparatus of claim 11, wherein n is a multiple of 2.

15. The apparatus of claim 11, wherein an n-valued symbol
is represented by one or more binary symbols.

16. The apparatus of claim 11, the processor further
enabled to perform the steps of:

creating a plurality of calculated codewords; and

selecting from the plurality of calculated codewords as a

correct codeword a calculated codeword that has at least
k+(p-k)/2 symbols in corresponding positions in com-
mon with the (p,k) RS codeword.

17. A system for decoding a (p,k) Reed-Solomon (RS)
codeword having p n-valued symbols with n>2 and n being an
integer of which k n-valued symbols are information sym-
bols, comprising:

a processor enabled to execute instructions to perform a

step:



US 8,103,943 B2

29

evaluating a predetermined expression which includes only
one or more n-valued symbols of the (p,k) Reed-Solomon
(RS) codeword that are not in error as external variables of
which at least one is multiplied with an n-valued factor not
being 0 or 1 and which generates a corrected n-valued symbol
in the codeword, wherein each symbol is represented by a
signal and wherein the predetermined expression is defined
by at least one of a plurality of n-valued check symbol expres-
sions with fixed n-valued coefficients and each n-valued
check symbol expression in the plurality of n-valued check
symbol expressions determines a value of an n-valued check
symbol in the Reed-Solomon (RS) codeword.

18. The system as claimed in claim 17, further comprising
the processor enabled to execute instructions to perform a
step selecting the n-valued logic expression from a plurality
of expressions based on an n-valued symbol in the (p,k) RS
codeword known to be in error.

30

19. The system as claimed in claim 17, further comprising
the processor enabled to execute instructions to perform the
steps:

determining a number of common n-valued symbols that

the calculated codeword has in common with n-valued
symbols in corresponding positions in the (p,k) RS code-
word; and

determining the calculated codeword as the correct code-

word if the number of common n-valued symbols is at
least k+(p-k)/2.

20. The system as claimed in claim 17, wherein the system
is a communication system.

21. The system as claimed in claim 17, wherein the system
is a data storage system.



