
US007865807B2

(12) Ulllted States Patent (10) Patent N0.: US 7,865,807 B2
Lablans (45) Date of Patent: Jan. 4, 2011

(54) MULTI-VALUED CHECK SYMBOL 6,851,086 B2 2/2005 Szymanski
CALCULATION IN ERROR DETECTION AND 7,000,167 B2 2/2006 Coker et a1.
CORRECTION 7,116,250 B2 10/2006 Coene

7,365,576 B2 * 4/2008 Lablans 326/104

(76) Inventor: Peter Lablans, 8 Harvey Ct., Morris 2006/0282607 A1 * 12/2006 Lablans 711/100
Township, NJ (US) 07960

() Not1ce. Subject' to any d1scla1mer, the term of this OTHER PUBLICATIONS
patent is extended or adJusted under 35
U~S~C- 15403) by 960 day5~ Wenjing Rao, et al., Fault Tolerant Arithmetic With Applications in

Nanotechnology based Systems, ITC International Test Conference
(21) Appl. N0.: 11/680,719 2004 Oct. 26-28, 2004, pp. 472-478, Charlotte, NC, USA.

_ Wong, et al. Using Multi-Dimensional Parity-Check Codes to Obtain
(22) F1led: Mar. 1, 2007 Diversity in Rayleigh Fading Channels, URL: WWW.dsp.u?.edu/~

tWong/Preprints/00965675.pdf, pp. 1210-1214, 2001.
(65) Prior Publication Data Tee, et al., Multilevel generalised low-density parity-check codes,

Us 2007/0258516 A1 NOV‘ 8, 2007 Electronics Letters, 2 pages, Feb. 2, 2006 vol. 42 No. 3.

_ _ (Continued) Related US. Application Data

(63) Continuation-in-part of application No. 10/935,960,
?led on Sep. 8, 2004.

(60) Provisional application No. 60/547,683, ?led on Feb. (57) ABSTRACT
25, 2004, provisional application No. 60/779,068,
?led on Mar. 3, 2006.

Primary Examineriloseph D Torres
(74) Attorney, Agent, or FirmiDiehl Servilla LLC

Methods and systems for error detection and error correction
(51) Int_ CL in n-valued With n>2 data symbols are disclosed. N-valued

H03M13/00 (200601) check symbols are generated from data symbols in n-valued
(52) US. Cl. 714/781 logic expressions using n'valued logic functions‘ N'valued

Hamming codes are disclosed. Also disclosed is the genera
tion of check symbols from data symbols in an n-valued
expression Wherein at least one check symbol is multiplied by

(56) References Cited a factor not equal to 0 or 1 in GF(n). Identifying n-valued
symbols in error by check symbols and error correction by
solving sets of independent n-valued equations are also dis

(58) Field of Classi?cation Search 714/781

See application ?le for complete search history.

U.S. PATENT DOCUMENTS

3,089,038 A * 5/1963 RutZ 326/134 °1°Sed~A method for introducing and removing annoyance
4 553 237 A 11/1985 Nakamura et a1‘ errors is provided. Systems for error corrections in commu
4928’280 A 5/1990 Nielson et a1‘ nication and data storage are also provided.

5,386,425 A l/l995 Kim
5,771,245 A 6/1998 Zhang 17 Claims, 9 Drawing Sheets

In a received codeword identify n-valued data symbols
and check symbols.

Apply the received data symbols to the relevant n-valued
expressions with n-valued logic functions, and determine
the re-calculated check symbols.

Compare received and rte-calculated check symbols.

Determine if a data symbol
was in error,

Calculate the correct value of the symbol
in error,

Provide the correct data symbols

US 7,865,807 B2
Page 2

OTHER PUBLICATIONS Valles, et al., Hamming Codes Are Rate-Ef?cient Array Codes, IEEE
Globecom 2005, p. 1320-1324.

Bernard Sklar, A primer on turbo code concepts, IEEE Communica- Pohlmann, Ken C., “The Compact Disc; a handbook of theory and
tions Magazine, Dec, 1997, p, 94-102, use”, The Computer music and digital audio series; vol. 5 A-R
XILINX LogiCORETM, IEEE 802.16 Compatible Turbo Product Edmons’ Inc' Madlson’ WI 1989’ (1989)’58'“
Code Encoder v1.0, Product Speci?cation, Oct. 30, 2002, 5 pages. * Cited by examiner

US. Patent Jan. 4, 2011 Sheet 1 019 US 7,865,807 B2

A“

FIG. 1

US. Patent Jan. 4, 2011 Sheet 2 of9 US 7,865,807 B2

24
FIG. 2

US. Patent Jan. 4, 2011 Sheet 3 of9 US 7,865,807 B2

Create n-valued check symbols by applying
n-valued reversible logic functions so that:
-each data symbol is a function of at least tWo n-valued
check symbols, and if a the value of one data symbol is changed it
affects at least two check symbols
- not only one check symbol changes if one n-valued data symbol
changes in value or state.

Create an n-valued codeword by combining
n-valued data symbols and check symbols.

FIG. 3

US. Patent Jan. 4, 2011 Sheet 4 of9 US 7,865,807 B2

In a received codeword identify n-valued data symbols
and check symbols.

Apply the received data symbols to the relevant n-valued
expressions With n-valued logic functions, and determine
the re-calculated check symbols.

Compare received and re-calculated check symbols.

Determine if a data symbol
Was in error.

Calculate the correct value of the symbol
in error.

Provide the correct data symbols

FIG. 4

US. Patent

900

d12

d22

Jan. 4, 2011

c131 d32 d33

Sheet 7 0f 9 US 7,865,807 B2

901

solution 1

d42

d52

d62

FIG. 9

> solution 3 (132 = f[d31 (133 (13 1

solution 6

US. Patent Jan. 4, 2011 Sheet 8 of9 US 7,865,807 B2

Start at line 1

Input symbols of horizontal line into coder.

Errors detected ?

neXt line

no yes

Mark line in error.

V

All horizontal lines checked?

Start at column 1

Input symbols of Vertical column into coder.

Errors detected ?

neXt column

no

Mark column in error.

A

All Vertical columns checked?

Provide error information to solver with other data

i
FIG. 10

US. Patent Jan. 4, 2011 Sheet 9 019 US 7,865,807 B2

1101 1106 1107 1105

1102 1103 1104

4,‘ —> l, + —>

FIG. 11

1201 1203

1202 1204 1205

FIG. 12

1302 1304 1305

FIG. 13

US 7,865,807 B2
1

MULTI-VALUED CHECK SYMBOL
CALCULATION IN ERROR DETECTION AND

CORRECTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation-in-part of US. Non
Provisional patent application Ser. No. 10/935,960, ?led on
Sep. 8, 2004, entitled TERNARY AND MULTI-VALUE
DIGITAL SCRAMBLERS, DESCRAMBLERS AND
SEQUENCE GENERATORS, Which claims the bene?t of
US. provisional Patent Application No. 60/547,683 ?led on
Feb. 25, 2004. This application also claims the bene?t of US.
Provisional Application No. 60/779,068, ?led Mar. 3, 2006,
Which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

The present invention relates to error correction coding. In
particular it relates to error correction by using check symbols
Which determine a relation betWeen data symbols, created by
applying n-valued logic functions to data symbols.
A check symbol over data bits is usually called a parity bit

and is used in binary error correction or detection. It is cal
culated by applying a binary logic function to a number of
data bits is for instance a Word or sequence of bits. A parity bit
is transmitted With the data bits. At the receiving side the
parity bit is recalculated using the same function and data bits
in identical positions in the codeWord or sequence of data bits.
If the received parity bit and the calculated parity bit are
different one may assume that an error has occurred in at least
one bit, including the parity bit.

The number of binary functions that can be applied to
calculate a parity bit, and be used to correct errors, is limited
to tWo functions, the binary XOR and EQUAL functions. As
both functions are each others reverse, it does generally not
make a difference if one uses one or the other.

Because of the limited number of parity functions one has
to increase the number of parity bits, and thus loWer the
information transmission rate, to perform error correction.

N-valued codes, such as Reed-Solomon codes are knoWn.
Check symbols are generated by using in essence adders and
multipliers in a Linear Feedback Shift Register. Also check
sum approaches are knoWn. Essentially all these codes go
back to using binary methods and intermediary steps are
required in RS codes to determine a check symbol. Like in a
RS code one may add symbols to an n-valued codeWord
according to a coding scheme to improve the Hamming dis
tance betWeen codeWords. HoWever detecting and correcting
errors may become quite elaborate.

Accordingly simple methods and apparatus providing a
greater number of parity functions, loWering the number of
check symbols and thus increasing the information transmis
sion rate of error correcting codes or making error correction
easier are required.

SUMMARY OF THE INVENTION

One aspect of the present invention presents a novel
method and system that Will provide n-valued symbol correc
tion in a plurality of n-valued data symbols.

In accordance With another aspect of the present invention
a method is provided for determining an n-valued check sym
bol With n>2 from a plurality of n-valued data symbols, com

20

25

30

35

40

45

50

55

60

65

2
prising using a reversible n-valued logic function in an n-val
ued logic expression With the plurality of n-valued data
symbols as variables.

In accordance With a further aspect of the present invention
a method is provided for determining an n-valued check sym
bol using an n-valued function that is commutative, associa
tive and self reversing.

In accordance With another aspect of the present invention
a method is provided for generating a plurality of n-valued
check symbols, Wherein a ?rst n-valued check symbol is
generated by a ?rst n-valued expression and a second n-val
ued check symbol is generated by a second n-valued expres
sion and the ?rst and second expression have at least one
n-valued data symbol in common as variable.

In accordance With a further aspect of the present invention
a method is provided for multiplying at least one variable in
an n-valued expression in GP (n) not leading to 0 or to identity
and not using an LFSR.

In accordance With another aspect of the present invention
a method is provided for generating a plurality of n-valued
check symbols, Wherein a ?rst n-valued check symbol is
generated by a ?rst n-valued expression and a second n-val
ued check symbol is generated by a second n-valued expres
sion and the ?rst and second expression have at least one
n-valued data symbol in common as variable.

In accordance With a further aspect of the present invention
a method is provided for Wherein n-valued check symbols are
created according to a Hamming code.

In accordance With another aspect of the present invention
a method is provided for error correcting up to k errors in a
codeWord having r n-valued data symbols, comprising the
steps of creating k n-valued check symbols, each check sym
bol generated by one of k n-valued expressions each With at
least tWo of the r n-valued data symbols as variables and each
expression applying a reversible n-valued logic function,
Wherein the k n-valued expressions form an independent set
of equations for solving k unknoWns; and creating a ?rst
codeWord comprising r n-valued data symbols and k n-valued
check symbols.

In accordance With a further aspect of the present invention
a method is provided for multiplying at least one of the r
n-valued symbols in the n-valued expression in GF(n) not
leading to 0 or to identity and not using an LFSR.

In accordance With another aspect of the present invention
a method is provided for creating at least r n-valued additional
check symbols, each of the r additional check symbols
depending on one of the r n-valued data symbols as a variable;
and providing the at least r data symbols and the r+k check
symbols on an output.

In accordance With a further aspect of the present invention
a method is provided for re-calculating check symbols.

In accordance With another aspect of the present invention
a method is provided for comparing transferred check sym
bols With re-calculated check symbols; and identifying if an
error has occurred in the ?rst codeWord.

In accordance With a further aspect of the present invention
a method is provided for identifying Which of up to k n-valued
symbols in the ?rst codeWord are in error.

In accordance With another aspect of the present invention
a method is provided for making the up to k identi?ed sym
bols in error in the ?rst codeWord unknoWns in k n-valued
expressions for generating n-valued check symbols; and solv
ing the set of k equations for the unknoWns.

In accordance With a further aspect of the present invention
a system is provided for implementing the methods herein
provided as different aspects of the present invention.

US 7,865,807 B2
3

In accordance With another aspect of the present invention
the system herein provided as an aspect of the present inven
tion is a communication system.

In accordance With a further aspect of the present invention
the system herein provided as an aspect of the present inven
tion is a data storage system.

In accordance With another aspect of the present invention
a method is provided for creating and solving annoyance
errors.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shoWs a Venn diagram for a n-valued (7,4) Ham
ming code.

FIG. 2 shoWs a Venn diagram for a n-valued (11,7) Ham
ming code.

FIG. 3 illustrates in a How diagram a method of creating a
n-valued codeWord.

FIG. 4 illustrates in a How diagram a method for correcting
n-valued symbols in error.

FIG. 5 shoWs a matrix for arranging n-valued data symbols
and check symbols.

FIG. 6 shoWs another matrix for arranging n-valued data
symbols and check symbols.

FIG. 7 shoWs yet another matrix for arranging n-valued
data symbols and check symbols.

FIG. 8 shoWs yet another matrix for arranging n-valued
data symbols and check symbols.

FIG. 9 shoWs in diagram a relation betWeen data symbols
and a check symbol.

FIG. 10 is a How diagram illustrating a method for detect
ing errors.

FIG. 11 illustrates a communication system in accordance
With an aspect of the present invention.

FIG. 12 illustrates part of a data storage system in accor
dance With an aspect of the present invention.

FIG. 13 illustrates another part of a data storage system in
accordance With another aspect of the present invention.

DESCRIPTION OF A PREFERRED
EMBODIMENT

The term n-valued herein is used as non-binary Wherein
n>2. Herein also the term check symbol is used. In binary
applications one generally uses the term parity bit or symbol.
Because the binary check function is the XOR function a
check symbol generated by the XOR function is a 0 if there
Was an even number of l s and a 1 if there Was an odd number
of Is. Hence the name parity. The name parity has no such
meaning in n-valued functions. Accordingly the name check
symbols Will be used.

Parity calculation in binary error correction is the process
Wherein a number of bits in a codeWord or sequence or block
have for instance an even parity or even number of Is, includ
ing the parity bit. Assume one has an 8 bit code Word [a b c d
e f g h] and a parity bit p is added. For instance a rule for
determining a parity symbol could be: the number of Is in [a
b c d e fg h p] should alWays be even.

This can be expressed in the equation a+b+c+d+e+f+g+h+
p:0. The operation ‘+’ in this equation is the modulo-2 addi
tion or XOR function.

It is one aspect of the present invention to create a check
symbol for a codeWord comprised of k n-valued symbols by
using a reversible n-valued operation scl. In n-valued logic
one may use different Ways or functions to create a ‘parity’ or
check symbol. One may use reversible and non-reversible
operations. For instance a non-reversible parity n-valued

20

25

30

35

40

45

50

55

60

65

4
operation is one Wherein a l is added (modulo-n) to a sum
When a symbol is not 0, and a 0 When a symbol is Zero. The
reversibility is related to determining the original value of the
symbols of Which a parity symbol is determined.
One method as an aspect of the present invention is to apply

reversible n-valued logic operations to calculate the ‘check’
or parity symbol of a sequence of n-valued symbols. The
advantage of a reversible operation is that an equation can be
solved. For instance tWo n-valued symbols x1 and x2 com
bined by a function scl Will generate a symbol pl according
to the equation: xl scl x2:pl.
Assume that scl is self reversing and commutative. In that

case (as is for instance explained in US. patent application
Ser. No. 10/912,954 ?led Aug. 6, 2004 entitled: Ternary and
higher multi-value digital scramblers/descramblers, Which is
incorporated herein in its entirety): xlrpl scl x2. For calcu
lation and notation purposes it is sometimes preferred to Write
the parity symbol equations With a result 0. In that case (xl
scl x2:0) canbe Written for instance as: (xl scl x2 scl pl):0.
This is the result of (xl scl x2):(pl scl 0) again With scl
assumed to be a commutative self-reversing n-valued func
tion.

It should be clear that pl can also be calculated in a differ
ent fashion. For instance by: (xl scl x2):(pl sc2 0) so that
((xl scl x2) sc3 pl):0. Herein the function sc3 is the reverse
of sc2. If sc2 is self-reversing then:

((xl scl x2) sc2 pl):0.
It is important to note that the n-valued self-reversing func

tions are in general not associative. This means that even
though a function may be commutative, the order of variables
in a multi-variable equation does matter. The expression (xl
scl x2 sc2 pl) should be evaluated as {(xl scl x2) sc2 pl}l.
In Words: ?rst evaluate (xl scl x2) as ‘term’ and then {term
sc2 pl}. Assuming scl and sc2 being commutative one Will
get the same results by evaluation {pl sc2 (xl scl x2)} or {pl
sc2 (x2 scl xl)} or {(x2 scl xl) sc2 pl}.
To demonstrate the above one may apply tWo functions:

scl and sc2, Which are self-reversing and commutative. For
instance one can use tWo 4-valued sWitching functions scl
and sc2 of Which the truth tables are provided beloW.

scl 0 l 2 3

0 3 2 l 0
l 2 l 0 3
2 l 0 3 2
3 0 3 2 1

S02 0 l 2 3

0 l 0 3 2
l 0 3 2 l
2 3 2 l 0
3 2 l 0 3

Assume XIII and x2:2. Then (xl scl x2):0 according to
the truth table of scl. If one Wants (xl scl x2) (pl scl 0) then
pl:3. Or (xl scl x2 scl pl):0. For instance (xl scl pl) in this
case is (l scl 3):3. And (x2 scl 3):(2 scl 3):2 Which is
different from 0. So the expression is not associative. HoW
ever the expression is reversible When one observes the order
of the variables.

US 7,865,807 B2
5 6

For illustrative purposes the associative 4-valued function
sc3 is also provided in the following truth table.

5 scl 0 1 2

S03 0 1 2 3

0 0 1 2 3 0 0 1 2

1 1 0 3 2 1 1 2 0
2 2 3 0 1
3 3 2 1 0 10 2 2 0 1

It is easy to check that (X1 sc3 X2 sc3 p1):0 will apply if (X1
sc3 X2):p1.

Error-Correction 15 S02 0 1 2

Two different functions allow for error correction of at least
one symbol after transmission of a block of 4 symbols of 1i 1i a i
which 2 symbols are ‘check’ or parity symbols. The ‘check’ 2 2 1 0
symbols are created by applying different n-valued functions
to two n-valued information symbols. For instance in the 20
4-Valued Case the following iS applied. Assume IWO infOIma- The following table provides all possible check symbols pl
tion symbols X1 and X2. From these symbols two 4-valued and p2 as a result Of X1 and X2
‘check’ symbols are created: pl and p2 according to the two
n-valued functions sc1 and sc2 with:

p1:(X1 sc1 X2) and 25 p1 p2 X1 X2

p2:(X1 sc2X2). 0 0 0 0
One can then transmit the 4 symbols word [X1 X2 pl p2] 1 2 0 1

and identify and correct one transmission error. The critical 2 1 0 2
issue here is to select sc1 and sc2 in such a way that a 30 1 1 1 0
combination of (p1, p2) completely determines the generat- a g i 5
ing information symbols X1 and X2. This can be done in the 2 2 2 0
following way: 0 1 2 1

1 0 2 2
1 . Before transmission of the information symbols, pl and p2
are calculated from symbols X1 and X2 and added to the 35
transmitted symbols into a 4 symbol word [X1 X2 pl p2].
Consequently the information transmission rate has been
halved.

2. One will receive the 4 symbol word [X1r X2r p1r p2r]. At
reception the check symbols are recalculated from X1r and
X2r using the known functions. The symbols X1r and X2r are
the received information symbol, of which one may contain
an error. One can then calculate p1r and p2r according to:

3. If p1r:p1 and p2r:p2 it may be assumed that no error has
occurred (again under the assumption that only one error may
have occurred).

4. If p1r¢p1 or p2r¢p2 then an error has occurred during
transmission in eitherp1 orp2. Because the assumption is that
only one error occurs in [X1 X2 p1 p2], combined with how p1
and p2 are calculated, the only way that only p1 or p2 has an
error can be that only one of these check symbols has eXpe
rienced a transmission error. If either X1 or X2 had eXperi
enced a transmission error then both p1r and p2r would be
different from p1 and p2. So X1r and X2r may in that case be
assumed to be identical to X1 and X2.

5 . If both p 1r and p2r calculated from X 1 r and X2r are different
from p1 and p2 then it is clear that either X1r¢X1 or that
X2I‘#X2. In this case plrrpl and pr2:p2, because only one
error is assumed to have occurred. And that error took place in
one of the information symbols.
As an illustrative eXample sc1 is selected to be the

modulo-3 addition and sc2 a modulo-3 subtraction.

40

45

50

55

60

65

From the above table one can see that each combination of

(p1, p2) maps into a unique combination of (X1, X2). Assume
that the sequence [X1r X2r p1r p2r]:[1 2 2 1] was received.
When one calculates p1:(X1r sc1 X2r) one gets p1:0. From
p2:(X1r sc2 X2r) one gets p2:2. Clearly that is different from
p 1r:2 and p2r:1 . With two check symbols in error (assuming
maXimum a single error) it means that either X1r or X2r is in
error, but that p1r and p2r may assumed to be correct. The
correct information symbols according to the matching table
is [X1 X2]:[0 2]. This means that X1r was in error. The under
lying requirement for this method of error-correcting coding
to work is that each combination of (X1, X2) generates by
using sc1 an output p1 and by using sc2 an output p2 in such
a way that each combination (X1, X2) in fact generates a
unique combination of (p1, p2). In fact (X1, X2) are reversible
combinations: when (p1, p2) is known then (X1, X2) is known.
And when (X1, X2) is known then (p1, p2) is known.

Another requirement is that the creation of p1 and p2
applies functions in such a way that when either X1 or X2
change then both p1 and p2 have to change. If that is not the
case then under the condition of one symbol error it may not

be possible to correct the occurring error. This condition
applies to all n-valued symbols. The underlying reason is that
for n>2 each word of 4 symbols has only 1 symbol in common
with another word of 4 symbols. The positive side of this
condition is that one can apply shifted versions of the truth
tables of sc1 or sc2 for creating the functions to generate the
n-valued check symbols. For instance in the ternary case one
can shift all rows in the truth table of the modulo-3 add

US 7,865,807 B2
7

function scl one position up and put the top roW of the
modulo-3 add function on the bottom of the neW truth table.
One may leave the truth table of sc2 unchanged.

The result is shoWn in the neW truth tables of scl and sc2.

8
manner for n-valued logic Wherein n is a prime number except
n:2. It should be appreciated that addition and subtraction
functions in binary and extended binary ?nite ?elds are iden
tical. For example one can create the n-valued symbol error
correction method for a 5-valued logic and 5-valued symbols.
The functions scl and sc2 in 5 -valued form are provided in the
folloWing truth tables.

scl 0 l 2

0 1 2 0
1 2 0 1 10

2 0 1 2 S01 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1

15 3 3 4 0 1 2

S02 0 1 2 4 4 0 1 2 3

0 0 2 1
1 1 0 2
2 2 1 0

20
S02 0 1 2 3 4

The table of (x1, x2) and (pl, p2) under plql scl x2 and
. . . . 0 0 4 3 2 1

p2ql sc2 x2 1s prov1ded 1n the following table: 1 1 0 4 3 2
2 2 1 0 4 3
3 3 2 1 0 4

25 4 4 3 2 1 0

pl p2 x1 x2

1 0 0 0
2 2 0 1

2 1 1 a 30
0 0 1 1 pl p2 x1 x2

1 2 1 2 0 0 0 0
0 2 2 0 1 4 0 1
1 1 2 1 2 3 0 2
2 0 2 2 3 2 0 3

35 4 1 0 4

1 1 1 0

One should take care in determining pl andp2 as both scl and 2 0 1 1
sc2 are non-commutative and the input order of x1 and x2 3 ‘31 i i
does make a difference When sWitched. HoWever the neW 0 2 1 4
function scl also can serve as a function to determine a check 40 2 2 2 0

symbol pl and alloWs for error correction. 3 1 2 1
Other examples Will also be provided. It should be clear 3 2 i i

that any Word [x1 x2 pl p2] in the above table only has 1 1 3 2 4
symbol in common in a similar position With any other code- 3 3 3 0
Word. In one Way the use of symbols is inef?cient. Only 9 45 4 2 3 1
codeWords are created While 81 codeWords are possible. If an 1; 5 g 5
error occurs in a codeWord, the Word With an error has at most 2 4 3 4

2 symbols in common With any other codeWord. HoWever a 4 4 4 0
codeWord With one error still has 3 symbols in common With 0 3 4 1

its error free codeWord. Accordingly a Maximum Likelihood 50 i i i ;
detection scheme can be created. Rather than check a received 3 0 4 4
codeWord against all possible codeWords, it is easier to
execute functions on symbols to ?nd if errors have occurred
and then determine the correct Word by using deterministic From the tab1e one can See that each Combination of 5'Va1'
expressions 55 ued check symbols maps uniquely into a combination of

In the folloWing examples other n-valued functions Will be 5'Va1ued information 5ymb015- Sim?ar eXamP1e5 can be Pro‘
demonstrated that can be used to create and recalculate check V1f1ed for n'vahled Sequences [X1 X2 131 P2] wherein n 15 a
symbols. Itis required that the n-valued functions scl and sc2 Pnme number and P1 and P2 are Panty or Check 5ymb015
as provided in the example and applied to tWo n-valued vari- generated by aPP1y1ng n'vahled functions to X1 and X2~
ables x1 and x2 Will generate the check symbols in suchaWay 60 A problem may arise When n is not prime. For instance
that: When n:4. In that case the combination of scl is modulo-4

each combination of (x1, x2) Will generate a unique com- addition and sc2 is a modulo-4 subtraction Will not generate
bination (pl, p2); combinations of (pl, p2) that map uniquely into (x1, x2). The

if only either xl or x2 changes in (x1, x2) then both pl and case of n:4 and for instance n:8 are important because it may
p2 change in value. 65 then be possible to consider combinations of multiple bits
One may use the modulo-n addition and a modulo-n sub

traction function for determining error symbols in the above
representing an n-valued symbol. For instance 2 bits repre
sent a 4-valued symbol and 3 bits an 8-valued symbol, etc.

US 7,865,807 B2
9

Though one can apply the same approach of coding an n-sym
bol by bits wherein n is prime, it does not fully use the coding
capacity of a channel. The solution to the problem of q”
valued symbols Wherein q is prime and n is an integer, is to
consider scl and sc2 as operations in the extended Galois
Field GF(q”).
As example 4-valued symbols Will be considered ?rst. The

function scl is the addition is the extended ?eld GF(22). Its
truth table is provided in the folloWing table.

scl 0 l 2 3

0 0 l 2 3
l l 0 3 2
2 2 3 0 l
3 3 2 l 0

The function sc2 has to be constructed in such a Way that an
input (x1, x2) to scl generates a value pl:(xl scl x2) and
inputted to sc2 Will generate p2:(xl sc2 x2) so that each
combination of (pl, p2) points uniquely to an input (x1, x2).

S02 0 l 2 3

0 0 2 3 l
l l 3 2 0
2 2 0 l 3
3 3 l 0 2

It should be clear that sc2 is not commutative.

The mapping of pl and p2 into x1 and x2 is provided in the
folloWing table, using again the expressions: plql scl x2;
and p2ql sc2 x2.

P1 P2

0 0 0 0
1 2 0 1
2 3 0 2
3 1 0 3
1 1 1 0
0 3 1 1
3 2 1 2
2 0 1 3
2 2 2 0
3 0 2 1
0 1 2 2
1 3 2 3
3 3 3 0
2 1 3 1
1 0 3 2
0 2 3 3

As an example of this 4-valued method assume that [xlr
x2rplr p2r]:[l 0 3 2] Was received. The information symbols
[xlr x2r]:[l 0] Would generate [pl p2]:[l 1]. Clearly that is
not the case and tWo check symbols are in error. That means
(assuming that only one of the 4 received symbols can be in
error) that the combination [plr p2r]:[3 2] is correct and that
[x1 x2] Was [1 2]. So x2r Was received in error.

Because both scl and sc2 are reversible functions and only
one error can occur one can of course also correct the error by

calculating x1 and x2 from p lr and p2r. It Was determined that
the parity symbols are correct, but one of the data symbols is
in error. Because (xlr scl x21:plr) and (xlr sc2 x23:p2r) one

25

30

35

40

45

50

55

60

65

10
can restate the equations as: XIFXZI‘ scl plr and x21:xlr scl
plr; and xlrq2r sc3 p2r and x21:xlr sc4 p2r. The function
scl is self reversing, commutative and associative. The func
tion sc2 is not associative, non-commutative and only self
reversing as p2r sc2 x2rqlr. In general there are no easy
algebraic solutions to solve equations Where the functions are
de?ned by truth tables.
One Way to solve this by truth tables is to compare the

relevant columns and roWs. For instance: xlr:p2r sc2 x2r; or
(xl1:2 sc2 x2r). Also (xlrq2r scl plr) or (xlrq2r scl 3).
This means that (x2r scl 3):(2 sc2 x2r). One should be aWare
that the expression (a sc b:c) based on a truth table of function
‘sc’ means that the result ‘c’ can be found by selecting roW ‘a’
and column ‘b’ in the truth table. (x2r scl 3) then means the
column oftruth table scl under 3, Which is [3 2 l 0]. x2r is the
position of a symbol in this vector. Though it is a column it is
here shoWn as a roW. (2 sc2 x2r) indicates the roW in the truth
table ofsc2 for roW number is 2; this is [2 0 l 3]. The equation
requires ?nding a position in both vectors for Which the
symbol in both vectors have the same symbol. This is the
position 2, or x21:2, for Which the symbol Will be 1. Because
of the equations When p2r:2 and x21:2 then xlr:l.

In accordance With a further aspect of the present invention
in the error correcting approach symbols may be represented
in binary form by bits. It is fully conceivable that even though
an error Will only affect the number of bits representing one
symbol that bit errors Will spill over from one symbol into
another. In other Words, part of the bit errors affect one sym
bol and the other part affect an adjacent symbol. There are
different methods to correct multiple symbol errors. HoWever
one approach can be to interleave tWo error correcting
sequences.

For instance assume that one sequence is [x1 x2 pl p2]
Wherein x1 and x2 are information symbols and pl and p2 are
check symbols. One can code a second sequence [yl y2 ql
q2] Wherein yl and y2 are information symbols and ql and q2
are check symbols. One can then interleave the tWo sequences
as [x1 yl x2 y2 pl ql p2 q2]. When the symbols are coded as
bits, errors that affect tWo neighboring symbols can still be
corrected, assuming that no more than tWo neighboring sym
bols can contain an error.

In accordance With a further aspect of the present invention
the method of creating multi-valued check symbols can also
be applied to multi-valued Hamming codes. Binary Ham
ming codes are knoWn and q-ary Hamming codes With q>2
are knoWn. HoWever q-ary Hamming codes are commonly
developed in the context of independency properties of their
parity matrix. An example of this is provided in The Ham
ming Codes and Delsarte’s Linear Programming Bound, by
Sky McKinley, the Master of Science in Mathematics Thesis,
Portland University, May, 2003. This approach makes design
ing q-ary Hamming codes fairly dif?cult especially for higher
values of q and for codes With a signi?cant number of sym
bols.
The Way to construct a binary Hamming code is knoWn and

Well documented. It applies using poWers of 2 to determine
data and parity bits in a codeWord. In a related knoWn method
a Venn-diagram is created, from Which one visually can deter
mine relations betWeen parity bits and data bits. Instead of
using bits, the Venn diagram Will be used to determine n-val
ued check symbol. A check symbol in the context of the
present invention is broader than a parity symbol. A parity
symbol assumes some relation betWeen symbols such as bits
(for instance polarity). A check symbol is considered a result
of an n-valued expression Which depends from data symbols.
In an additional limitation for n-valued Hamming codes one
may limit the expression to create the check symbol to not

US 7,865,807 B2
11

involving n-valued multipliers or n-valued inverters. N-val
ued check symbols are known to be created in Reed Solomon
codes, using Linear Feedback Shift Registers. Because these
check symbols are created in a recursive fashion, they Will
comprise multipliers and fall outside one of the previous
de?nitions here provided for a check symbol.

FIG. 1 shoWs aVenn diagram for creating an n-valued (7,4)
Hamming code, involving four data symbols [X1 X2 X3 X4]
and three check symbols [pl p2 p3]. The Venn diagram pro
vides the folloWing relations: p1:f(X1, X2, X3), p2:g(X1, X3,
X4) and p3:h(X2, X3, X4). The functions f, g and h represent
n-valued eXpressions. While for simplicity one may use the
same function for determining each check symbol it is not
required. One requirement that has to be met by each function
as an aspect of the present invention is that every eXpression
should be reversible so that X1:fI‘1 (p 1, p2, p3), X2 fr2(p 1, p2,
p3), X3:fr3(p1, p2, p3) and X4:fr4(p1, p2, p3).

The functions fr1, fr2, fr3 and fr4 can be derived from
reversible functions f, g and h. An eXample Will be provided.

In general manipulating n-valued functions that are de?ned
by truth tables, rather than for instance arithmetical functions
in analytical form, can be more complicated and care should
be taken With order of variables, order of eXecution and deter
mining the reverse of such a function. One of the eXceptions
to this rule is using an addition de?ned over a ?nite ?eld
GF(2P) Which is an eXtended binary ?eld. An eXample of such
a function is the modulo-2 addition over GF(2). This function
is commutative, associative and self-reversing. As such
sc:sc_l; scIscTand (a sc b) sc c:a sc (b sc c).
Assuming the advantageous properties do not eXist, one

has then to carefully observe the rules for manipulating
eXpressions. For instance in case of a non-commutative func
tion: (a sc b):(b scT a). In the non-commutative case sc is
different from scT. The difference shoWs itself in the truth
table of a function. Determining scT from sc is easily done by
eXchanging roWs and columns. Determining sc'l from sc is a
bit more dif?cult. Each eXpression (a sc b):c has tWo inverse
eXpressions. In order to create a common rule, it is assumed
that the eXpression (a sc b) is described by a truth table of
Which the variable ‘a’ is determined by the roWs of the truth
table and variable ‘b ’ is determined by the columns. The value
‘c’ is the value at a position in the truth table determined by
roW and column.
As a simple eXample the truth table of the ternary addition

modulo-3 is provided in the folloWing table.

so 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

This function is commutative. There are hoWever tWo invert
ing functions to sc. In arithmetical form (a+b):c. Its ?rst
reverse is (a scr-l c):b, and its second reverse is (c scc‘l b):a.
The ?rst reversing function is created by keeping ‘a’ (or the
roWs) constant, While reversing the columns. In other Words:
the roWs of sc Will be replaced by the inverter of those roWs.
This provides the folloWing truth table:

scr’l 0 1 2

0 0 1 2
1 2 0 1
2 1 2 0

20

25

30

35

45

50

60

12
One can easily check that the ?rst roW of scr'l is the reverse

of the ?rst roW of sc ([0 1 2] inverts itself). The reverse of the
second roW ofsc [1 2 0] is [2 0 1] Which is noW the second roW
of scr_l. And the reverse of [2 0 1] is [1 2 0]. One can check
the result by applying the eXpressions.
The truth table of scc'l can be determined by reversing the

truth table over constant columns. This means that one can

create the truth table of scc‘l by reversing the columns of sc.
This provides the folloWing truth table:

scr l 0 1 2

0 0 2 1
1 1 0 2
2 2 1 0

For instance to solve an eXpression p1:(X1 sc1 X2) sc2 X3
for X1 to be unknoWn Wherein n-valued logic functions are
non-commutative, non-associative and non self reversing:

As an eXample the folloWing rules based on a ternary
Hamming code according to the Venn diagram of FIG. 1 are
provided:

The function sc here is the ternary mod-3 addition. The
folloWing rules apply for a single error detection: (p1, p2,
~p3) then symbol X1 is error; (p1, ~p2, p3) then symbol X2 in
error; (p1, p2, p3) then symbol X3 in error; and (~p1, p2, p3)
then symbol X4 is in error. herein p1 means p1 received and p1
recalculated are different and (~p1) means p1 received and p1
recalculated are identical. If only one of p 1, p2 orp3 is in error
then only the check symbol is in error and all other symbols
are correct. All of the above is under the assumption that only
one error occurs.

Assume [X1 X2 X3 X4]:[0 1 2 2] then [p1 p2 p3]:[0 1 2].
Assume further that [X1r X2r X3r X4r p1r p2r p3r]:[2 1 2 2 0
1 2] Wherein the r indicates a received symbol. Accordingly
one can calculate the check symbols p 1 cqlr sc X2r sc X3F2;
p2c:0 and p3c:2. Clearly this is the situation (p1, p2, ~p3)
and accordingly symbol X1 is in error. For that situation one
can determine X1:p1 scc'l (X2 sc X3):0 scc'l 0:0.
One can make the calculations a bit easier by using a self

reversing, commutative ternary function sc3 of Which the
truth table is provided in the folloWing table.

S03 0 1 2

0 2 1 0
1 1 0 2
2 0 2 1

While commutative and self reversing the function sc3 is
not associative. So one should be careful With order of eXecu
tion of the terms of an eXpression. Using self reversing func
tions is especially bene?cial in longer eXpressions.

US 7,865,807 B2
13

An example is provided using the ternary function sc3 and
the following relations in a (7,4) ternary Hamming code:

p3:(X2 sc X3) sc X4. The function sc3 is not associative.

Assume [X1 X2 X3 X4]:[0 1 2 2] then [pl p2 p3] [2 0 1].
Assume further, as in a previous eXample that [X1r X2r X3rX4r
p1r p2r p3r]:[2 1 2 2 2 0 1] Wherein the r indicates a received
symbol. Accordingly one can calculate the check symbols
plcqlr sc X2r sc X3Fl; p2c:2 and p3c:1. This is the situ
ation (p1c, p2c, ~p3c) Wherein p1c means p1c in error and
~p3c means p3c not in error. Accordingly symbol X1 is in
error. One can determine X1 from for instance p1:(X1 sc3 X2)
sc X3. Because (pl sc3 X3) (X1 sc3 X2)Q(p1 sc3 X3) sc3
X2q1 or aX1:(2 sc3 2) sc3 1 or Xl:0.

Because only one symbol can be in error, it really does not
matter Which reversible function one uses. The requirements
for an n-valued (n,k) code then may be: each of the k data
symbols in a n-valued Hamming codeWord should be a func
tion of at least 2 check symbols. There are (n-k) check sym
bols. One check symbol in error should mean just that: only
one check symbol and no data symbol is in error. No check
symbol in error means that no single error has occurred. What
one does With a Hamming code is mapping each state of a
codeWord into a unique Word formed by check symbols. For
a (7,4) n-valued Hamming code:

pl in error:p1, ~p2, ~p3

p2 in error:~p1, p2, ~p3

p3 in error:~p1, ~p2, p3

Accordingly all 8 combinations of pl, p2 and p3 are used.
As another illustrative eXample an 8-valued (11,7) Ham

ming code Will be provided. Herein an addition over GF(8)
sc8 Will be used as the 8-valued function to determine the 4
check symbols pl, p2, p3 and p4 from the 7 8-valued data
symbols [X1 X2 X3 X4 X5 X6 X7]. The truth table of sc8 is
provided in the folloWing table.

The function sc8 is commutative, self-reversing and associa
tive. The check symbols are created from:

20

25

30

35

40

45

50

55

60

65

The dependency of data symbols on check symbols is then:

X1:function of (p1, p2, ~p3, ~p4)

X2:function of (p1, ~p2, p3, ~p4)

X3:function of (~p1, p2, p3, ~p4)

X4:function of (p1, p2, p3, ~p4)

X5:function of (p1, ~p2, ~p3, p4)

X6:function of (~p1, p2, ~p3, p4)

X7:function of (p1, p2, ~p3, p4)

no errors (p1, p2, p3, p4)

and individual errors of p1, p2, p3 and p4. Only 12 of 16
possible Words of check symbols are used. No parentheses are
required in the eXpressions because sc8 is associative. The
Venn-diagram for creating a possible (11,7) n-valued Ham
ming code is provided in FIG. 2. While creating a (11,7)
binary Hamming code is known, creating a 911,7) 8-valued
Hamming code is believed to be novel to the inventor.
As an eXample assume the data Word [X1 X2 X3 X4 X5 X6

X7]:[0 1 2 3 4 5 7]. This Will create a Word of check symbols
[p1 p2 p3 p4]:[4 7 6 0]. Assume a received Word is [0 1 2 5 4
5 7 4 7 6 0]. Using the data symbols it Will generate check
symbols generated from received symbols [p1r p2r p3r p4r]:
[1 6 7 0]. Comparing [p1r p2r p3r p4r] With [4 7 6 0] shoWs
that only p4r is correct. That is the situation (p1, p2, p3, ~p4),
Which means X4 is in error. This data symbol canbe calculated
from X4:p3 sc8 X2 sc8 X3, Which Will generate X4:3.

It should be clear from the eXpression plql sc8 X2 sc8 X4
sc8 X5 sc8 X7 Why associative functions are preferred. It is
much easier for reversing the eXpression to calculate X1 for
instance.

FIG. 3 provides a How diagram for creating an n-valued
Hamming code. FIG. 4 provides a How diagram for analyZing
a received n-valued Hamming coded codeWord and correct
ing up to one n-valued symbol in error.

While a Hamming code like the (7,4) or the (11,7) code
fully use their check symbols, and they are very easy to code
and decode, they are not very e?icient codes in use of their
overhead. For detecting more than 1 n-valued symbol in error
it is easier and more e?icient to interleave tWo or more Ham
ming codeWords than adding overhead check symbols. For
error correcting tWo or more errors directly in a single code
Word for instance Reed Solomon (RS) codes may be more
e?icient. Unfortunately creating and solving RS-codes
involve Linear Feedback Shift Registers (LFSRs) and fairly
compleX circuitry. If for instance a relatively loW symbol error
ratio is eXpected it may be too eXpensive to create short
codeWords With error correcting capabilities for 2 or more
errors. It Would mean that each codeWord has to be analyZed,
While in actuality just 1 in 100 codeWords Will have an error.
One may for instance code n-valued symbols into binary

Words of bits. An 8-valued symbol has then 3 bits. Even if an
error occurs in just one symbol (and does not eXceed 3 bits) it
may fall into 2 adjacent 8-valued symbols. In that case using
an interleaved n-valued Hamming code may be a good solu
tion. Assume tWo (11,7) Hamming codeWords [X1 X2 X3 X4
X5 X6 X7 p1 p2 p3 p4] and [y1 y2 y3 y4 y5 y6 y7 r1 r2 r3 r4],
Wherein p1, p2, p3, p4, r1, r2, r3 and r4 are n-valued check
symbols. Creating an interleaved codeWord [X1 y1 X2 y2 X3
y3 X4 y4 X5 y5 X6 y6 X7 y7 p1 r1 p2 r2 p3 r3 p4 r4] addresses
the issue of tWo symbols in error. It should be clear that

US 7,865,807 B2
15

different arrangements of data symbols and check symbols
can be bene?cial. Because a single check symbol in error
requires no data symbol recalculation, one can ?nd arrange
ments of order of data symbols that require the feWest calcu
lations and recalculations. Different order of position of data
symbols and check symbols is fully contemplated as one
aspect of the present invention.

If more adjacent errors are expected one can use more

interleaved single codeWords to create a combined inter
leaved codeWord.

In some communication channels errors occur in bursts.

For instance if it is knoWn that errors occur in bursts of never
more than 8 adjacent bits, it may be bene?cial to create
Hamming codeWords of l6-valued symbols, interleave tWo
codeWords, and represent each symbol by 4-bits Words. Some
costs of this simple error correcting method involve the over
head cost of check symbols and cost of synchronization of
Words. Especially if a loW symbol error ratio is expected one
may loWer the relative overhead rate by increasing the Word
siZe of the n-valued Hamming code.

In accordance With a further aspect of the present invention
a method and apparatus Will be provided to further simplify
error detection and error correction by using n-valued logic
functions and ordering n-valued data symbols in a matrix. As
illustrative examples 2-dimensional matrices Will be used. It
should be appreciated that using 3-dimensional and higher
dimensional matrices are also possible. Further more rectan
gular matrices Will be used. Depending on the ordering of
symbols one may use non-rectangular matrices. This Will not
materially affect the principles of the method and apparatus
provided.

TWo-dimensional binary parity check matrices are knoWn.
In some cases GF(2P) symbols in binary form are created
Wherein binary parity check symbols of individual bits are
created for error detection and error correction purposes. It is
believed that using tWo and multi dimensional matrices com
prising n-valued data symbols and check symbols from data
symbols by applying n-valued logic functions is novel. Also
?rst identifying symbols in error and then correcting symbols
by reversing check symbol expressions is believed to be
novel.

FIG. 5 shoWs one Way to organiZe n-valued data symbols
for single error detection and correction. Assume a series of
18 n-valued data symbols dll to d63. It should be clear that
this is merely an illustrative example and that many different
data symbols and their organiZation may be selected. The
purpose is to ?nd and correct a single error in these 18 data
symbols for Which check symbols Will be generated. The
symbols are organiZed in a matrix having 2 dimensions in this
example, Wherein a column has 6 data symbols and a roW has
3 data symbols. Each roW and each column has added a check
symbol. The check symbols added to a roW are named q and
to a column are named p. The columns are provided With 6
symbols to illustrate the possible complexity of calculating an
error corrected symbol if the applied logic functions are not
associative. FIG. 6 illustrates one Way hoW the data symbols
can be organiZed in a matrix, starting at the top of the ?rst
column and going from the bottom of the next column back to
the top and so on. If multiple adjacent errors are possible these
errors may spill over into the next column. In that case orga
niZing symbols as shoWn in FIG. 7 may be preferable, as
adjacent errors Will appears in different roWs. The position of
the check symbols p and q may be put anyWhere in betWeen
the data symbols to break up adjacent errors. HoWever they
are put in the matrix in roWs and columns to shoW hoW they

20

25

30

35

40

45

50

55

60

65

16
are calculated. Additional check symbols like q4 Which Will
provide a check on check symbols. (either on a roW or on a

column).
Assume that a column has n-valued data symbols [x1 x2 x3

x4 x5 x6]. Assume that one check symbol p is generated from
the n-valued symbols. The simplest Way to do this is if n is a
poWer of 2 and one can use a self reversing, associative and
commutative functions sc. In that case pql sc x2 sc x3 sc x4

sc x5 sc x6. So ifany ofthe symbols is in error it can easily be
reconstructed. Assume in the matrix of FIG. 7 that p2 and q3
Were in error. That means that x3 (d32) Was in error in the
column. One can recalculate x3 from x3ql sc x2 sc x4 sc x5

sc x6 sc p2. It appears to be easier to calculate x3 from feWer
terms, using q3:(d3l scl d32) sc2 d33. HoWever if scl and
sc2 are non-associative, non-commutative logic functions,
then order of execution is important and determining d32 may
be a bit more involved. and look like:

d32:d3l sclr'l (q3 sc2c'l d33). Herein sclr'l is the inverse
of scl over constant roWs and sc2c_l is the inverse of scl over
constants columns.

HoW complicated the resolving expressions can become
can be demonstrated With calculating check symbol p from 6
symbols. One can use of course other functions than an asso
ciative function. One expression then may be p:[{(xl scl x2)
sc2 (x3 sc4 x4)} sc5 (x5 sc6 x6)]. Even if one uses a single
non-associative function sc there are different Ways to calcu
late p. One Way is: pl{([{(xl sc x2) sc x3} sc x4] sc x5) sc
x6}. Another Way is p:[{(xl sc x2) sc (x3 sc x4)} sc (x5 sc
x6)]. For instance assume the self reversing non-associative
8-valued function sc of Which the folloWing truth table is
provided.

so 0 l 2 3 4 5 6 7

0 7 6 5 4 3 2 l 0
l 6 5 4 3 2 l 0 7
2 5 4 3 2 l 0 7 6
3 4 3 2 l 0 7 6 5
4 3 2 l 0 7 6 5 4
5 2 l 0 7 6 5 4 3
6 l 0 7 6 5 4 3 2
7 0 7 6 5 4 3 2 1

Further assume 8-valued data symbols [x1 x2 x3 x4 x5 x6]:[0
l2 3 4 5]. The expressionpl l:{([{(xl sc x2) sc x3} sc x4] sc
x5) sc x6} Will generate pl 1:4. The expression p22:[{(xl sc
x2) sc (x3 sc x4)} sc (x5 sc x6)] Will generate p22:2. It should
be clear that for error detection it does not matter hoW expres
sions are structured. The main requirement for error detection
is that a changed data symbol generates a changed check
symbol. Both expressions comply With that requirement.
HoWever re-calculating a symbol When its error position is
knoWn in both situations is different.

As an illustrative example assume x3 is knoWn to be in
error. To calculate x3 from pl 1 Will provide: x3:[{(pll sc x6)
sc x5} sc x4] sc (xl sc x2):2. Using pl 1:2 instead ofpl 1:4
Would provide x3:0, Which of course is Wrong.

To calculate x3 from p22 Will provide: x3:[{p22 sc (x5 sc
x6)} sc (xl sc x2)] sc x4 With x3:2. Using p22:4 instead of
p22:2 Would provide x3:0 Which is Wrong.

Accordingly one may select as part of the error detecting an
expression for determining a check symbol that applies one or
more identical or different logic functions. Determining if an
error has occurred requires recalculating the check symbol.

US 7,865,807 B2
17

Determining the correct value of a symbol in error requires
?rst determining the expression for calculating the data sym
bol. That expression depends on the properties of the func
tions and may become quite elaborate, especially if functions
are non-commutative and not self reversing and if the expres
sion involves a substantial number of data symbols. In the
8-valued case there are 8!:40,320 reversible inverters. Each
reversible logic function has 8 columns and roWs Wherein a
column or a roW is a reversible inverter as explained by the
inventor in Us. patent application Ser. No. 10/ 935,960, ?led
Sep. 8, 2004, entitled TERNARY AND MULTI-VALUE
DIGITAL SCRAMBLERS, DESCRAMBLERS AND
SEQUENCE GENERATORS, Which is incorporated herein
by reference in its entirety. It Will be appreciated that deter
mining the actual expressions, Whereby possibly no order x1,
x2, x3, x4, . . . is maintained, from the check symbols Will
become quite involved.

In accordance With a further aspect of the present invention
one may provide security to data by not publicly disclosing
the expression for check symbol creation and by inserting one
error into a data symbol after a check symbol has been cre
ated. If one does this at a fairly high symbol error ratio then
the received data, for instance if it represents a video signal
can still be vieWed, but Will demonstrate signi?cant quality
deterioration. In such situations one can have somebody vieW
the video at loW quality. HoWever Without the proper error
correction expression one can not correct the occurring
errors. This annoyance factor may be high especially in for
instance high de?nition video, Where errors may shoW up as
having severely numbers of faulty pixels in a screen. It is
contemplated that a user can obtain or doWnload the error

correcting expression from an authorized provider. Other
types of signals using protected errors as annoyance to dis
courage unauthoriZed use, such as digital audio and music
?les as Well as other data ?les are fully contemplated. A
condition Wouldbe that the error correction of a code has to be
able to address the arti?cially inserted errors as Well as errors
experienced during transmission and receiving.

Insertion of annoyance errors should take place after cal
culating the check symbols and before experiencing ‘real’
errors. Errors may be introduced at the same position. Also
multiple errors may be introduced. In order to have deliberate
annoyance errors not corrected the decoder should have a
deliberately not matching decoder. This means that an annoy
ance error Will not be corrected appropriately. By providing
the correct solver or decoder for errors in a speci?c position
one may alloW correction of the annoyance errors.

FIG. 8 shoWs a method of coding Wherein tWo adjacent
errors may be detected. The data Word comprising n-valued
data symbols is [d1 ml d2 m2 d3 m3 . . . d12 m12]. The data
Word is ordered into 3 columns, each column comprising 8
data symbols. The data symbols are identi?ed in such a Way
that the symbols ‘d’ in odd positions are assigned to a ?rst
check symbol, for instance ‘p’, While the even position sym
bols ‘m’ are assigned to a second check symbol ‘r’. Each roW
of the matrix is assigned to a check symbol ‘q’. Additional
check symbols may be used to check the check symbols. The
illustrative scheme as shoWn in FIG. 8 alloWs detecting more
than 1 error in a dataWord by using simple check symbol
expressions. It is easy to see that 2 or more errors using simple
check symbol expressions may cancel each other out. It
should also be clear that the same approach of creating addi
tional check symbols by symbol interleaving can be used for
the roWs in a matrix, or along any other dimension of a matrix.

As an example one can detect the location of tWo adjacent
errors in the Word [d5 m5 d6 m6 d7 m7 d8 m8] by using check

10

20

25

30

35

40

45

50

55

60

65

18
symbols r2, p2, q3 and q4. It should be clear that non adjacent
errors, for instance in d5 and d6 may not be detected in this
manner.

FIG. 9 shoWs hoW a symbol in error may be corrected.
Assume the matrix of FIG. 7, Wherein p2 and q3 Were
assumed to be detected in error. FIG. 9 shoWs hoW for every

roW in a coding matrix, depending on the column, as shoWn in
FIG. 9 as 900, a solution comprised of a solving n-valued
expression is available in 901. The solver 901 may for
instance be a series of instructions in a processor representing
the execution of an appropriate expression. This series of
instructions is provided as input With n-valued symbols d31,
d33 and q3, Which Will generate d32, Which Was in error.

FIG. 10 shoWs a How diagram of checking all columns and
roWs on errors and providing the identi?cation of error posi

tion to the solver, together With appropriate data to solve an
expression.
The methods provided here apply n-valued expressions

using one or more equal or different n-valued logic functions
on n-valued symbols. In a ?rst check symbol expression an
n-valued symbol only appears once. One could articulate this
as: in the expression p:ax1 sc bx2 sc cx3 . . . sc gx4 all

coef?cients a, b . . . g have the value 1 or the equivalent in

n-valued logic, being an identity inverter.
In a second expression the coef?cients may not all be 1, but

none is 0. HoWever a restriction has to be that ax1 is unique
(ax1 means a><x1). This means that if x1:e1 or x1:e2 that
axe1 is never identical to axe2. For instance if one is consid

ering 8-valued symbols and one is using 2><x1 as a term in an
8-valued expression Wherein 2 is the modulo-8 multiplication
by 2, then 2><2:4 modulo-8 but 2><6 modulo-8 is also 4. This
means that an error in x1 Wherein x1 Was 2 but is replaced by
6 Will not be detected. This is the fundamental problem for
detecting 2 or more errors in sequences of binary symbols
using just single check symbols. Adding a parity symbol
based on the same data symbols Will not alWays extend error
detection. It is a further aspect of the present invention to
increase detection of symbols in error in a sequence of n-val
ued data symbols by increasing the number of check symbols,
Wherein each check symbol is created from an expression
applying the same number of data symbols, but in each
expression related to a check symbol a data symbol may be
multiplied by a different coe?icient. In order to prevent unde
tectable errors multiplication should exist Within GF(n). In
order to be able to correct tWo or more errors one should

create at least tWo independent expressions for the
‘unknowns’ Which are the to be solved errors. The problem
With binary expressions of course is that a binary coef?cient
multiplier can only be 1 as non-Zero multiplier. This effect
ultimately then also explains Why in Reed Solomon codes one
needs an LFSR Wherein the n-valued logic is preferably
greater than the number of shift register elements.

Because one Will Work With multipliers in n-valued expres
sions, it is likely that one also is required to apply n-valued
division in order to solve expressions. From a n-valued logi
cal point of vieW division in n-valued logic is the inverter that
reverses a n-valued multiplication. For illustrative purposes
8-valued examples Will be provided. It should be clear that
similar approaches in GF(n) can also be created.

First addition and multiplication in GF(8) Will be estab
lished. The folloWing tables provide the truth tables of the tWo
required functions.

