
US008103943B2

(12) Ulllted States Patent (10) Patent N0.: US 8,103,943 B2
Lablans (45) Date of Patent: Jan. 24, 2012

(54) SYMBOL RECONSTRUCTION IN i gerley :5 a1. _ , , err et

REED SOLOMON CODES 7,206,992 B2 4/2007 Xin

(75) Inventor: Peter Lablans, Morris Township, NJ OTHER PUBLICATIONS

(Us) Nolan, T.C.; Stark, W.E.; , “A recursive method for calculating error
_ _ _ _ probabilities for a Reed-Solomon codeword with bounded distance

(73) Asslgnee' Ternaryloglc LLC’ Mornstown’ NJ errors and erasures decoding ,” Military Communications Confer
(US) ence, 1998. MILCOM 98. Proceedings, IEEE , vol. 3, no., pp.

998-1002 vol. 3, Oct. 18-21, 1998 doi: 10.1109/MILCOM.1998.
(*) Notice: Subject to any disclaimer, the term of this 7269984

patent is extended or adjusted under 35 Ta-Hsiang Hu; Shu Lin; , “An ef?cient hybrid decoding algorithm for
U_S_C_ 1540;) by 1300 days_ Reed-Solomon codes based on bit reliability,” Communications,

IEEE Transactlons on , vol. 51, No. 7, pp. 1073-1081, Jul. 2003 dol:
_ 10.1109/TCOMM.2003.814212.*

(21) Appl' NO" 11/743’893 Kunisa, A.; , “Symbol error probability for guided scrambling over a
_ recording channel,” Information Theory, 2002. Proceedings. 2002

(22) Flled: May 3a 2007 IEEE International Symposium on , vol., no., pp. 298, 2002 doi:
10.1109/ISIT.2002.1023570.*

(65) Prior Publication Data Hank Wallace, Error Detection and Correction Using the BCH Code,
2001, available from the Internet at www.aqdi.com/bch.pdf.

US 2008/0040650 A1 Feb. 14, 2008 Bernard Sklar, Reed-Solomon Codes, available from the Internet at:
http :/ / www. informit .com/ content/ image s/ altisklar7ireed

Related U_s_ Application Data solomon/elementLinks/artisklar7ireed-solomonpdf.

(60) Provisional application No. 60/821,980, ?led on Aug. * Cited by examiner
10, 2006. _ _

Primary Examiner * Cynthia Britt

(51) Int CL (74) Attorney, Agent, or Firm * Diehl Servilla LLC

H03M 13/00 (2006.01) 57 ABSTRACT
(52) us. Cl. 714/784 ()
(58) Field of Classi?cation Search 714/781, Symbol reconstrucnon methods by applylng Galols Fleld

(56)

7 1 4/ 7 84
See application ?le for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,304,962 A 12/1981 Fracassiet al.
4,649,541 A * 3/1987 Lahmeyer 714/784

5,297,153 A 3/1994 Baggen et al.
5,343,481 A 8/1994 Kraft
5,414,719 A * 5/1995 Iwaki et al. 714/785

5,430,739 A * 7/1995 Wei et al. . 714/784
6,400,728 B1* 6/2002 Ott 370/465

6,634,007 B1* 10/2003 Koetter et al. .. 714/784
6,665,831 B1* 12/2003 Yoshida et al. 714/774

Slat! 701

arithmetic to Reed Solomon codewords have been disclosed.
Reconstruction methods by applying n-valued reversing logic
functions are also provided. A correct codeword can be
selected from calculated codewords by comparing a calcu
lated codeword with the Reed-Solomon codeword in error. A
correct codeword can also be found by comparing a codeword
in error with possible (p,k) codewords. Non Galois Field
Reed Solomon coders are disclosed. Methods for correcting
symbols in errors that have been identi?ed as being in error
are provided. Apparatus that implement the error correction
methods are disclosed. Systems, including communication
and storage systems that use the disclosed methods are also
provided.

21 Claims, 11 Drawing Sheets

Assume a fuel combination of (p-k)l2

702 .
to be in error.

symbols in a ?rs! rse(p,lt) codeword
or less

703
Reconstruct the combination or (p-k)l2 or less

symbols assumed to be in error from the
symbols sssumed to be not iu errorv

Create a recorrsmrered codeword rrs(p,k)
704 reconstructed (p-k)/Z or less symbols and

the symbols assumed not lo be m errorv

from [he

706
1: number of identical symbols

in like positions
2 k + (p-k)/2

Assume another
combinariorr

of (p-k) symbols iu
errorv

707

No

705
r5e(p,k) codeword.

The reconstructed codeword rr§(p.k)
is the errorefree version of the

US. Patent Jan. 24, 2012 Sheet 1 0111 US 8,103,943 B2

101\ 2 —
GD Q9 A G?

v 102

103

FIG.1

‘i

fp G? GD

@

V

FIG.2

4—

"f9 ‘[1? 4p“ "f?

200 200 200 $200 $ 200 $ L 200

FIG. 2a

US. Patent Jan. 24, 2012 Sheet 3 0f 11 US 8,103,943 B2

GO
504

*@—> / / g / / / 502
505 506 507 508 509 510 511

501

FIGS

601 602

% /
GE GE

/604 605/ 606/
603 "

FIG. 6

503

US. Patent Jan. 24, 2012 Sheet 4 0f 11 US 8,103,943 B2

4*

GO in
503

f f
504 @i { fp)—’

. / / / / / / A 502
lnl t1 111 t2 U2 t3 113 t4

501 [a1 a2 213]
FIG. 7

4*

GO
[b1 b2 b3 b4]

@ 0%
A 502

501
[a1 a2 213]

FIG. 8

US. Patent Jan. 24, 2012 Sheet 5 0f 11 US 8,103,943 B2

(6) 909 908

906/ 905 / /
904

903 '

FIG. 9

FIG. 10

US. Patent Jan. 24, 2012 Sheet 6 0f 11

Start 701

702

Assume a first combination of (p-l<)/2 or less
symbols in a first rse(p,k) codeword

to be in error.

703
Reconstruct the combination of (p-k)/2 or less

symbols assumed to be in error from the

US 8,103,943 B2

symbols assumed to be not in error.

704
Create a reconstructed codeword rrs (p,k) from the

reconstructed (p-k)/2 or less symbols and
the symbols assumed not to be in error.

705

706

708

Compare the symbols in rse(p,k) and
rrs(p,k) in like positions.

Is number of identical symbols
in like positions
2 k + (p-k)/2

The reconstructed codeword rrs(p,l<)
is the error-free Version of the

rse(p,l<) codeword.

FIG. ll

Assume another
combination

of (p-k) symbols in
error.

707

US. Patent Jan. 24, 2012 Sheet 7 0f 11 US 8,103,943 B2

801

v i
802 rrs1(p,k) rrs2(p,k) ' """"""""" " rrsp(p,1<) 803

V

804 805
FIG. 12

‘i

4;» as

FIG. 13

‘' FIG. 13a

US. Patent Jan. 24, 2012 Sheet 10 of 11 US 8,103,943 B2

activate
enabling line received
related to an error combination codeword

/—/% 1800
(x1,b1) 1803 lllllgot l ll

—> (Xlwbl) . \ .

received _> (xzbl) X L l l implementation
codeword-P ’ _ X1 X2 x3 of expressions

_, (X254, 1) enabling 1
1800 —> 1801 (X3,b1) i801 line

_.
3.~b1

_’ (1X ') received

_’ (XLXZ) codeword (241,243) 1800

l l l l l l l l
f 1805 1806

1807 l l l error, , f l l l implementation
X1 X2 X3 combmatlons X1 X2 X3 of expressions

error-free (inabhng
codeword hne

FIG. 18

US. Patent Jan. 24, 2012 Sheet 11 0111 US 8,103,943 B2

channel
1901 1906 1907 1905

1902 1903 1904

—>- -> L —> —>

coder decoder
- data using

' ' t tt ' information ransml e1‘ receiver device

Source FIG. 19

2001 2003

2002 2004 2005

-—> —> 2 ,

channel
coder

information data medium
source Writer

FIG. 20

2101 2103

2102 2104 2105

<—- <- l 3

channel
decoder

data using dat(ai medium
device Pea er

FIG. 21

US 8,103,943 B2
1

SYMBOL RECONSTRUCTION IN
REED-SOLOMON CODES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This patent application claims the bene?t of the priority of
US. Provisional Application 60/ 821,980, ?led on Aug. 10,
2006 Which is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

The present invention relates to error correcting coding and
decoding. More speci?cally it relates to Reed-Solomon cod
ing and decoding.

Error correction of digital codes is Widely used in telecom
munications and in transfer of information such as reading of
data from storage media such as optical disks. Detection of
errors can take place by analyZing symbols that Were added to
the information symbols during coding. The relation betWeen
information symbols and the added coding symbols is deter
mined by a rule. If after reception of the symbols such relation
betWeen the symbols no longer holds, it can be determined
that some of the symbols are different or in error compared to
the original symbols. Such a relationship may be a parity rule
or a syndrome relationship. If the errors do not exceed a
certain number Within a de?ned number of symbols it is
possible to identify and/or correct these errors. Known meth
ods of creating error correcting codes and correction of errors
are provided by BCH codes and the related Reed-Solomon
(RS) codes. These codes are knoWn to be cyclic codes. Error
correction in RS-codes usually involves calculations to deter
mine the location and the magnitude of the error. The calcu
lations in RS-codes error correction can be time and/or
resource consuming and may add to a coding latency.

Accordingly methods that can decode Reed-Solomon
codes in a faster or easier Way are required.

SUMMARY OF THE INVENTION

One aspect of the present invention provides a method for
error correcting decoding a codeWord generated as a (p,k)
Reed-Solomon codeWord comprised of p n-valued symbols
of Which k symbols are information symbols and having no
more than (p—k)/2 symbols in error into a correct codeWord
by determining calculated codeWords.

It is another aspect of the present invention to provide a
method of error correcting decoding of a Reed Solomon
codeWord Wherein calculated codeWords are determined by
applying Galois Field arithmetic operations in GF(n).

It is a further aspect of the present invention to provide a
method of error correcting decoding a Reed Solomon code
Word Wherein the GF(n) is an extended binary ?eld.

It is another aspect of the present invention to provide a
method for error correcting coding of a Reed Solomon code
Word Wherein calculated codeWords are determined by apply
ing reversing n-valued logic functions.

It is a further aspect of the present invention to provide a
method of error correcting decoding a Reed Solomon code
Word Wherein calculated codeWords are determined in paral
lel.

It is another aspect of the present invention to provide a
method for generating a Reed Solomon encoded (p,k) code
Word of n-valued symbols by applying a k element n-valued
LFSR in Fibonacci con?guration Wherein at least one feed
back tap includes a reversible inverter not representing a
GF(n) multiplier.

20

25

30

35

40

45

50

55

60

65

2
It is a further aspect of the present invention to provide a

method for generating a Reed Solomon encoded (p,k) code
Word of n-valued symbols Wherein applied logic functions in
an LFSR are equivalent to logic functions and multipliers and
at least one reversible inverter not representing a GF(n) mul
tiplier.

It is another aspect of the present invention to provide a
method for correcting an error in a RS codeWord When it is
knoWn Which symbol in a codeWord is in error.

It is a further aspect of the present invention to provide a
method for generating a Reed Solomon encoded (p,k) code
Word of n-valued symbols Wherein the applied LFSR is an
Galois equivalent of a Fibonacci LFSR that includes at least
one reversible inverter not representing a GF(n) multiplier.

It is another aspect of the present invention to provide a
method and apparatus for reconstructing a symbol in error by
executing one or more n-valued logic expressions When the
position of a symbol in error Was previously determined.

It is a further aspect of the present invention to provide
apparatus that implement the methods provided as aspects of
the present invention.

It is another aspect of the present invention to provide
systems that apply methods of error correction provided
herein.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an LFSR in Fibonacci con?guration
With no multipliers or inverters.

FIG. 2 is a diagram of an LFSR in Fibonacci con?guration
comprising multipliers.

FIG. 2a is another diagram of an LFSR in Fibonacci con
?guration enabled for direct initialiZation.

FIG. 3 is a diagram of an LFSR in Galois con?guration.
FIG. 4 is a diagram ofanother LFSR in Fibonacci con?gu

ration.
FIG. 5 is a diagram of an LFSR demonstrating a Reed

Solomon coder.
FIG. 6 is another diagram of an LFSR in Fibonacci con

?guration.
FIG. 7 is a diagram illustrating a Reed Solomon coder.
FIG. 8 is another diagram illustrating a Reed Solomon

coder.
FIG. 9 is a diagram illustrating a Reed Solomon coder in

Fibonacci con?guration With multipliers.
FIG. 10 is a diagram illustrating a Reed Solomon coder in

Fibonacci con?guration not having multipliers.
FIG. 11 is a How diagram illustrating steps according to one

aspect of the present invention.
FIG. 12 is a How diagram illustrating steps according to

another aspect of the present invention.
FIG. 13 is a diagram illustrating a Reed Solomon coder in

Fibonacci con?guration With multipliers and inverters.
FIG. 13a is a diagram illustrating a Reed Solomon coder in

Fibonacci con?guration With no multipliers or inverters.
FIG. 14 is a diagram of a knoWn Reed Solomon coder.
FIG. 15 is a truth table of an adder over GF(8).
FIG. 16 is a truth table ofa multiplier over GF(8).
FIG. 17 is a truth table of an 8-valued division.
FIG. 18 is a diagram of a decoder in accordance With an

aspect of the present invention.
FIG. 19 is a diagram of a communication system in accor

dance With an aspect of the present invention.
FIG. 20 is a diagram of a data storage system for Writing

data in accordance With an aspect of the present invention.

US 8,103,943 B2
3

FIG. 21 is a diagram of a data storage system for reading
data in accordance With an aspect of the present invention.

DESCRIPTION OF A PREFERRED
EMBODIMENT

Reed-Solomon (RS) codes are often designated as (p,k)
error-correcting codes. This means that a codeWord consists
of p symbols of Which k symbols are the information or
message symbols. The remaining (p-k) symbols are “over
head” symbols or check symbols to enable error correction.
The “overhead” symbols in RS codes are generally remainder
symbols generated by an LFSR. The LFSR used in RS coders
are generally applied in Galois con?guration. It is also pos
sible to generate RS codes by using LFSRs in Fibonacci
con?gurations.

In an earlier invention by the inventor as described in US
Non-Provisional Patent Application entitled: ERROR COR
RECTION BY SYMBOL RECONSTRUCTION IN
BINARY AND MULTI-VALUED CYCLIC CODES, Ser.
No. 11/739,189 and ?led on Apr. 24, 2007 and Which is
incorporated herein by reference it Was shoWn that (p,k) error
correcting codes can be generated by LFSRs Wherein a num
ber of t errors can be corrected in a codeWord When the
codeWord consists of k information or data symbols and
2*t+1 overhead symbols. The advantage of the coded method
provided in the cited invention is that With using n-valued
symbols one can generate an (p,k) code for error correcting t
errors When p>n. This comes With the disadvantage that 1
more symbol has to be used than in a true RS-code. In a true
RS-code the relation p—k:2*t applies.

While it may appear that using one more symbol than in
RS-codes is a disadvantage, the method as provided in the
cited patent application Ser. No. 11/739,189 also has advan
tages. For instance one of the constraints of an RS code over
GF (q) is, according to the literature, that the codeWord should
have the same symbols or at least one symbol less than the
logic Wherein the code is developed. In other Words: When
one Wants to develop an RS code in 7-valued logic, then the
codeWord should not be comprised of more than 7 7-valued
symbols. The method provided by the inventor in patent
application Ser. No. 11/739,189 does not have such a strin
gent constraint. As an example one can create a codeWord of
11 symbols in a 5-valued logic using an LFSR With 6 ele
ments. The codeWords, using the appropriate functions, Will
have at most 6 symbols in common and thus may correct up to
2 symbol errors.
One such code-generator con?guration is shoWn in FIG. 2.

This LFSR can generate a sequence of 15524 5-valued sym
bols. The multipliers are [1 1 2 0 2 2]. The multipliers can be
combined With fp (5-valued addition) into single 5-valued
reversible functions. So, in fact the advantage of the method is
that one can create codeWords With more symbols than the
value of the applied logic that can correct multiple errors. For
some applications that can be a signi?cant advantage, as it
may prevent going into large value logic approaches.
One disadvantage of the RS-code in Galois con?guration is

that RS codeWords are created individually: they can not be
created by letting the coder run and pick out a neW codeWord.
In fact in an RS-coder in Galois con?guration one has to start
With a shift register With content of all 0s. As disclosed by the
earlier cited patent application if one has very cheap or fast
means for analyZing a very long sequence, one can use a
codeWord as generated according to cited patent application
Ser. No. 11/739,189 and test if the received codeWord has a
certain number of symbols in common With a tested portion of

20

25

30

35

40

45

50

55

60

65

4
the sequence. If such comparison generates a minimum num
ber then one has detected and corrected the codeWord.

There is knoWn literature available that describes the gen
eration of RS-code. One book is: Error Control Coding by
Shu Lin and Daniel Costello, second edition, Prentice Hall,
2004. The conditions for an (p,k) RS-codeWord over GF(q) to
be able to correct t errors are:

minimum distance d:2*l+l;

In many cases the variable q is created from m bits so that
GF(q):GF(2'"). In that case the Galois Field is called an
extended binary Galois Field. The extended ?eld alloWs cre
ating for instance an GF(8) Wherein each 8-valued symbol
can be expressed as a binary Word of3 bits.
RS (p,k) codeWords, meeting earlier cited conditions can

be created by a method using an LFSR in Galois con?gura
tion. In that case the LFSR has (p-k) elements, With initial
content of the shift register being all 0s. The k information
symbols are shifted into the LFSR for k clock pulses, thus
?lling the (p-k) shift register elements With a neW content.
The RS codeWord is the combination of k information sym
bols With (p-k) symbols of the ?nal state of the shift register.
Because in practical applications k>>(p—k) one tends to pre
fer the Galois con?guration.

Less known, but equally Workable is the Fibonacci LFSR
con?guration for the RS coder. In that case the coder has an
LFSR of k elements. The initial value of the shift register is
formed by the k data symbols. By running the LFSR for p
clock cycles the complete information Word is entered and the
remaining (p-k) symbols for the RS codeWord are generated.
The Fibonacci con?guration has a further advantage. The

LFSR in an RS coder should run for p clock cycles to produce
the (p-k) check symbols providing k information symbols
into the LFSR. Usually this is done by shifting the informa
tion symbols into the shift register. This is folloWed by shift
ing out the check symbols out of the register of a Galois
LFSR. Combined the coding (and decoding process) With a
Fibonacci LFSR may take p+(p—k):2p—k clock cycles. It
should be noted that all LFSRs Work under a clock signal.
Such a clock signal is assumed in all the draWings and
descriptions though not alWays shoWn or identi?ed.

FIG. 2 shoWs a Fibonacci LFSR. One can see that produc
ing (p-k) check symbols requires running the LFSR for (p-k)
cycles after the register Was completely ?lled. The check
symbols Will be available immediately at an output and do not
require to be shifted out. In a Fibonacci LFSR the coding
process may take just p clock cycles including shifting in the
symbols into the LFSR. It should be clear that this number is
only correct if all function operations are completed With a
clock cycle.

FIG. 2a shoWs hoW the shift register elements can also be
?lled in one instance. For instance at an enabling signal pro
vided to all individual elements of the shift register, each
element is provided With its individual initial state. For
instance When an enabling signal is provided on a common
input 200 the shift register element 202 assumes the symbol
that is provided on input 201 as is shoWn in FIG. 2a. The time
for creating a codeWord can thus be reduced to (p-k) clock
cycles, provided that all function operations of the LFSR can
be completed Within a single cycle.

US 8,103,943 B2
5

The difference between the Galois and Fibonacci LFSR
con?guration is that in practical terms the Galois LFSR is
smaller (if k>>(n—k)) but may have to run for more clock
pulses. The Fibonacci LFSR (for k>>(n—k)) is larger, but may
have to run for a feWer number of clock pulses if the number
of feedback taps is small. This is illustrated in FIG. 3 and FIG.
4 for a (7,3) RS code Which is a Reed Solomon code of Which
a codeWord is 7 symbols and of Which 3 symbols are infor
mation symbols.
HoW to create equivalent Galois and Fibonacci LFSR con

?gurations has been demonstrated by the inventor in an inven
tion described in US. Non-Provisional patent application Ser.
No. 11/696,261 entitled: BINARY AND N-VALUED LFSR
AND LFCSR BASED SCRAMBLERS, DESCRAM
BLERS, SEQUENCE GENERATORS AND DETECTORS
IN GALOIS CONFIGURATION ?led on Apr. 4, 2007 and
Which is incorporated herein by reference in its entirety.

FIG. 3 shoWs a structure that resembles an RS-coder in
Galois con?guration. One skilled in the art Will recogniZe that
this is not really an RS-coder as it does not comprise the
sWitches required to alloW entering the data symbols on 301
and then sWitching to a situation Where the content of the shift
register elements are outputted on 302. HoWever it shoWs that
symbols are provided on 301 and 302. What Will happen
during coding is that initially the shift register content is all 0s.
Then during k clock cycles the k data symbols Will be inputted
on 301. Immediately after the ?rst clock cycle there can be a
non-Zero element in the last element 304 of the shift register,
creating feedback symbols on 303 through n-valued adder fp
305. After k clock cycles no more data symbols Will be
entered. Because in this con?guration the n-valued adder fp is
used, one may also say that after k clock cycles only 0 sym
bols are entered. This means that after k clock cycles the
content of the shift register is only shifted and Will not change.
One may say that in clock cycles after k clock cycles the
remainder is shifted out of the shift register.

The (7,3) con?guration in FIG. 3 shoWs the classical mul
tiplier and adder functions fp. The adder fp is an 8-valued
adder over GF(23) as provided in an article by Bernard Sklar,
entitled Reed-Solomon Codes and available on-line at http://
WWW.informit.com/content/images/art_sklar7_reed-so
lomon/elementLinks/artskla,7_reed-solomon.pdf. The multi
pliers are also de?ned over GF(23). The truth table of fp and
the multiplier are provided in the folloWing truth tables. A
multiplier as shoWn in FIG. 3 at 307 (multiplier 4) is de?ned
as the roW (using origin 0) in the multiplier truth table ‘mul’
e.i.: [04567123].

0 b

fp 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 4 7 2 6 5 3

a 2 2 4 0 5 1 3 7 6
3 3 7 5 0 6 2 4 1
4 4 2 1 6 0 7 3 5
5 5 6 3 2 7 0 1 4
6 6 5 7 4 3 1 0 2
7 7 3 6 1 5 4 2 0

c b

rnul 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7

20

25

30

35

40

45

50

55

60

65

-continued

0 b

mul 0 1 2 3 4 5 6 7

a 2 0 2 3 4 5 6 7 1
3 0 3 4 5 6 7 1 2
4 0 4 5 6 7 1 2 3
5 0 5 6 7 1 2 3 4
6 0 6 7 1 2 3 4 5
7 0 7 1 2 3 4 5 6

The same 8-valued adding function fp and multiplier ‘mul’
are used in the (7,3) RS-coder in the Fibonacci con?guration
in FIG. 4 Which is identical to the code generator of FIG. 3.
As Was shoWn by the inventor in an earlier invention as

described in US. Non-Provisional patent application Ser. No.
10/935,960, ?led Sep. 8, 2004 entitled: TERNARY AND
MULTI-VALUE DIGITAL SIGNAL SCRAMBLERS,
DESCRAMBLERS AND SEQUENCE GENERATORS,
and Which is incorporated herein by reference in its entirety,
it is possible to combine an n-valued logic function With
n-valued multipliers or inverters into a single n-valued logic
function. When the function and multipliers or inverters are
reversible then the combined function is also reversible.
Accordingly the Galois con?guration as shoWn in FIG. 3 can
be replaced by the Galois con?guration as shoWn in FIG. 5
and the Fibonacci con?guration as shoWn in FIG. 4 can be
replaced by a Fibonacci con?guration as shoWn in FIG. 6.
Error Correction by Symbol Reconstruction
The folloWing Will describe error correction by symbol

reconstruction. The principle thereof is straight forWard. One
may assume that in this illustrative case 2 symbols in a code
Word in a certain position are in error. For simplicity it is
assumed that 2 adjacent symbols are in error. HoWever errors
may occur in any order of course. If these particular symbols
are in error in the illustrative example, then clearly one also
may assume that the other symbols are not in error. Accord
ingly one can calculate the supposedly “in error” symbols
from the supposedly “error-free” symbols. A reconstructed
codeWord then has at most 2 symbols in difference With the
original codeWord. Based on the characteristics of the coding
method one can not construct more than one valid codeWord

that has only 2 or less symbols in difference With the original
codeWord With errors. If it turns out that the original code
Word had no errors then all symbols of the reconstructed and
the original codeWord are in common.

“Symbols in common” betWeen a calculated codeWord and
an RS codeWord is intended to mean symbols in common in
like or corresponding positions. For instance the codeWords
[0 1 2 3 4 5] and [5 4 3 2 1 0] have 6 symbols in common, but
have no symbols in corresponding positions in common.

It is of course possible in the assumption that not the
selected 2 symbols but 2 different code symbols Were in error.
Based on the assumption and according to the characteristics
of the code one Will then have created a codeWord on that
assumption that has a difference of more than 2 symbols With
the original codeWord and thus should be rejected as an incor
rect solution.

Accordingly one has to either create all possible errors, or
only those errors that matter. For instance in a (7,3) code there
are 3 information symbols that determine the 4 remainder
symbols. Assuming that the errors occur in the remainder and
not in the information symbol one can just take the three
information symbols and recalculate the remainder. The
neWly recalculated codeWord can then at maximum only have

US 8,103,943 B2
7

a tWo symbol difference With the original codeword. If that is
the case then the calculated codeWord is the error-free code
Word.

Because the functions as used in FIG. 5 and FIG. 6 can be
reversed one can then apply the method of error correction by
reconstructing of symbols. In a (7,3) RS-code there are 3
information symbols and 4 overhead symbols. The properties
of the RS-code are such that each 7 symbol Word in that code
only has 2 symbols in common in like or corresponding
positions With each other codeWord.

In order to perform error correction a set of equations has to
be solved. As shoWn in the earlier cited patent application Ser.
No. 11/739,189 it is assumed for ease of formula manipula
tion that potential errors that occur are adjacent to each other.
That condition is not required for the method here provided as
one aspect of the present invention to Work, hoWever it Will
limit the number of formulas and makes the process easier to
folloW for illustrative purposes. The assumption then is that 2
errors Will have occurred in tWo adjacent symbols of the 7
symbol codeWord and that 5 symbols are correct. Based on
the assumed to be correct symbols one can calculate the
assumed to be in error symbols. Accordingly one has then
calculated an assumed to be correct 7 symbol codeWord. One
then determines hoW many symbols in the calculated Word
and in the “in error” codeWord in like positions are in com
mon. If calculated and received overhead symbols (or remain
der symbols) are identical, then no errors have occurred. If at
least 5 symbols in the original (7,3) codeWord and the calcu
lated (7,3) codeWord are in common in like positions, then the
calculated codeWord is the correct codeWord and the 3 infor
mation symbols in the calculated codeWord are the error free
information symbols.

First it is shoWn hoW the equation set is determined for the
Galois con?guration. FIG. 7 shoWs hoW the intermediate
results are determined in the LFSR. When the circuit starts the
content of the shift register is all 0s. The circuit Will run and
shift for three clock pulses. The input is [al a2 a3]. At the end
of the 3 pulses the overhead symbols (fromback to front of the
shift register) should be [b1 b2 b3 b4]. The total codeWord
then is [al a2 a3 b1 b2 b3 b4]. FIG. 8 shoWs hoW [b1 b2 b3 b4]
are the generated result.

The folloWing equations are determined after entering a
symbol at 501. First symbol a1 entered:

[1:0

[4:0,

Wherein t1, t2, t3 and t4 are the outputs of the shift register
elements.

143 q1*in+0:4 >“a1

After clock pulse:

11 :inlqlal

5

20

25

30

35

40

45

50

55

60

65

13 :al

141m

Second symbol a2 entered:

u3:4*in+l3:4* (4al+a2)+al

After the clock pulse:

l4:u3:(4*(4a1+a2)+a1)

Third symbol a3 entered:

The result [in1 u1 u2 u3] is the remainder achieved by the
Galois con?guration. It should be noted that the ‘+’ function
is provided by fp and the * or multiplication by ‘mul’. Due to
the fact that addition With 0 does not affect the result and
multiplication by 0 is 0 one can actually apply Galois arith
metic to these equations. One can also combine addition With
the multipliers and create single functions that are reversible.
The same approach can be used for creating the equation

set for the Fibonacci con?guration. In the Fibonacci con?gu
ration as shoWn in FIG. 4 the shift register Will contain the 3
data symbols as [s3 s2 s1]. The con?guration has to run for 4
cycles to generate the 4 overhead symbols. This can be
described by the folloWing equation set. Before ?rst pulse:

b1:l+4*s1:5a1+3a2+4a3

After a clock pulse:

US 8,103,943 B2

After next clock pulse

After next clock pulse

10
Second rule: The reverse of fp is the function itself. Or the
function fp is self-reversing. Or again in the terms of arith
metic of this GF(23): c:a+bQa:c—b or a:c+b:b+c.
Third rule: Dividing by a factor 0t is identical to multiplying
by a factor [3. In fact multiplying a variable x by a constant 0t
in the GF(23) is identical to inverting the variable x:[0 l 2 3
4 5 6 7] by the inverter representing the factor 0t. Assume that
(P5. In the multiplier this means the roW representing (F5 in
multiplier truth table ‘mul’; or the inverter [0 5 6 7 l 2 3 4].
Dividing by 5 in the GF(23) is multiplying by [3:51. In that
case 0t*[3:5*5_l:l. Or in terms of inversion one may con
clude that the inverter represent P:5_l in the GF(23) should

S1 b3 reverse the inverter representing (F5. One can easily check
SZIM that the reversing inverter is then [3:4 or [0 4 5 6 7 l 2 3]. The

15 folloWing table shoWs the division table ‘div’ as the inverse to
s3:bl ‘mul’ in the GF(23).

z:5b1+3b2

b4:5b1+3b2+4b3 20 c b

It should be clear that once one knoWs What the information dlv 0 1 2 3 4 5 6 7

symbols [a3 a2 al] are, one can calculate the overhead sym- 0 0 0 0 0 0 0 0 0

bols [b4 b3 b2 bl] from the expressions, Without actually i 8 ; i g g i 2 2
running an LFSR. If one so desires one can actually store the a 3 0 6 7 1 2 3 4 5

relevant codeWords in a memory and use the information 25 4 0 5 6 7 1 2 3 4

symbols for example as a memory address. This applies to 5 0 4 5 6 7 1 2 3

actually all LFSR generated symbols or Words and not only to g 8 g g i 2 Z i i
the (7,3) code Which is used as an illustrative example. It is
assumed that sometimes LFSR generated symbols or Words
are pseudo-random Which some may interpret as the Words 30 OK 1_l:1; 2_l:7; 3_l:6; 4_l:5; 5_l:4; 6_l:3; 7_l:2
being undetermined until generated. HoWever it should be P0111111 111161 The fl) and 111111 functions are diSU‘ibuIiVeI or
clear that LFSR generated symbols are deterministic. * i * *
GalOiS Field Arithmetic ” (“cm W C

In the earlier cited provisional patent application Ser. No. Fifth ?llet The funCIiOn fp iS aSSOCiaIiVBI Or
1 1/739, 1 89 it Was shoWn that reversing functions can be used 35
to reconstruct the symbols. This Will be repeated here again as a+(b+c):(a+b)+c
one embodiment for RS-code reconstruction. However as Sixth rule: the functions fp and mul are commutative: or
another embodiment one may also apply Galois Field Arith
metic. To those skilled in the art it should be clear that opera- a+bIb+a and a?pma‘
tions such as replacing subtraction by addition and division 40 In the above + is set equivalent With fp and * With mul.
by multiplication etc depend on the Galois Field and have to For convenience the folloWing relations are provided in the
be determined accordingly. HoWever the principles are the GF(23). One can check these relations by applying the truth
same for extended Galois Fields and can be extended to any tables:

x+x=0
x + 2x = 4x

x+3x=7x 2x+3x=5x
x+4x=2x 2x+4x=x 3x+4x=6x
x+5x=6x 2x+5x=3x 3x+5x=2x 4x+5x=7x
x+6x=5x 2x+6x=7x 3x+6x=4x 4x+6x=3x 5x+6x=x
x+7x=3x 2x+7x=6x 3x+7x=x 4x+7x=5x 5x+7x=4x 6x+7x=2x

GF(q) or GF(2'"). Some operations, such as an addition being One can make a similar table for multiplications.
self reversing only applies in extended GFs. 55
One approach is to solve the equations for the Galois con

?guration. Another approach is to solve the equations for the
Fibonacci con?guration. The results are identical. One can 2 * 2 = 3

easily check this by running both coders and comparing the 2 * 3 = 4 3 * 3 = 5
results. 60 2*4=5 3*4=6 4*4=7

The folloWing Will provide rules for arithmetic in GF(23) 2 * 5 = 6 3 * 5 = 7 4 * 5 = 1 5 * 5 = 2

using the de?nition of ‘fp’ for addition and ‘mul’ for multi- 2 * 6 = 7 3 * 6 =1 4 * 6 = 2 5 * 6 = 3 6 * 6 =4

plication as shoWn in the respective truth tables. There are 2 * 7 =1 3 * 7 = 2 4 * 7 = 3 5 * 7 =4 6 * 7 = 5 7 * 7 = 6

several rules that can be derived from the truth tables.
First rule: For every x (Wherein x is a variable that can have 65
one of 8 states) ‘x fp x:0’. Or fp(x,x):0. Or, to use the terms
of +, * and +:x+x:0 in this GF(23).

It is an advantage of addition functions over GF(q:2’")
With m§2 that x+x:0 for any of the GF(q) ?elds. That makes

US 8,103,943 B2
11

arithmetic over GF(q:2'") relatively easy, as addition is then
a self-reversing function that is associative.
An example according to one aspect of the present inven

tion of reconstructing the symbols in an (7,3) RS-code With
errors using error assumptions and applying the GF arith
metic rules on the Fibonacci equation set Will be provided
next.

The simplest error-occurrence is When the tWo errors

appear in [b4 b3 b2 bl] and [a3 a2 a1] has no errors. The error
situations then can be:

One can address this situation by calculating [b4 b3 b2 bl]
from the equations. Comparing the calculated Word can pro
vide the folloWing situations:
1. 5 or more symbols betWeen the calculated and original
Word are identical in identical positions. In that case the
calculated Word is the correct Word and [a3 a2 al] are the
correct information symbols
2. less than 5 symbols are identical. In that case there are more

than 2 errors (this violates the assumption of at most 2 errors)
or the errors occurred in at least one different place than
assumed.

It is next assumed that the errors occur in bl and a3 or the

codeWord is [b4 b3 b2 e1 e2 a2 a1]. Earlier the equation Was
determined for calculating b4 in Fibonacci con?guration (not
having errors) by b4:5b l +3b2+4b3. In this case bl is in error.
One can then calculate bl from:

One can exhaustively test the above expression. One
example Wouldbe to use the 8-valued Word [al a2 a3]:[0 6 7] .
One may use either the Galois con?guration of FIG. 3 With
initial shift register or the Fibonacci con?guration of FIG. 4
With initial shift register [a3 a2 al]:[7 6 0] to create the
RS(7,3) codeWord [al a2 a3 bl b2 b3 b4]:[0 6 7 7 2 6 2].
Substituting the values of [b2 b3 b4] in the equation bl:4b4+
6b2+7b3 Will generate the calculated value bl:7.
The next step (as a3 Was assumed also to be in error) is to

calculate a3 from symbols in the RS(7,3) codeWord Which are
assumed to be correct. For example one can use: b3:5a3+
3bl+4b2 to solve a3. HoWever one can only execute this
expression afterbl Was calculated. If it is required to calculate
bl and a3 in parallel one may use the earlier equation for
calculation of bl. For the illustrative example it may be
assumed that bl is ?rst calculated. This can then be folloWed
by: 5 *a3:b3+4*b2+3 *bl (Working under + is fp and * is mul)
and a3:5_l*b3+5_l*4*b2+5_l*3*bl:4*b3+4*4*b2+
4*3*bl:4b3+7b2+6bl. Using Galois arithmetic this Will
generate a3:7.

After calculating bl and a3 one then should compare the
calculated codeWord With the original codeWord With errors.
If in comparing the calculated and original codeWords have at
least 5 symbols in like positions in common, the calculated
codeWord is the correct codeWord and [al a2 a3] Wherein a3
Was reconstructed is then the correct set of information sym
bols.

20

25

30

35

40

45

50

55

60

65

12
One may repeat this approach When a3 and a2 or a2 and al

are in error. HoWever When one may assume that [bl b2 b3 b4]
Was error free one can directly calculate [a3 a2 a1] using the
reversed equations as shoWn before.

It is also possible to use the methods according to one
aspect of the present invention to correct non-adjacent errors.
The correction of adjacent errors has been shoWn as an illus
trative example of RS error correction according to one aspect
of the present invention. Because errors are adjacent one can
use equations Wherein just one of the assumed errors Will
participate. Solving the problem is then just solving an equa
tion With one variable. To shoW a Wider applicability of
aspects of the present invention assume tWo errors that are
separated by an error-free symbol, for instance assume the
original codeWord [b4 b3 e2 bl el a2 a1] Wherein b2 and a3
are assumed to be in error.

Use the folloWing tWo earlier equations from the Fibonacci
(7,3) coder to solve this problem:

b2:5a2+3a3+4bl.

One can reWrite the equations as:

The problem of solving a3 and b2 can be done in the normal
Way, adjusted for the rules for + and * in the present Galois
Field.
HoW to use the equations in matrix form in limited form for

the illustrative example is shoWn in the folloWing tables. First
one solves the equations for b2 by eliminating a3. One can do
that by multiplying equation (rs-l) by 3 and (rs-2) by 5. One
can achieve the same by multiplying (rs-2) With a factor [3 so
that [3*3I5. This can be achieved With [3:3. This is shoWn in
the folloWing table:

a2 a3 bl b2 B3 *

0 5 3 4 l l
5 3 4 l 0 3

0 5 3 4 l
7 5 6 3 0
7 0 4 6 l +

a2 a3 bl b2 b3 *

0 5 3 4 l
7 5 6 3 0
7 0 4 6 l +
2 0 6 l 3 /6 = *3

Accordingly b2:2a2+6bl+3b3:2*6+6*7+36:7+5+l:2.
One has to execute a similar process to eliminate b2:

a2 a3 bl b2 b3 *

0 5 3 4 l l
5 3 4 l 0 4

US 8,103,943 B2

-continued

a2 a3 bl b2 b3 *

0 5 3 4 1
1 6 7 4 0
1 1 1 0 1 +

It should be clear to those skilled in the art that one can use a

matrix representing the equations for generating the (p,k)
code for instance in Fibonacci form to solve equations for
different error situations. Such a matrix method, as shoWn in
the illustrative example also does not require for the errors to
be adjacent.
Reversing Functions Methods

Galois Field methods as presented here in error correction
methods as one aspect of the present invention rely upon
certain aspects of Galois Field arithmetic and alloW to be
manipulated in matrix format. HoWever this is a convenience
factor that is not really required. The reason for that is that as
demonstrated in earlier inventions by the inventor such as in
earlier cited patent application Ser. No. 10/935,960 that a
reversible n-valued tWo input/ single output logic function
With reversible n-valued inverters at inputs and/ or at the out
put can be combined into single n-valued reversible logic
functions With no inverters. Accordingly the RS codeWord
generators as shoWn in FIG. 3 and FIG. 4 are equivalent to the
Galois and Fibonacci codeWord generators as shoWn in FIG.
5 and FIG. 6. In FIG. 5 the Galois con?guration of replaces
multipliers and adders fp of FIG. 3 by Galois con?guration
reversible 8-valued functions fgl, fg2 and fg3. The function
fp at the input of the coder remains and so does the multiplier
m:4. In FIG. 6 the tWo functions fp and the three multipliers
of FIG. 4 have been replaced by the tWo reversible 8-valued
functions ffl and ff2. For illustrative purposes creating the
reversible equations Will be limited to the Fibonacci con?gu
ration of FIG. 6. It should be clear that the reversing can also
be applied to the Galois con?guration of FIG. 5.

The folloWing equations apply to the Fibonacci con?gura
tion of FIG. 6 to generate the codeWord [b4 b3 b2 bl a3 a2 a1]
When starting With content [a3 a2 al] in the shift register.
t:a2 ff2 a1
b 1 :a3 ffl t
Next cycle:
t:a3 ff2 a2
b2:b1 ffl t
Next cycle:
t:b1 ff2 a3
b3:b2 ffl t
Next cycle:
t:b2 ff2 bl
b4:b3 ffl t
The variable t provides an intermediary value for the next step
in determining a neW output value.

For example assume that an RS(7,3) codeWord [b4 b3 b2
bl a3 a2 a1] has tWo adjacent errors so that symbols bl and a3
are in error. The last equations can be applied to solve bl and
assuming that symbols b4, b3 and b2 are correct. The folloW
ing rules apply: ffl and ff2 are reversible, possibly they are
not commutative. Further more in an equation a ff b, the
function ff can be represented by a truth table Wherein ‘a’
indicates a roW in the truth table and ‘b’ represents a column.
Accordingly if ‘c:a ff b’ then ‘b:a ffrc c’ and ‘a:c ffr b’.
Herein ‘ffrc’ represents the reversing truth table of ‘ff’ over
the columns and ‘ffrr’ represents the reversing truth table of
‘?" over the roWs.

20

25

30

35

40

50

55

60

65

14
With that ‘b4:b3 ffl t’ provides ‘t:b3 fflrc b4’.And ‘t:b2

ff2 b1’ provides ‘b 1 :b2 ff2rc t’. Calculating t from ‘t:b3 ffl rc
b4’ and substituting into ‘b1:b2 ff2rc t’ Will provide the value
of b1 under the present assumptions. One can in a similar
fashion determine the value of a3 and generate a calculated
codeWord. One should then compare the calculated codeWord
With the original codeWord. If the calculated and the original
(7,3) codeWords have at least 5 symbols in like positions in
common then the calculated codeWord is the correct code
Word and the calculated a3 together With the original a2 and
al are the correct information symbols.
One can repeat the methods here provided With single

reversible n-valued logic functions for any of the assumptions
of symbols in [b4 b3 b2 b1 a3 a2 a1] being in error Within the
constraints of a (7,3) Reed-Solomon code. While the initial
effort appears to be different from using Galois arithmetic, it
should be clear that both methods Will lead to identical
results. The difference may be that the Galois expressions
may be simpli?ed and may be comprised of feWer expres
sions. HoWever in achieving the correct reconstruction there
is no difference.
7-Valued Examples

For illustrative purposes the tWo methods: error correction
in RS(p,k) by reconstructing symbols by Galois arithmetic
and by reversing functions Will be applied to a 7-valued
RS(6,2) code. The 7-valued RS(6,2) codeWord has 6 7-valued
symbols of Which 2 are 7-valued information symbols. With
this code one can correct up to tWo errors.

The folloWing truth table shoWs the 7-valued function fp
representing an addition in GF(7).

fp 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5

This function is created from the modulo-7 addition.
The folloWing truth table shoWs the 7-valued function ‘mul’
representing a 7-valued multiplication in GF(7).

mul

The function ‘mul’ is created from the modulo-7 multiplica
tion. The functions are distributive and associative.
The folloWing truth table shoWs the 7-valued function ‘div’

representing a 7-valued division.

d1v 0 l 2 3 4 5 6

0 0 0 0 0 0 0 0
l 0 l 2 3 4 5 6

US 8,103,943 B2

-continued -continued

div 0 1 2 3 4 5 6 mine 0 1 2 3 4 5 6

2 0 4 1 5 2 6 3 2 5 6 0 1 2 3 4
3 0 5 3 1 6 4 2 5 3 4 5 6 0 1 2 3
4 0 2 4 6 1 3 5 4 3 4 5 6 0 1 2
5 0 3 6 2 5 1 4 5 2 3 4 5 6 0 1
6 0 6 5 4 3 2 1 6 1 2 3 4 5 6 0

From the functions ‘mul ’ and ‘div’ one can see that dividing
by a number is identical to multiplying by a number. For
instance x/3:5 *x. or 3_1x:5*x. Further more multiplication
and addition are commutative in GF(7). For illustrative pur
poses the following tables of addition and multiplication in
GF(7) are provided.

One can make a similar table for multiplications in GF(7).

The folloWing truth tables shoW the reversing functions for
fp. It is clear that fp is not self reversing as in the 8-valued
example. Accordingly the 7-valued function has tWo revers
ing functions: one over the roWs and one over the columns of
the truth table of fp. The expression c:a+b can be considered
as a function With tWo inputs: ‘a’ and ‘b’. The variable ‘a’
represents the roW of the truth table and ‘b’ the columns. One
can then Write c:fp(a,b). Because fp is commutative this
Would generate the same result as fp(b,a). HoWever in dealing
With the reversing function it is important to keep track of the
order of ‘a’ and ‘b’. First the reversing function ‘minr’ Will be
determined over roW ‘a’. In formula: When c:f(a,b) then
a:minr(c,b). This generates the folloWing truth table:

minr 0 1 2 3 4 5 6

0 0 6 5 4 3 2 1
1 1 0 6 5 4 3 2
2 2 1 0 6 5 4 3
3 3 2 1 0 6 5 4
4 4 3 2 1 0 6 5
5 5 4 3 2 1 0 6
6 6 5 4 3 2 1 0

The reversing function ‘minc’ of fp over the columns is
determined by: When c fp)(a,b) then b:minc(a,c) With the
truth table of ‘minc’:

mine 0 l 2 3 4 5 6

0 0 l 2 3 4 5 6
l 6 0 l 2 3 4 5

10

20

25

30

35

40

45

50

55

60

65

The functions ‘minr’ and ‘minc’ (Which are subtractions)
are not associative, but they are distributive for both ‘mul’ and
‘div’.

FIG. 9 shoWs the Fibonacci con?guration of the Reed
Solomon or RS(p,k) code generator for 7-valued symbols.
The RS coder is a RS(7,3) coder With 7 symbols of Which 3
are the information symbols. A codeWord according to this
RS(7,3) coder is generated by initiating the shift register With
the 3 information symbols and generating 4 additional sym
bols by the LFSR of FIG. 9. It should be clear that one may
also create 7-valued RS codeWords generated by an Galois
con?guration, of Which an illustrated example Will be pro
vided next.

Each codeWord thus generated Will have 7 7-valued sym
bols. Each of the possible 7*7*7:343 codeWords has only 2
symbols in common in like positions of any other codeWord.
One Way to ?nd the correct con?guration is by running all
possible values for the multipliers and check if the generated
codeWords meet the requirement of having only 2 symbols in
common. One con?guration that Will Work has the multipliers
[l 2 6] as shoWn in FIG. 9. The requirement of 2 symbols is
needed to enable the correction of up to 2 errors in a code
Word.
The folloWing equations apply for generating a codeWord

[b4 b3 b2 bl a3 a2 a1] With the coder of FIG. 9 With initial
content [a3 a2 al]. In the folloWing equations ‘fp’ is the same
as ‘+’ and ‘mul’ is the same as
Generate symbol bl:

The notation fp(a3,t) may be more convenient for determin
ing a reversing function. Generate symbol b2:

b2:b1 +1

Generate symbol b3:

b3:b2+z

Generate symbol b4:

Using the arithmetic rules of GF(7) one can reconstruct the
symbols in error applying pre-set assumptions and by con
sidering all relevant assumptions. Because the code is an
RS(7,3) code one can reconstruct 2 errors. For instance
assume that ‘bl’ and ‘a3’ as adjacent symbols are in error.
This means that it is assumed that ‘b4’, ‘b3’, ‘b2’, ‘a2’ and
‘al’ are not in error. There are different Ways to solve this
problem. As an illustrative example the folloWing steps are
used:

