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MULTI-STATE SYMBOL ERROR 
CORRECTION IN MATRIX BASED CODES 

STATEMENT OF RELATED CASES 

This application is a continuation-in-part of US. patent 
application Ser. No. 11/680,719 ?led on Mar. 1, 2007 which 
claims the bene?t of US. Provisional Patent Application Ser. 
No. 60/779,068 ?led on Mar. 3, 2006, which are both incor 
porated herein by reference in their entirety. This application 
also claims the bene?t of US. Provisional Patent Application 
Ser. No. 61/035,563 ?led on Mar. 11, 2008, which is incor 
porated herein by reference in its entirety. 

BACKGROUND OF THE INVENTION 

The present invention relates to correction of one or more 
multi-state symbols in error in a sequence of symbols which 
can be ordered in a matrix. More speci?cally, it relates to error 
correction by ?rst identifying the location of possible errors 
in a matrix of multi-state symbols, followed by reconstruction 
of the original symbols from the remaining symbols believed 
to be not in error. 

Error correction in a plurality of multi-state symbols or a 
sequence of binary symbols representing multi-state symbols 
is known, especially in the ?eld of communications and infor 
mation storage or transfer. In general, a series of symbols that 
is being transferred may have experienced interference or 
noise on a transmission channel. Possibly the storage 
medium, such as an optical or magnetic disk, may have been 
damaged. As a consequence, a received sequence of multi 
state symbols may be different from the sequence from which 
it originated. The difference between an original sequence of 
symbols and a received sequence may be considered to be 
errors. 

Error control measures can be applied to detect and to 
correct errors. These measures in general comprise adding 
additional symbols to a sequence, based on the existing sym 
bols in the original sequence. The redundancy of symbols 
allows for detection and sometimes correction of errors. 

It usually requires a greater number of redundant symbols 
than errors to correct errors compared to the process of merely 
detecting that symbols are in errors. For instance, in data 
communications, wherein re-sending of information is pos 
sible and not detrimental to the quality of data transfer, it may 
be suf?cient to detect errors and request the transmitter to 
resend the symbols. However, in many applications resending 
of symbols is impossible or undesirable. In such cases error 
correction is desirable and more symbols are added to a 
sequence of symbols to enable error correction. 

Error-correction techniques for symbols in a sequence 
attempt to achieve the best result with as few redundant sym 
bols as possible, and with as limited processing requirements 
and memory or storage requirements as possible. Error cor 
recting redundancy is usually set to address some maximum 
or optimal expected symbol error ratio. If information is 
coded into codewords, it is to be expected that many code 
words are error-free and in error-free codewords extra sym 
bols provided for error correction or detection are truly redun 
dant. 

It is known in error correcting codes like Reed Solomon 
codes, which is multi-state based, that k extra symbols, which 
can be called check symbols, may allow at most l/2k symbols 
in error to be corrected. Arranging of data symbols in a matrix 
such as a 2 dimensional matrix is known. Herein columns and 
rows may for instance represent a Reed Solomon codeword. 
Such a code is called a product code. A product code still has 
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2 
the disadvantage that redundancy in the codewords is not 
fully used to determine position of errors and based on the 
positions of errors in a matrix calculate the correct state for 
the symbols in error. 

Accordingly, novel and improved methods and apparatus 
providing improved use of check symbols and redundancy in 
a multi-state symbol matrix are required. 

SUMMARY OF THE INVENTION 

In accordance with an aspect of the present invention an 
apparatus is provided for correcting errors in a sequence of k 
n-state data symbols, an n-state symbol being represented by 
a signal, with n>2, and kzl, comprising, a memory enabled to 
store instructions, a processor that retrieves and executes 
instructions from the memory to perform the steps of receiv 
ing on an input a plurality of signals representing the 
sequence of k n-state symbols and p n-state check symbols 
with psk, each of the signals representing p n-state check 
symbols being generated by an implementation of one of p 
independent reversible n-state expressions using the k n-state 
symbols as variables, determining as an independent step 
which of up to p of the k n-state data symbols are potentially 
in error and solving as an independent step up to p indepen 
dent n-state expressions to determine an n-state value for the 
up to p of the k n- state symbols that are potentially are in error, 
wherein the solving applies at least an implementation of an 
n-state reversible logic function that is determined by an n by 
n truth table. 

In accordance with another aspect of the present invention 
the apparatus as provided further comprises instructions to 
perform receiving on the input one or more signals represent 
ing one or more check-the-check symbols to correct an error 
in one or more of the p n-state check symbols. 

In accordance with yet another aspect of the present inven 
tion the apparatus as provided further comprises instructions 
to perform receiving on the input one or more signals repre 
senting one or more additional sequences of n-state symbols, 
each additional sequence containing k n-state data symbols 
and p n-state check symbols, each of the p n-state check 
symbols being generated by an implementation of one of p 
independent reversible n-state expressions with the k n-state 
symbols as variables, receiving on the input signals represent 
ing at least q*k n-state check symbols with qzl and qsp, 
determining additional n- state data symbols in error by recal 
culating the n-state check symbols, and solving any addi 
tional errors of up to p2 errors. 

In accordance with yet another aspect of the present inven 
tion the apparatus is provided, wherein a ?rst plurality of 
n-state check symbols is determined by using a ?rst arrange 
ment of the k n- state data symbols in a ?rst matrix and a 
second plurality of n-state check symbols is determined by 
using a second arrangement of the k n-state data symbols in a 
second matrix. 

In accordance with yet another aspect of the present inven 
tion the apparatus is provided wherein, p errors have deliber 
ately been introduced as nuisance errors. 

In accordance with yet another aspect of the present inven 
tion the apparatus is provided, wherein a position of an n- state 
data symbol in error is known to the apparatus. 

In accordance with yet another aspect of the present inven 
tion the apparatus is provided, wherein instructions to solve 
the p errors are provided to the apparatus through a network. 

In accordance with yet another aspect of the present inven 
tion the apparatus is provided, wherein instructions to solve 
the p errors are unique to the sequence of k n-state symbols. 
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In accordance with yet another aspect of the present inven 
tion the apparatus is provided, wherein the apparatus is part of 
a communication system. 

In accordance with yet another aspect of the present inven 
tion the apparatus is provided, wherein the apparatus is part of 
at least one of the group consisting of an audio player, a video 
player, a data storage device, and a communication device. 

In accordance with a further aspect of the present invention 
a method is provided for by a processor correcting of errors in 
a sequence of k n-state data symbols, an n-state symbol being 
represented by a signal, with n>2, and kzl, comprising, 
receiving on an input of the processor a plurality of signals 
representing the sequence of k n-state symbols and p n-state 
check symbols with psk, each of the signals representing p 
n-state check symbols being generated by an implementation 
of one of p independent reversible n-state expressions using 
the k n-state symbols as variables, determining as an inde 
pendent step which of up to p of the k n-state data symbols are 
potentially in error, and solving as an independent step up to 
p independent n-state expressions to determine an n- state 
value for the up to p of the k n-state symbols that are poten 
tially are in error, wherein the solving applies at least an 
implementation of an n-state reversible logic function that is 
determined by an n by n truth table. 

In accordance with yet a further aspect of the present inven 
tion the method as provided further comprises receiving on 
the input one or more signals representing one or more check 
the-check symbols to correct an error in one or more of the p 
n-state check symbols. 

In accordance with yet a further aspect of the present inven 
tion the method as provided further comprises receiving on 
the input one or more signals representing one or more addi 
tional sequences of n-state symbols, each additional sequence 
containing k n-state data symbols and p n-state check sym 
bols, each of the p n-state check symbols being generated by 
an implementation of one of p independent reversible n-state 
expressions with the k n-state symbols as variables, receiving 
on the input signals representing at least q*k n-state check 
symbols with qzl and qsp, determining additional n-state 
data symbols in error by recalculating the n-state check sym 
bols, and solving any additional errors of up to p2 errors. 

In accordance with yet a further aspect of the present inven 
tion the method is provided, wherein a ?rst plurality of n- state 
check symbols is determined by using a ?rst arrangement of 
the k n-state data symbols in a ?rst matrix and a second 
plurality of n-state check symbols is determined by using a 
second arrangement of the k n-state data symbols in a second 
matrix. 

In accordance with yet a further aspect of the present inven 
tion the method is provided, wherein p errors have been 
introduced deliberately. 

In accordance with yet a further aspect of the present inven 
tion the method is provided, wherein a position of an n-state 
data symbol in error is known to the apparatus. 

In accordance with yet a further aspect of the present inven 
tion the method is provided, wherein instructions to solve the 
p errors are provided to the processor through a network. 

In accordance with yet a further aspect of the present inven 
tion the method is provided, wherein instructions to solve the 
p errors are unique to the sequence of k n-state symbols. 

In accordance with yet a further aspect of the present inven 
tion the method is provided, wherein the processor is part of 
at least one of the group consisting of an audio player, a video 
player, a data storage device, and a communication device. 

In accordance with yet a further aspect of the present inven 
tion the method is provided, wherein the processor is part of 
a communication system. 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
In accordance with a further aspect of the present inven 

tion, novel methods and system are provided that will correct 
errors in a sequence of symbols by detecting which symbols 
are in error and then reconstructing the error symbol by 
n-state logic expressions with symbols in errors as unknowns. 

In accordance with another aspect of the present invention, 
a method is provided for coding and decoding of a plurality of 
n-valued data symbols with n>2, comprising: associating the 
plurality of n-state data symbols with a k-dimensional matrix 
with kz2; generating p check symbols with p21 for q 
instances with qz2 of a ?rst dimension of the ?rst matrix, each 
check symbol in an instance of a ?rst dimension being gen 
erated by applying an n-state logic expression with data sym 
bols as variables; generating q check symbols for a plurality 
of instances of a second dimension of the k-dimensional 
matrix, each check symbol in an instance of a second dimen 
sion being generated by applying an n-state logic expression 
with data symbols as variables; associating the plurality of 
n-valued data symbols and generated check symbols with a 
second matrix of which the k-dimensional matrix is a sub 
matrix and transmitting the symbols associated with the sec 
ond matrix to a target; and correcting in a deterministic way at 
least p><q symbols in error in the second matrix. 

In accordance with a further aspect of the present inven 
tion, a method is provided for coding and decoding of a 
plurality of n-valued data symbols with n>2, further compris 
ing correcting in a deterministic way up to p><q><q errors in the 
second matrix. 

In accordance with another aspect of the present invention, 
a method is provided for coding and decoding of a plurality of 
n-valued data symbols with n>2, further comprising correct 
ing in an iterative way more than p><q symbols in error. 

In accordance with a further aspect of the present inven 
tion, a method is provided for coding and decoding of a 
plurality of n-valued data symbols with n>2, further compris 
ing a second set of check symbols associated with the second 
matrix, wherein each check symbol in the second set of check 
symbols is generated from an expression with two or more 
check symbols generated from n-state data symbols as vari 
ables. 

In accordance with another aspect of the present invention, 
a method is provided for coding and decoding of a plurality of 
n-valued data symbols with n>2, wherein one or more check 
symbols generated from n-state data symbols and two or more 
check symbols from the second set of check symbols form a 
Reed Solomon codeword. 

In accordance with a further aspect of the present inven 
tion, a method is provided for coding and decoding of a 
plurality of n-valued data symbols with n>2, wherein an 
expression for generating a check symbol is de?ned in GF(n). 

In accordance with another aspect of the present invention, 
a method is provided for coding and decoding of a plurality of 
n-valued data symbols with n>2, wherein an expression is 
implemented in binary logic. 

In accordance with a further aspect of the present inven 
tion, a method is provided for coding and decoding of a 
plurality of n-valued data symbols with n>2, further compris 
ing: determining a magnitude of an error for a symbol in error; 
and adjusting a symbol in error with the magnitude of the 
error. 

In accordance with another aspect of the present invention, 
a system is provided for coding and decoding of a plurality of 
n-state data symbols with n>2, comprising: a processor 
enabled to execute instructions upon the n-state data symbols; 
means to store the instructions; and instructions enabled to 
perform the steps of: associating the plurality of n-state data 
symbols with a k-dimensional matrix with kz2; generating p 
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check symbols with p21 for q instances with qz2 of a ?rst 
dimension of the ?rst matrix, each check symbol in an 
instance of a ?rst dimension being generated by applying an 
n-state logic expression with data symbols as variables; gen 
erating q check symbols for a plurality of instances of a 
second dimension of the k-dimensional matrix, each check 
symbol in an instance of a second dimension being generated 
by applying an n-state logic expression with data symbols as 
variables; associating the plurality of n-valued data symbols 
and generated check symbols with a second matrix of which 
the k-dimensional matrix is a sub-matrix and transmitting the 
symbols associated with the second matrix to a target; and 
correcting in a deterministic way at least p><q symbols in error 
in the second matrix. 

In accordance with a further aspect of the present inven 
tion, a system is provided for coding and decoding of a 
plurality of n-state data symbols with n>2, further comprising 
correcting in a deterministic way up to p><q><q errors in the 
second matrix. 

In accordance with another aspect of the present invention, 
a system is provided for coding and decoding of a plurality of 
n-state data symbols with n>2, further comprising correcting 
in an iterative way more than p><q symbols in error. 

In accordance with a further aspect of the present inven 
tion, a system is provided for coding and decoding of a 
plurality of n-state data symbols with n>2, further comprising 
a second set of check symbols associated with the second 
matrix, wherein each check symbol in the second set of check 
symbols is generated from an expression with two or more 
check symbols generated from n-state data symbols as vari 
ables. 

In accordance with another aspect of the present invention, 
a system is provided for coding and decoding of a plurality of 
n-state data symbols with n>2, wherein one or more check 
symbols generated from n-state data symbols and two or more 
check symbols from the second set of check symbols form a 
Reed Solomon codeword. 

In accordance with a further aspect of the present inven 
tion, a system is provided for coding and decoding of a 
plurality of n-state data symbols with n>2, wherein an expres 
sion for generating a check symbol is de?ned in GF(n). 

In accordance with another aspect of the present invention, 
a system is provided for coding and decoding of a plurality of 
n-state data symbols with n>2, wherein an expression is 
implemented in binary logic. 

In accordance with a further aspect of the present inven 
tion, a system is provided for coding and decoding of a 
plurality of n-state data symbols with n>2, further compris 
ing: determining a magnitude of an error for a symbol in error; 
and adjusting a symbol in error with the magnitude of the 
error. 

In accordance with another aspect of the present invention, 
a method is provided for coding and decoding of n-state data 
symbols, an n-state symbol able to assume one of n states with 
n>2, comprising, associating the n-state data symbols with a 
k-dimensional matrix with k>2; generating p independent 
n-state check symbols with q instances of a ?rst dimension of 
the k-dimensional matrix, generating q independent n-state 
check symbols with p instances of a second dimension of the 
k-dimensional matrix; associating the n-state data symbols 
and check symbols with a second matrix which has the k-di 
mensional matrix as a sub-matrix; determining that m 
instances of the ?rst dimension of the k-dimensional matrix 
are in error with m>p but not more than q instances of the 
second dimension of the k-dimensional matrix are in error; 
and solving up to m><q symbols in error from the second 
matrix. 
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6 
In accordance with another aspect of the present invention, 

a method is provided for coding and decoding of n-state data 
symbols, an n-state symbol able to assume one of n states with 

n>2, further comprising: making a symbol that is in an 
instance of a ?rst and a second dimension in error of the 
second matrix an unknown in an equation; and solving q 
unknowns in an instance of second dimension of the second 
matrix from a set of q independent equations. 

In accordance with another aspect of the present invention, 
a method is provided for coding and decoding of n-state data 
symbols, an n-state symbol able to assume one of n states with 

n>2, further comprising: determining a magnitude of an error 
for a symbols in error; and adjusting a symbol in error with the 
magnitude of the error. 

DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a diagram of a matrix in accordance with an aspect 
of the present invention; 

FIG. 2 is another diagram of a matrix in accordance with an 
aspect of the present invention; 

FIG. 3 is a diagram of an equation solver in accordance 
with an aspect of the present invention; 

FIG. 4 is another diagram of a matrix in accordance with an 
aspect of the present invention; 

FIG. 5 is yet is another diagram of a matrix in accordance 
with an aspect of the present invention; 

FIG. 6 is yet is another diagram of a matrix in accordance 
with an aspect of the present invention; 

FIG. 7 is yet is another diagram of a matrix in accordance 
with an aspect of the present invention; 

FIG. 8 is yet is another diagram of a matrix in accordance 
with an aspect of the present invention; 

FIG. 9 illustrates a system that is used to perform the steps 
described herein in accordance with another aspect of the 
present invention; 

FIG. 10 illustrates a storage system for writing data to a 
storage medium in accordance with yet another aspect of the 
present invention; 

FIG. 11 illustrates a storage system for reading data from a 
storage medium in accordance with yet another aspect of the 
present invention; and 

FIGS. 12 and 13 illustrate an implementation of an n-state 
truth table. 

DESCRIPTION OF A PREFERRED 
EMBODIMENT 

According to one aspect of the present invention, an error 
correcting code is provided for a matrix of multi-state sym 
bols enhanced with check symbols. 

Herein, the terms multi-state, n-state, multi-valued and 
n-valued symbol will mean a symbol which may assume one 
of 3 or more states, which distinguishes it from binary sym 
bols or bits which can only assume one of 2 states. Further 
more, the terms state or value and multi-state or multi-valued 
will be used interchangeably. The logic functions that are 
provided herein represent the switching of states. A state may 
be represented by a digit or a number. This may create the 
impression that an actual value is attached to a state. One may, 
to better visualize states, assign a value to a state. However, 
that is not a requirement for a state. A name or designation of 
a state is just to indicate that it is different from states with 
different designations. Because some logic functions herein 
represent an adder the names state and value may be used 
meaning the same. 
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Furthermore, because of the practice in binary logic to 
represent a state by a physical level of a signal such as a 
voltage, one often assumes that different n-state signals have 
different levels of a signal, such as voltage or intensity. While 
such representations of a state are allowed it is not limited to 
that. A state may be represented by independent phenomena. 
For instance, different states of a signal may be represented by 
different wavelengths of an optical signal. A state may also be 
represented by a presence of a certain material, by a quantum 
mechanical phenomenon, or by any other phenomenon that 
can distinguish a state from another state. 

Furthermore, a symbol, which is regarded herein as a single 
element, may also be represented by 2 or more p-state sym 
bols wherein p<n. For instance, a 4-state symbol may be 
represented by 2 binary symbols. 

The generation of check symbols, especially in sequences 
of binary symbols, is known, and either a parity symbol or a 
combination of symbols representing a checksum is gener 
ated. One may also generate n-valued check symbols by 
applying n-valued symbols to one or more n-valued logic 
functions. For instance, one may have a sequence of 4 4-val 
ued data symbols [d1 d2 d3 d4]. One may create a check 
symbol c (or the ?fth symbol in the sequence) by for instance 
adding modulo-4 the value (or representation of the state of 
each data symbol) of each data symbol. One has thus created 
the sequence [d1 d2 d3 d4 c]. Assume d1:0; d2:2; d3:2; and 
d4:3. Then c:(d1+d2+d3+d4)mod-4:(7)mod-4:3. 

This is merely an example. The symbols are n-state, with at 
this stage no limitation to the number of states (just n>2). The 
functions can be any n-valued switching function, related to 
the n-state of the symbols. For error correction an n-valued 
function for determining a check symbol is preferably a 
reversible n-valued logic function. While it seems strange, 
one may also solve equations with non-reversible n-valued 
logic functions. A non-reversible n-valued logic function has 
a truth table with at least one row or column that has two 
identical output states for different input states. By providing 
suf?cient different equations one can address the uncertainty 
related to the states of for instance inputs (x1, x2) and (X1 , x3) 
generating the same output state d1. 

In accordance with a further aspect of the present inven 
tion, one should arrange a sequence of symbols in a matrix. 
For instance a sequence of 9 multi-state symbols d12, d12, 
d13, d21, d22, d23, d31, d32 and d33 can be arranged in a 
2-dimensional matrix as shown in FIG. 1 having rows and 
columns. To each row of data symbols at least one check 
symbol qi (q1, q2 and q3) is added. Further more to each 
column 2 check symbols p and p are added. Each check 
symbol is created from data symbols in its respective row or 
column. One may also create a ?rst check symbol from data 
symbols and a second symbol from data symbols and the ?rst 
check symbol. FIG. 1 is merely an illustrative example. One 
may have a multi-dimensional matrix (more than 2 dimen 
sions). Multi-dimensional matrices are fully contemplated 
and the term row and column are extended to other dimen 
sions in a multi-dimensional matrix. One may have more or 
fewer check symbols per column or row. One may have no 
check symbols in one or more rows or columns. One may also 
have a different number of check symbols in each row or each 
column. 

The position of a check symbol in a row or a column is 
shown for illustrative purposes at the end of a row or the 
bottom of a column. It should be clear that one may position 
a check symbol anywhere in a matrix as long as one knows 
from which data symbols a check symbol is determined. 
A sequence of symbols can be arranged in a matrix for 

analysis and determination of check symbols. It should be 
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8 
clear that the symbols are usually not transmitted in a matrix. 
One does not have to arrange symbols in an actual matrix for 
analysis. It is required that one knows the relationships 
between data symbols and check symbols and how two or 
more different check symbols may have at least one data 
symbol in common. 
A preferred embodiment as one aspect of the present inven 

tion, is to ?rst identify which symbols in a matrix are possibly 
in error, and based on a selected coding scheme reconstruct 
the symbols that were detected as being possibly in error by 
using reversing equations. Assume that in a 2-dimensional 
matrix each row has p check symbols and each column has q 
check symbols and no more than q rows or no more than p 
columns are in error one may solve up to p><q errors in a 
deterministic manner. A row or a column being in error herein 
means that a row or a column has at least one check symbol 
which after being recalculated has a value or state different 
from its received value. With more columns or rows in error 
one may apply an iterative scheme, based on making an initial 
assumption about at least one symbol that can possibly be in 
error in actuality not being in error. Based on such an assump 
tion one may then calculate the values or states of remaining 
symbols that may be in error. If the thus calculated values 
result in an error free matrix there is a high probability that the 
assumption was correct and that the calculated values are 
correct. If such an assumption leads to a matrix still contain 
ing errors there is a high probability that the assumption was 
wrong and a different assumption has to be tried, until an error 
free matrix is achieved. 
The advantage of a Reed Solomon code is that each word 

having 2><k check symbols may correct up to k errors. How 
ever in light of the complexity of solving for instance an error 
location polynomial, solving errors is a relatively complex 
process. If one can identify location of errors, reconstruction 
of the symbol in errors is relatively simple. 

Reconstruction of symbols (including n-valued symbols) 
in error based on known correct symbols has been demon 
strated by the Applicant in Us. patent application Ser. No. 
11/566,725, ?led on Dec. 5, 2006 entitled ERROR COR 
RECTING DECODING FOR CONVOLUTIONAL AND 
RECURSIVE SYSTEMATIC CONVOLUTIONAL 
ENCODED SEQUENCES, which is incorporated herein in 
its entirety by reference. Reconstruction of symbols in error 
in Reed Solomon codes and in what the Applicant calls Reed 
Solomon like codes also are described in Us. Non-provi 
sional patent application Ser. No. 11/739,189, ?led on Apr. 
24, 2007, which claims the bene?t of Us. Provisional Patent 
Application Ser. No. 60/807,087 ?led Jul. 12, 2006; Us. 
Non-provisional patent application Ser. No. 1 1/743,893, ?led 
on May 3, 2007, which claims the bene?t of Us. Provisional 
Patent Application Ser. No. 60/821,980 ?led Aug. 10, 2006, 
which are all four incorporated herein by reference in their 
entirety. 

Especially in a matrix wherein errors are distributed in such 
a way that only a limited number of rows or columns (or on 
dimensions in a multi-dimensional matrix) are in error, the 
use of Reed Solomon codes may be excessive and use of error 
detection and symbol reconstruction as provided herein as an 
aspect of the present invention may be simpler and more 
effective, achieving a bigger “bang-for-the-buck” so to speak 
for each check symbol. 
The issue with matrix based codes is that multiple errors 

may hide errors by creating a check symbol that appears to be 
correct. Assume that the previously provided example before 
transmission creates the sequence: [d1 d2 d3 d4 c]. Wherein 
d1:0; d2:2; d3:2; and d4:3 and c:(d1+d2+d3+d4)mod-4: 
(7)mod-4:3. Accordingly, [d1 d2 d3 d4 c]:[0 2 2 3 3]. 
Assume that after transmission one receives [0 2 3 2 3]. Both 
d3 and d4 are in error. However when one recalculates the 
check symbol one determines c:3. Based on that it is impos 
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sible to determine that two errors have occurred. The errors 
cancel each other out in determining the check symbol. In 
other words the errors are hidden. It was shown by the inven 
tor inU.S. patent application Ser. No. 11/969,560 ?led on Jan. 
4, 2008, which is incorporated herein by reference, that errors 
in a matrix code can be unhidden by applying check symbols 
which are determined from different arrangements of sym 
bols in a matrix. 

In accordance with an aspect of the present invention, one 
can solve a set of p errors in a plurality of symbols if one has 
p independent equations wherein the p symbols in errors are 
the unknowns. 
Independent Equations for Determining Check Symbols 

Binary check symbols or parity bits are based on a limited 
relationship between the constituting bits. The relationship is 
commonly established by the binary XOR function. N-valued 
check symbols can have more varied reversible relationships 
as was explained in the earlier cited application Ser. No. 
l 1/ 680,719. For instance one may have a word of 4 n-valued 
symbols [a b c d]. One may create a ?rst n-valued check 
symbol Cl:a@b@0@d. One may also create a second check 
symbol c2:a ® b ® c ® d. Ifonly one ofthe symbols a, b, c or 
d is in error one can reconstruct the symbol in error both from 
cl or c2 if these are not in error and both 69 and ® are 
reversible operations. It should also be clear that two symbols 
in error can be reconstructed if the equations for cl and c2 are 
independent and the operations are reversible. Calculation of 
cl and c2 by 69 and ® may be independent because the 
operations are different and/or independent. The equations 
for cl and c2 may be independent because the symbols a, b, c 
and d are processed with the same function but with for 
instance different n-valued inverters. For instance, 
c2:a€92b€93c€92d in an n-valued code. The advantage of 
using n-valued coders with LFSRs either in Galois or in 
Fibonacci con?guration is that each next generated check 
symbol has an independent equation from another check 
symbol in the code. That is a reason why Reed Solomon (RS) 
codes work as error correcting codes. 

The advantage of using an LFSR is that one does not need 
to execute each expression or equation in full to generate a 
check symbol. The appropriate con?guration of the LFSR 
takes care of generating the check symbols in accordance 
with independent expressions or equations. The drawback of 
the RS code is that the location of an error ?rst has to be found 
by for instance solving an error correction polynomial. In 
order to be able to do that for each error there have to be 2 
check symbols. By knowing where the errors occur, for 
instance by using a matrix with error symbols derived from 
columns and rows, one may be able to use just one check 
symbol per error. 
Methods for Solving N-Valued Error Equations 

There are actually several different methods to solve the 
n-valued error equations. Which method one applies may 
depend on the complexity of the equations, the properties of 
the functions and which of the symbols are in error. The 
complexity and properties of functions is directly related to 
the value of n. For instance, if n:2p then one can use a function 
scl which is an addition over GF(2P) and multipliers over 
GF(2P). In that case scl is self-reversing, commutative and 
associative. This makes solving equations much easier. An 
illustrative example will be provided. 
Under conditions where the position of an error symbol can 

be determined unambiguously, it is also possible to solve the 
equations unambiguously. If for some reason it is impossible 
or undesirable to solve equations in an algebraic fashion, one 
can solve the equations iteratively by using all possible values 
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10 
for the symbols in error. One will ?nd only one combination 
of values that solves all equations correctly. 
One method is to solve the equations in an algebraic fash 

ion. In order to solve equations it is useful to review the rules 
for reversible, non-commutative and non-associative n-val 
ued logic functions. Assume n-valued logic function ‘ sc’ to be 
reversible, non-commutative and non-associative. 
When (a sc b:c) then (b scT a:c), with the truth table of scT 
being the transposed of the truth table of sc. 
When (a sc b:c) then (c scrc b:a), with the function ‘scrc’ 
being the reverse of ‘sc’ over constant columns. 

When (a sc b:c) then (a scrr c:b), with the function ‘scrr’ 
being the reverse of ‘sc’ over constant rows. 

When (b scT a:c) then (b scTrr c:a), etc. 
Assume a coder using 3 data symbols x1, x2 and x3 and 

generating two check symbols pl and p2 using the following 
two equations for generating pl and p2: pl:{xl sc2 (x2 scl 
x3)} and p2:{pl sc2 (xl scl x2)}. 

Algebraic method. As a ?rst 4-valued example, assume that 
of [x1 x2 x3 pl p2] x3 and pl are in error. Clearly a ?rst simple 
step is to solve p2:{pl sc2 (xl scl x2)} which has pl as 
unknown. One can rewrite the equation as: {p2 sc2rc (xl scl 
x2)}:pl. The truth tables of scl and sc2 are provided in the 
following tables. 

scl 0 l 2 3 

0 0 l 2 3 
l l 0 3 2 
2 2 3 0 l 
3 3 2 l 0 

$02 0 l 2 3 

0 0 l 2 3 
l 2 3 0 l 
2 3 2 l 0 
3 l 0 3 2 

Herein the function sc2rc is the reverse of sc2 over constant 
columns. Its truth table is provided in the following table. 

chrc 0 l 2 3 

0 0 3 l 2 
l 3 0 2 l 
2 l 2 0 3 
3 2 l 3 0 

The assumption was that x3 and pl were in error, so in the 
example the received codeword was [3 3 x3 pl 0] using the 
earlier example. Filling in the values in the equation provides 
pl:{0 sc2rc (3 scl 3)} or pl:0 sc2rc 0:0. 
From pl:{xl sc2 (x2 scl x3)} wherein now only x3 is an 

unknown one can derive: (x2 scl x3):{xl sc2rr pl} wherein 
sc2rr is the reverse of sc2 over constant rows. Keeping in mind 
that scl is self reversing: x3q2 scl (xl sc2rr pl). The truth 
table of sc2rr is provided in the following table. 

chrr 0 l 2 3 

0 0 l 2 3 
l 2 3 0 l 
2 3 2 l 0 
3 l 0 3 2 
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Thus, X3:x2 scl (Xl sc2rr pl) leads to: X3:3 scl (3 sc2rr 0) 
or X3:3 scl 1:2. 

One may apply the same approach when X2 and X3 are in 
error. In that case, one may apply p2:{pl sc2 (Xl scl X2)} to 
achieve (Xl scl x2):pl sc2rr p2 and thus achieve x2ql scl 
(pl sc2rr p2). This will provide X2:3. Etc. 
A more difficult situation occurs when X1 and X2 are deter 

mined to be in error. The equations will be fairly difficult to 
solve. Assume that X 1 :el and X2:e2. The equations will then 
be: 

pl:{el 302 (22 scl x3)} and 

p2:{pl 302(21 scl 22)}. 

The value of pl and p2 are correct. So one way to solve the 
equation in an iterative manner is to solve the equations: 

ll:{el 302 (22 scl x3)} and 

12:{pl 302 (el scl e2)} 

for all values of el and e2, and determine for which values of 
(e1 ,e2) the value (pl—t1) and (p2—t2) are both 0. Not surpris 
ingly this will be the case for (el,e2):(3,3). This is a time 
consuming and not very elegant way to solve the problem, 
and may be a solution of last resort. 

Fortunately for codes with for instance check symbols 
generated over GF(2P), one can also use a different approach. 
Within GF(2P) the addition can be a self reversing, commu 
tative and associative function. An LFSR in GF(2P) can be 
realized with functions which are a combination of adders 
with multipliers to generate check symbols. One may also 
generate check symbols by evaluating an expression that 
determines the check symbol. One can reduce the functions 
by reduction of the truth tables according to the multipliers. 
This makes the execution of the coder quicker. In order to 
solve the equations one can revert back to associative adders 
with multipliers. 

The need for solving errors of 2 symbols in a word may be 
because of the spill-over effect when one codes a symbol as 
for instance a binary word. One can never be sure that only an 
error in one symbol has occurred, so one should be prepared 
to solve the equations for two adjacent n-valued symbols in 
error. It is also possible that two errors have occurred in non 
adjacent symbols in a word. This assumes a different error 
behavior than for adjacent errors. Especially codewords gen 
erated by LFSRs (Galois and Fibonacci) that can be created 
by additions (with or without multipliers) over GF(2P), have 
easier to solve equations because of the associative properties 
of the addition function. 

For instance, assume using again a 4-valued illustrative 
example wherein X1 and pl are found to be in error. The 
generating expressions were: pl:{xl sc2 (X2 scl X3)} and 
p2:{pl sc2 (Xl scl x2)}. Assume an inverter inv2:[0 2 3 l] 
which is a 4-valued multiplier over GF(4). One can easily 
check that the inverter is multiplication over GF(4) with a 
factor 2. It can be checked that the function (a sc2 b) can be 
replaced by (inv2(a) scl b). One can then replace the gener 
ating expressions by the next expressions: pl:{xtl scl (X2 
scl X3)} and p2:{ptl scl (Xl scl X2)} using the earlier 
de?ned functions. Herein xtl :inv2 (Xl ) and pt 1 :inv2(p l ) and 
scl commutative, self-reversing and associative. The way to 
approach this is to use arithmetic in GF(22). The following 
rules apply using + and x in GF(22). 
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x 0 l 2 3 

0 0 0 0 0 
l 0 l 2 3 
2 0 2 3 l 
3 0 3 l 2 

Accordingly multiplication can be shown as: 

l 2 3 

x1 1 2 3 
x2 2 3 1 
x3 3 l 2 

For instance, in GF(22) under the earlier de?ned multiplica 
tion 2><2xl:3xl, etc. 

The distributive property applies to a><(b+c):a><b+a><c. 
Division is the inverse of multiplying. 

Accordingly, division by l is multiplying by l; division by 2 
is multiplying by 3; and division by 3 is multiplying by 2. 
One can then write the equations as pl:2><xl +x2+x3 and 

p2:2><p1+x1+x2. 
For instance, assume that X1 and X2 are known to be in 

error. Then X2:2><xl+x3+pl. Substitute in the p2 equation: 
p2:2><p1+x1+(2><x1+x3+p1) or 2><x1+x1:2><p1+p1+p2+x3, 
or 3><xl:3><pl+p2+x3. Dividing by 3 is multiplying by 2 so: 
xlrp l +2><p2+2><x3:0+2><0+2><2:3. Etc. 
As another example, one may assume that not adjacent 

symbols X1 and pl are in error. One must solve the equations 
then for X1. This leads to 2><xl:3><x2+2><x3+p2; or xl:2>< 
x2+x3+3><p2:2><3+2+0:l+2:3. One achieves this result by 
applying the arithmetic rules in GF(22) as stated before. 

Galois ?eld arithmetic may be preferred for solving the 
equations for in error symbols. However, these easy solutions 
may only be available for codewords de?ned in extension 
binary ?elds. 
As an illustrative example, a 5 symbol 5-valued code will 

be generated with 3 data symbols and two check symbols 
generated by using 5-state switching function sc5, which is 
the mod-5 addition with the following truth table. 

$05 0 l 2 3 4 

0 0 l 2 3 4 
l l 2 3 4 0 
2 2 3 4 0 l 
3 3 4 0 l 2 
4 4 0 l 2 3 

The 5-valued equations for generating check symbols pl 
and p2 are: pl:{xl sc5 (X2 sc5 2><x3)} and p2:{pl sc5 (Xl 
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sc5 2><x2)} to generate codeword [X1 X2 X3 p1 p2]. Because 
sc5 is an addition (mod-5) one can write the equations as: 
p1q1+x2+2><x3 and p2:p1+x1+2><x2. The check symbols 
can be generated by an LFSR. 

For the 5-valued arithmetic the following truth table need 
to be used for multiplication x and subtraction —, meaning 
(a—b) wherein ‘a’ is the row and ‘b’ is the column of the truth 
table. 

— 0 l 2 3 4 

0 0 4 3 2 l 
l l 0 4 3 2 
2 2 l 0 4 3 
3 3 2 l 0 4 
4 4 3 2 l 0 

x 0 l 2 3 4 

0 0 0 0 0 0 
l 0 l 2 3 4 
2 0 2 4 l 3 
3 0 3 l 4 2 
4 0 4 3 2 l 

One should further keep in mind that dividing by 2 is 
multiplying with 3, dividing by 3 is multiplying by 2 and 
dividing by 4 is multiplying by 4. Further more 3x3:4 and 
4x4:1, etc. 

Accordingly, one will ?nd for x1: p2:2x1+3x2+2x3 or 
3p2q<1+4x2+x3 or x1:(3p2—4x2)—x3. The data symbols [x1 
X2 x3]:[0 4 3] will generate [p1 p2]:[0 3]. One may calculate 
X1 and p1 from the other symbols (for instance when they are 
in error). The equation correctly provides: X1:(3><3—4><4)— 
3:(4—1)—3:0. 

The methods here presented as different aspects of the 
present invention also apply to detection and correction of 
more than 2 errors, such as three errors. In order to detect k 
errors in a codeword of 11 symbols, each codeword in a set of 
codewords must have at least k+1 different symbols in com 
mon positions from any other codeword in the set. Or each 
codeword may at most have (n—k—1) symbols in common 
positions. The best one can do in a 7 symbol codeword to 
detect 3 errors is having at most 3 symbols in common. Such 
a code would require 8-valued symbols and is generally 
known as an RS-code. It is possible to meet the error detection 
requirement in a lower valued symbol codeword. However, 
that would require a codeword with more symbols. It is then 
understood that other and different examples of detection 3 
errors in a codeword can be provided according to different 
aspects of the present invention. 
As an illustrative example, an 8-valued 7 symbol codeword 

with 3 check symbols will be provided to demonstrate error 
correction when the position of errors is known. 
One can identify the positions of the errors for instance by 

establishing a matrix as shown in FIG. 2. The data symbols 
occur sequentially as X1 . . . X4, y1 ...y4,v1 ...v4, 21 ...Z4. 
The symbols are broken up as 4 columns of 4 data symbols 
and horizontal check symbols t and tt are generated as well as 
vertical check symbols p, q, and r. The symbols tt are check 
symbols on the check symbols. The assumption in the 
example is that errors will occur as at most 3 errors in a 

column. One skilled in the art may, of course, design 2 or 3 
dimensional matrices for different (also non adjacent) errors 
and different symbol error ratios as well as different code 
word sizes. 
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14 
Assume that all symbols in the illustrative examples are 

8-valued. By running 8-valued coders on the received data 
symbols one can check the newly generated check symbols 
against the received check symbols and determine which 
rows and columns are in error, thus determining the position 
of the errors. Based on the known error positions and the 
coder one can reconstruct the correct symbols in the error 
positions. 
The truth tables of the addition sc1 and multiplier over 

GF(23) are provided in the following truth tables. 

+ 0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 
1 1 0 4 7 2 6 5 3 
2 2 4 0 5 1 3 7 6 
3 3 7 5 0 6 2 4 1 
4 4 2 1 6 0 7 3 5 
5 5 6 3 2 7 0 1 4 
6 6 5 7 4 3 1 0 2 
7 7 3 6 1 5 4 2 0 

X 0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 
2 0 2 3 4 5 6 7 1 
3 0 3 4 5 6 7 1 2 
4 0 4 5 6 7 1 2 3 
5 0 5 6 7 1 2 3 4 
6 0 6 7 1 2 3 4 5 
7 0 7 1 2 3 4 5 6 

The following table shows the division rule in GF(23). 

Or division by 2 is multiplying by 7, division by 3 is multi 
plying by 6, etc. 

Four data symbols [x y v Z] in a column will generate 3 
check symbols [p q r]. The equations for generating the check 
symbols are: 

The above check symbols may also be generated by an 
8-valued LFSR. One can solve these equations for any of the 
3 symbols to be unknown. As one example assume [x y v] to 
be in error. One can solve the linear equations by matrices or 
by substitution. Applying substitution one will ?nd: 

and thus with symbols [Z p q r] known and error-free one can 
solve the equations. 
A partial set of 7 8-valued symbol codeword generated by 

the above expressions is shown in the following table. 
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x y v Z p q r 

0 4 7 2 2 3 4 
1 3 7 1 0 3 7 
2 5 6 4 1 2 2 
3 5 4 2 5 7 1 
4 3 7 1 5 6 3 
5 4 6 6 0 0 0 
6 3 4 0 7 1 2 
7 7 2 4 7 0 1 

One can easily check for the provided codewords using [Z 
p q r] in the equations to determine [x y Z]. 
One can provide the solution set for any of 3 or less sym 

bols in a codeword being in error. 
One may also determine solutions for independent sets of 

unknowns by applying Cramer’s rule. As an example, the set 
of equations for the above coder will be used. For application 
of Cramer’s rule one should apply all additions and multipli 
cations of this example in GF(8). When applying Cramer’s 
rule using for other radix-n one should apply the appropriate 
arithmetic. In this example, one should apply addition and 
multiplication over GF(23) of which the truth tables are pro 
vided above. 
Assume that it is determined that x, y and Z are in error. The 

codeword in error is [x y V Z p q r]:[el e2 7 e4 5 6 3]. One 
should the create three equations with unknowns x1, x2 and 
x4 from the known equations as: 

Cramer’s rule then solves the above equations as: 

d1 1 2 

d2 1 0 

d3 2 0 

4 1 d1 

1 1 d2 

1 2 d3 

4 l 2 

l l 0 

l 2 0 

l 0 

2 0 

10 

10 

l 1 =4. ] 
l 2 

as the rules of GF(8) are used. 
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This is in accordance with the elements in the word as gen 
erated by FIG. 9. 
One may also apply Cramer’s rule to other n-valued codes, 

such as the 5-valued coder of above. Herein, one should use 
the rules of modulo-5 addition and modulo-5 subtraction in 
the provided example, as well as the proper multiplication. 
Assuming that in a codeword [x1 x2 x3 pl p2] the symbols x2, 
pl and p2 are correct and x1 and x3 are in error the equations 
become: 

d1 pl — x2 

The solution vector is [ ] = [ d2 p2 — pl — 2x2 

Assume that the codeword [x1 x2 x3 pl p2]:[el 4 e3 2 0] 
was received. According to Cramer’s rule: 

Accordingly, the correct codeword is [x1 x2 x3 pl p2]:[0 
4 4 2 0]. It is thus demonstrated that as long as the position of 
errors are known one may correct any set of errors within the 
constraints of the number of independent equations. 

For illustrative purposes errors are solved by using n-val 
ued adders and multiplications, either modulo-n or over 
GF(n). An n-valued multiplication with a constant may be 
dealt with as an n-valued inverter. One may reduce combina 
tions of n-valued inverters and an n-valued logic function to a 
function with a modi?ed truth table as was shown by the 
inventor in Us. patent application Ser. No. 10/935,960, ?led 
on Sep. 8, 2004, which is incorporated herein by reference. 
An expression for a check symbol cs 1 :inv2(xl) sc5 inv3 (x2) 
sc5 inv4(x3) may then be replaced by sclql sc51 x2 sc52, 
wherein sc51 and sc52 are the function sc5 modi?ed in accor 
dance with the inverters. This reduction may be applied to any 
expression having inverters and functions, including 
modulo-n adders and multipliers and adders and multipliers 
over GF(n). Accordingly, an n-valued expression created 
from adders and having at least one multiplier may be 
changed to an expression having at least one function not 
being an adder modulo-n or over GF(n). A function not being 
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an adder over GF(n) or a modulo-n adder herein may be 
de?ned as an n-valued non-adder function. 

In accordance with an aspect of the present invention, one 
may thus circumvent using an adder and multiplication by 
using an n-valued non-adder function in an expression to 
solve an error. Such an expression may be part of Cramer’s 
rule. 

Furthermore, one may overestimate the number of errors 
within the constraints. For instance, if only Xl was in error 
and X3 was not in error but the other conditions still apply then 
one still will reconstruct the correct value for x3. Even though 
X3 was not in error. 

It is fairly simple to calculate the symbols in error ‘on-the 
?y’, based on the errors. One can also already implement each 
set of solutions based on the maximum number of errors. 
Assuming 3 symbols in error even if only one is in error does 
not matter to the ?nal error correction. One merely recalcu 
lates the symbols. The only limitation is that one of course can 
not solve in a deterministic way more errors than independent 
equations. One can again see the clear advantage here of 
knowing where the errors are located. It cuts the number of 
required check symbols in half, as compared to an RS code for 
instance. 

FIG. 3 provides a diagram for solving different equations 
depending on different errors. One can store the equations for 
speci?c combinations of errors. As an example, it is assumed 
that at most 3 consecutive symbols can be in error. For each 
error combination a solution set is determined a stored for 
instance as an executable program or is hard wired as a circuit. 
Assume a codeword having 10 data symbols and 3 check 
symbols and each codeword of the set has at most 9 symbols 
in common with another codeword. Assume that, for 
instance, through using also horizontal error check symbols 
one can determine where errors occur in a column 1000 in 

FIG. 3. Assume that errors occurred in position 1001 or in the 
?rst 3 symbols of the codeword. The solution for this situation 
is enabled as ‘solution 1’ in equation solver 1010. This equa 
tion solver may be part of a computer program or hard wired 
logic circuits. The solver is then provided with the known 
correct symbols [X4 X5 X6 X7 X8 X9 x10 pl p2 p3] and then 
generates the correct [X1 X2 X3]. 

Such a circuit or computer program may calculate a value. 
This may be achieved by n-valued or n-state circuits or 
devices. It may also be achieved by binary circuitry, wherein 
an n-state symbol is represented in binary form. Ultimately, 
the solver will generate the correct state for the symbols in 
error. The correct symbols may be generated as n-state sig 
nals, or in a binary signal representation or in any other signal 
representation that can be used to represent the corrected 
symbol. After error correction, a symbol in binary represen 
tation may for instance be converted into an n-state signal by 
applying a Digital/Analog converter as is well known to one 
of ordinary skill in the art. A symbol in binary representation 
may also be further processed in binary form. After error 
correction, the complete set of symbols as received and cor 
rected is then available for further processing by digital 
devices or a processor or any other digital signal processing 
device. Accordingly, actual devices are used. One requires 
signals for further processing. For instance the received and 
corrected n-valued symbols may be processed an converted 
and provided by a device into an audio signal. It may also be 
used to generate a video signal, a radar signal, or any other 
useful signal. The methods and apparatus to correct n-valued 
signals or representations of n-valued or n-state signals are 
useful, as they prevent from errors to occur in for instance 
audio and/ or video signals and thus prevent a negative expe 
rience by the user of such audio or video signals. In one 
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18 
embodiment an apparatus evaluates and/or processes at least 
100 n-state check symbols per second. In another embodi 
ment an apparatus evaluates and/or processes at least 1000 
n-state check symbols per second. In yet another embodiment 
an apparatus evaluates and/or processes at least 100,000 
n-state check symbols per second. In yet another embodiment 
an apparatus evaluates and/or processes at least one million 
n-state check symbols per second. 

For another error situation 1002 the solver addresses a 
different ‘solution 2’ and generates [X5 X6 x7] and for error 
situation 1003 the solver addresses yet another ‘solution 3’ 
which may generate just x10 or also [pl p2] if those symbols 
are used in a later stage. 
Checking the Check Symbols 

It has been shown that n-state symbols in error can be 
corrected once their location is known. In this section as an 
aspect of the present invention a method is provided to detect 
multiple errors over a dimension of a matrix and to provide 
possible locations of symbols in errors. Based on the location 
one may calculate directly the magnitude of an error (by using 
a syndrome) or the correct value of a symbol in error. When a 
dimension of a matrix (such as a row or a column) contains 
many data symbols of which only a few are in error it may 
reduce the number of calculations by ?rst determining a mag 
nitude of an error and then correct the symbol in error by that 
magnitude. 

If a dimension of a matrix such as a row or a column has p 

check symbols of which each check symbol is generated of an 
independent equation compared to the other check symbols 
then always p symbols in error can be detected. Errors in such 
a case cannot cancel each other out. During coding the check 
symbols are calculated. The symbols are then processed, 
stored or transmitted. After receiving the processed, stored or 
transmitted symbols the check symbols are recalculated. The 
existence of one and up to p symbols in error in a dimension 
of a matrix will create at least one recalculated check symbol 
which is different from a received check symbol. The dimen 
sion such as a row or column of a matrix is then called in error, 
and may be called a row, column or dimension in error. 

Because a data symbol in a matrix shares at least two 
dimensions such as a row and a column, an error in a data 
symbol will put at least two dimensions or for instance a row 
and column in error. Accordingly, an error may exist at the 
cross point of two dimensions in error. 

In a dimension in error not only data symbols may be in 
error. Also check symbols may be in error. If only check 
symbols are in error one may not care to solve the symbols in 
errors as the data symbols are correct. If a mix of data symbols 
and check symbols are in error one may have to solve all 
errors. It may be advantageous to assure that all check sym 
bols are error free, for instance by applying excess check-the 
check symbols ‘tt’ for instance by coding the check symbols 
according to a Reed Solomon (RS) code. Such use of a RS 
code does not fundamentally change the approach herein 
provided. For illustrative purposes it is assumed that in one 
embodiment check symbols are error free, possibly by using 
RS codes. This is shown schematically in FIG. 4 in a matrix 
code 400. Herein the data symbols are in 401. The check 
symbols of the rows are in 402 and of the columns in 403. 
Check-the check symbols are in 404. The size of block 404 
re?ects that additional check on check-the check symbols are 
included to allow error correction in the check symbols. It is 
to be understood that in a different embodiment one may have 
errors in check symbols that require correction. 
Locating and Correcting Errors in a Matrix 
The problem of narrowing the location of errors in dem 

onstrated in FIGS. 5 and 6 which show a matrix with errors 
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related to the matrix code of FIG. 2. The check-the check 
symbols ‘tt’ are deliberately omitted in this illustrative 
example to keep focus on error location, but may be assumed. 

The situation in FIG. 5 is simple. The shaded row related to 
check symbol t4 is in error. Also the shaded column related to 
p3, q3 and r3 is in error. Accordingly the symbol in error is on 
the crossing of this row and column: symbol Z3 is in error. 
One may resolve the error by using one of the equations to 
determine the relevant check symbols as shown above. 

The situation in FIG. 6 is more complicated. The shaded 
rows related to t2 and t4 are in error and the shaded columns 
related to pl and p3 are in error. Even if it is assumed that only 
one error occurs in a row, this situation indicates that poten 
tially symbols y1, y3, 21 and Z3 are in error. One cannot 
resolve the errors over the rows in a deterministic way as each 

row has just one independent check symbol. However, one 
can resolve at least two independent equations per column. 
One may thus resolve y1 and 21 in the ?rst column. In case 
just one symbol is in error one will ?nd one symbol to be 
changed as to its received value and one symbol being the 
same as to its received value. The same applies to the column 
with y3 and Z3. 
One can see in FIG. 6 that two columns are in error, even 

though the error limitation of one error per row was not 

exceeded. However, the limitation of 3 rows in error was not 
exceeded. One may thus derive a rule for deterministic error 
detection and correction in a matrix code. 
A row of a matrix comprising n-state data symbols may 

have p independent n-state check symbols. A column of the 
matrix comprising n-state data symbols may have q indepen 
dent check symbols. If m columns are in error with m>p but 
not more than q rows are in error one can solve up to m><q 
symbols in error by assuming each symbol that is in a row or 
a column in error as an unknown; by solving q unknowns in a 
column from a set of q independent equations; and by solving 
all unknowns for all columns. 
One may interchange the terms column and rows for the 

situation wherein m rows are in error with m>q but no more 

than q columns are in error. 
One may also adapt the rule for k-dimensional matrices 

with kz2. A ?rst dimension of a k-dimensional matrix com 
prising n-state data symbols may have p independent n-state 
check symbols. A second dimension of the k-dimensional 
matrix comprising n-state data symbols may have q indepen 
dent check symbols. If m instances of the ?rst dimension are 
in error with m>p but not more than q instances of the second 
dimension are in error one can solve up to m><q symbols in 
error by assuming each symbol that is in an instance of a ?rst 
and a second dimension in error as an unknown; by solving q 
unknowns in an instance of second dimension from a set of q 
independent equations; and by solving all unknowns for all 
instances of a second dimension. 
An instance of a dimension is then a row in that dimension. 

An instance of a ?rst dimension in a 2-dimensional matrix 
may be a row in horizontal direction, commonly called a row. 
An instance of a second dimension of a 2-dimensional matrix 
is then a row in the vertical direction or commonly called a 
column. An instance of a third dimension of a 3-dimensional 
matrix is a row that is perpendicular to the ?rst and second 
dimensions, etc. 
One may further code and decode a plurality of n-state data 

symbols by associating the data symbols with a ?rst matrix. 
One may then generate check symbols over instances of a 
dimension (a row for instance). In order to enable decoding 
the data symbols and check symbols are then associated with 
a second matrix. It should be clear that the second matrix has 
more dimensions that the ?rst matrix. Furthermore, one may 
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create Reed Solomon codewords for the check symbols by 
creating check symbols for the check symbols (check-the 
check symbols). 

While one may solve errors by using the symbols in errors 
as unknowns one may also solve the magnitude of an error by 
using syndromes. 
As described above and by the inventor in Us. patent 

application Ser. No. 11/ 680,719 ?led Mar. 1, 2007 and in Ser. 
No. 11/739,189 ?led Apr. 24, 2007 and in Us. patent appli 
cation Ser. No. 11/969,560 ?led on Jan. 4, 2008, which are all 
incorporated herein by reference, one may create n-state 
check symbols by executing the n-state expression: 
s1 1Qa*x1+b*x2+c*x3+d*x4 wherein + is an n-valued adder 
(be it mod-n or over GF(n)) and * is an n-valued multiplica 
tion. If one wants to solve the equation for unknowns the 
multiplication must be a reversible function. This means that 
the multiplication could be de?ned in the extension ?eld 
GF(n:2P) ifn is a multiple of 2. 

It was also shown earlier that an n-valued constant multi 
plier applied to an n-state variable may be treated as an 
n-valued inverter. Accordingly one may write the equation for 
s11 as: 

s1 1Qinva(x1) sc1 invb(x2) sc2 invc(x3) sc3 invd(x4). 
Herein inva(x1) means that x1 is modi?ed according to an 
inverter inva which is n-valued multiplication by a factor ‘a’. 

It was shown by the inventor in Us. Non-Provisional 
patent application Ser. No. 10/935,960, ?led on Sep. 8, 2004 
which is incorporated herein by reference how a function with 
inputs containing an inverter can be reduced to a function 
having no inverter. According to this aspect one could write 
s11 for instance as: s1 1Q(((x1 scml x2) scm2 x3) scm3 x4). 
Herein a function scm is an n-valued function modi?ed 
according to one or more inverters. For illustrative purposes 
functions over GF(2P) will be used, as this make manipulation 
of expressions easier. However, other n-state functions are 
possible and are fully contemplated. Adders over GF(2P) are 
associative, distributive and self reversing. As was shown 
above, solving equations can easily be achieved with for 
instance Cramer’s rule. Because Cramer’s rule will lead to 
adding of terms which are multiplied by a coef?cient, one 
may in implementation reduce these functions again accord 
ing to the inverters which represent the multipliers, to reduced 
functions not being an addition and not having multipliers, 
thus making execution of an n-valued expression faster. 

It was also shown that in n-valued or n-state logic one may 
create from the same n-valued symbols two different and 
independent equations to generate a check symbol. For 
instance: s11Qa1*x1+b1*x2+c1*x3+d1*x4 s12Qa2*x1+ 
b2*x2+c2*x3+d2*x4 
The above, and other n-state switching expressions pro 

vided herein, may look like arithmetical expressions. It is 
emphasized that these expressions are n-state switching or 
logic expressions that are to be implemented in devices. 
One can thus create a codeword [x1 x2 x3 x4 s11 s12] 

which may be part of a code wherein each codeword differs at 
least in 3 symbols in like positions. This means that in such a 
code two errors can be detected in each codeword (without 
determining a location) by recalculating the check symbols. 
These errors may include errors in the check symbols. Code 
words with such a property can be generated by LFSRs, but 
also by direct execution of the expressions as shown above. If 
one uses an LFSR such an LFSR may be in Galois or 
Fibonacci con?guration. In general Galois con?guration 
LFSRs are used in the literature, however this is not required 
and Fibonacci con?gurations may have a speed advantage as 
one may start generating check symbols directly. A Galois 
LFSR needs to read-in each symbol to generate the correct 
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content of the shift register and then needs to read-out the 
generated symbols. LFSR methods are for instance used in 
CRC error detection. By using this type of codewords errors 
in case of two errors in a codeword cannot be hidden by 
canceling each other out under certain conditions. 

For illustrative purposes the number of errors will not 
exceed 3 in a word. One may use a 4-valued or higher valued 
code to achieve the required number of independent equa 
tions to generate n-valued check symbols. While the selection 
of n does not affect the number of errors that can be detected 
with 100% certainty, it does affect the chance of hiding addi 
tional errors.Assume that a codeword has 5 n-valued symbols 
of which 2 are check symbols generated by independent 
equations. Assume further that 2 symbols are in error and can 
be detected. The chance that a third error in one of the other 
symbols will create a correct codeword is smaller as n 
becomes greater and the chance that an additional error is 
hiding becomes smaller. 

For instance one may generate two 4-valued check sym 
bols s1 and s2 by the following equations: 

wherein + and * are de?ned in GF(4). 
There are 64 4-valued codewords [X1 X2 X3 s1 s2] . Assume 

2 errors: el and e2 in the codeword for instance as: [el X2 e3 
s1 s2]. 

In accordance with an aspect of the present invention a 
value of n is selected for creating codewords that will detect at 
least p errors and that increases the chance to detect p+l 
errors. 

As an example apply the 4-valued codeword [X1 X2 X3 sl 
s2]:[0 0 3 3 2], wherein check symbols sl:3 and s2:2 are 
generated by the earlier provided independent expressions. 
Assume that symbols X2 and s2 are received correctly. This 
means that errors in X1, X3 and s1 must occur in such a way 
that a correct codeword will be formed. The correct code 
words in this set of codewords with X2:0 and s2:2 are: 
[l 0 l 0 2]; 
[2 0 0 2 2]; and 
[3 0 2 l 2]. 

For an 8-valued code one may apply the expressions: 

wherein + and * are de?ned over GF(8). 
Assume an 8-valued codeword [X1 X2 X3 sl s2]:[l 7 4 6 3] 

wherein check symbols sl:6 and s2:3 are generated by the 
provided independent 8-valued expressions. Assume that 
symbols X2 and s2 are received correctly. This means that 
errors in X1, X3 and s1 must occur in such a way that a correct 
codeword will be formed. The correct codewords in this set of 
codewords with X2:7 and s2:3 are: 
[0 7 l 3 3]; 
[2 7 7 2 3]; 
[3 7 2 4 3]; 
[4 7 6 l 3]; 
[5 7 5 7 3]; 
[6 7 3 5 3]; and 
[7 7 0 0 3]. 

Accordingly it is less likely for an 8-valued codeword with 
3 symbols in errors to generate a correct codeword than it is 
for errors in a 4-valued codeword to do the same. However it 
is probably fair to say that that for higher values of n it already 
is fairly unlikely to generate a correct codeword from errors. 
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This means that most likely an n-valued codeword with p 

check symbols over a ?rst dimension with k n-valued sym 
bols generated by p independent equations but with m 
instances of a second dimension in error with k>p, but 
wherein a second dimension with q check symbols over a 
second dimension has not more instances of the ?rst dimen 
sion in error than p, one is likely able to solve q><m>p><q 
errors. 

Assume the three check symbols over a data symbols [X1 
X2 X3 x4] are determined by three independent n-valued 
expressions: 

For illustrative purposes assume ‘+’ to be an addition over 
GF(8) and ‘ * ’ be a multiplication over GF(8). Check symbols 
may be generated by either executing the above expressions 
by 8-valued switching functions, or by running an LFSR that 
will generate [r1 r2 r3], or by executing three 8-valued expres 
sions in a 8-state switching device which are equivalent to the 
above expressions. It has been shown by the inventor in the 
earlier cited patent applications that expressions containing a 
multiplication by a constant and an addition may be reduced 
to a function not being an addition and containing not a 
multiplication. Such an equivalent expression may determine 
a check symbol faster than an expression containing an mul 
tiplication. It may be easier to ?rst determine all expressions 
with multiplications and additions because in GF(8) these 
functions are commutative, associative and distributive, and 
reduce the obtained ?nal expressions. 

For solving the errors in a matrix wherein the number of 
potential errors is signi?cantly smaller than the number of 
data symbols, it may be easier to apply syndrome calcula 
tions. In the above example one may assume that any of the 
?ve symbols in the ?rst row can be in error. It is also assumed 
that the check symbols are known to be error free. One may 
also use the methods disclosed herein for check symbols that 
are not error free. However one then has to solve the equations 
for solving errors in check symbols, as in that case no funda 
mental difference can be made between data symbols and 
check symbols. 

FIG. 7 shows a matrix code with 3 independent check 
symbols per column and per row. An error situation is shown 
in FIG. 7. After recalculation of check symbols it is clear that 
errors have occurred in rows 1, 2 and 5; and it is clear that 
errors have occurred in columns 1, 2, 3 and 4. Assume that the 
code is dimensioned in such a way that “illegal” errors which 
are more than 3 errors in a row or in a column have not 

occurred. In fact an error ‘eij’ is an assumed error, not an 
actual error. The actual errors are indicated as ‘aeij’ and are 
printed in bold and a larger font in FIG. 7. The positions of the 
actual errors are of course unknown a priori solving the errors. 
However the total assumed number of errors can all be 
resolved using the independent n-valued expressions. 
Assuming that the check symbols are error free, one may 

then determine: 


























