
(12) United States Patent
Lablans

US008832523B2

US 8,832,523 B2
Sep. 9, 2014

(10) Patent N0.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)

(22)

(65)

(63)

(60)

(51)

(52)

(58)

MULTI-STATE SYMBOL ERROR
CORRECTION IN MATRIX BASED CODES

Inventor: Peter Lablans, Morris Township, NJ
(Us)

Assignee: Ternarylogic LLC, Morristown, NJ
(Us)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1019 days.

Appl. No.: 12/400,900

Filed: Mar. 10, 2009

Prior Publication Data

US 2009/0172501A1 Jul. 2, 2009

Related US. Application Data

Continuation-in-part of application No. 11/680,719,
?led on Mar. 1, 2007.

Provisional application No. 60/779,068, ?led on Mar.
3, 2006, provisional application No. 61/035,563, ?led
on Mar. 11, 2008.

Int. Cl.
H03M 13/00 (2006.01)
H03M 13/29 (2006.01)
G06F 11/10 (2006.01)
US. Cl.
CPC H03M 13/29 (2013.01); G06F 11/1012

(2013.01); G06F 11/1028 (2013.01)
USPC 714/755; 714/781; 714/756

Field of Classi?cation Search
CPC . H03M 13/29; G06F 11/1012; G06F 11/1028
USPC 714/781, 755, 756

See application ?le for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,648,239 A * 3/1972 Carter et a1. 714/758

4,099,160 A * 7/1978 Flagg 714/785

4,142,174 A * 2/1979 Chen et al. 714/784
4,320,510 A * 3/1982 Kojima 714/755
4,402,045 A * 8/1983 Krol 712/29

4,413,339 A * 11/1983 Riggle et al 714/765
4,494,234 A * l/l985 Patel 714/765

4,498,175 A * 2/1985 Nagumo et al. 714/756
4,527,269 A * 7/1985 Wood et al. .. 714/703
4,553,237 A ll/l985 Nakamura et al.
4,566,105 A * l/l986 Oiselet al. 714/756

4,567,594 A * l/l986 Deodhar 714/769

4,747,103 A * 5/1988 Iwamura et al. 714/755

(Continued)

OTHER PUBLICATIONS

Wenjing Rao, et a1., Fault Tolerant Arithmetic with Applications in
Nanotechnology based Systems, ITC International Test Conference
2004 Oct. 26-28, 2004, pp. 472-478, Charlotte, NC, USA.

(Continued)

Primary Examiner * Joseph D Torres

(57) ABSTRACT

Methods and apparatus create codewords of n-state symbols
having one of 3 or more states with n-state check symbols.
Check symbols are created from independent expressions.
Codewords are associated with a matrix for detection of one
or more symbols in error and the location of such symbols in
error. Symbols in error are reconstructed from symbols not in
error, error syndromes and check symbols not in error. Delib
erately created errors that can be corrected are used as nui
sance errors.

20 Claims, 7 Drawing Sheets

US 8,832,523 B2
Page 2

(56)

4,873,688
4,928,280
4,937,829
5,315,600
5,325,373
5,355,412
5,386,425
5,430,739
5,440,570
5,479,416
5,517,509
5,541,937
5,712,861
5,715,262
5,754,563
5,771,244
5,771,245
5,974,580
6,145,110
6,851,086

References Cited

U.S. PATENT DOCUMENTS

A * 10/1989
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B2

**

5/1990
6/1990
5/1994
6/1994
10/1994
1/1995
7/1995
8/1995

12/1995
5/1996
7/1996
1/1998
2/1998
5/1998
6/1998
6/1998
10/1999
11/2000
2/2005

Maki et al. 714/784

Nielson et al.
Kadokawa 714/757

Iwamura et a1. 714/757

Iwamura et a1. . 714/784

Kangas 713/161

Kim
Wei et al. . . 714/784

Wei et al. 714/782

Snodgrass et al . 714/785
Yoneda 714/785

Iwamura 714/785

Inoue et al. 714/752

Gupta 714/784

White 714/757

Reed et al. 714/752

Zhang
Zook et al. 714/755

Khayrallah 714/752

Szymanski

7,000,167 B2 2/2006 Coker et a1.
7,116,250 B2 10/2006 Coene
7,539,927 B2 * 5/2009 Lee et al. 714/784

2004/0003333 A1* 1/2004 Herley et a1. 714/748

OTHER PUBLICATIONS

Wong, et al. Using Multi-Dimensional Parity-Check Codes to Obtain
Diversity in Rayleigh Fading Channels, URL: WWW.dsp.u?.edu/
~twong/Preprints/00965675.pdf, pp. 1210-1214, 2001.
Tee, et al., Multilevel generalised low-density parity-check codes,
Electronics Letters, 2 pages, Feb. 2, 2006 vol. 42 No. 3.
Bernard Sklar, A primer on turbo code concepts, IEEE Communica
tions Magazine, Dec. 1997, p. 94-102.
Xilinx LogiCORETM, IEEE 802.16 Compatible Turbo Product Code
Encoder v1.0, Product Speci?cation, Oct. 30, 2002, 5 pages.
Valles, et al., Hamming Codes Are Rate-Ef?cient Array Codes, IEEE
Globecom 2005, p. 1320-1324.
Pohlmann, Ken C., “The Compact Disc; a handbook of theory and
use”, The Computer music and digital audio series; vol. 5 A-R
Editions, Inc. Madison, WI 1989, (1989), 58-61.

* cited by examiner

US. Patent

1696

Sep. 9, 2014 Sheet 2 0f 7

100E / ' seiution 1

1802

1%)03

' solutmn 5

501116011 H)

HUG

FIG 3

US 8,832,523 B2

US. Patent Sep. 9, 2014 Sheet 3 0f7 US 8,832,523 B2

cede matrix 45);)

dam symbsls MW

-/_check syn?mis

4G 1 402

I " Eumn
403 “0 1

ch?ck symbsls 464

I

r
HG‘ 4 check-tha»check symbcis

US. Patent Sep. 9, 2014 Sheet 4 0f7 US 8,832,523 B2

Fl G. 5

PEG, 6

US. Patent Sep. 9, 2014 Sheet 6 0f7 US 8,832,523 B2

981 906 967 905

. 9'4 992 9% U

-> Z, -> >
Transmissim

_1 Medium Dewdcr
~ (Moder > i I

Inibrmatwn Mgduiamr/ Racewar/ Infermatian
SGUYQQ Tmnsmitmr Dsmmluiatm' Target

FIG, 9

1691 1093

3.005
1952 m4

-> Z,
Channel

7 n _ Coder ‘ ~

inmrmatmn Ngm-lugamt/ Qamsr
Swm mm wi-iwr

FIG, EU

1 NH 1 1 93

1182 H84 “GS

<— 5

{Reader Lhannai

Informaticm Demgduiamr/ Can'iar

yl‘arggt

FIG. I 1

US. Patent Sep. 9, 2014 Sheet 7 0f7 US 8,832,523 B2

12913 binary signais
12%2 PA“

8-311816 l signal
1203 UGO 1264
—> ' —> - 1'

> p 32€}3{ }126, 8--stats I ifs“? f]
signal K Sigimi binary Sigule binary Signals

S‘smm inipiamsntatisn
A i . bina r im lenientatian
m an n--stats iunctmn n p

of an 8--S§2J€ functian

address line

1393 130“

binary inputs

1 3 02. {
binary inputs

nlsmory coi‘i‘aspsnding {(1
enabirsd addi'ass Eine

addressable binary mean

address

decoder binary outputs

FIG 13

US 8,832,523 B2
1

MULTI-STATE SYMBOL ERROR
CORRECTION IN MATRIX BASED CODES

STATEMENT OF RELATED CASES

This application is a continuation-in-part of US. patent
application Ser. No. 11/680,719 ?led on Mar. 1, 2007 which
claims the bene?t of US. Provisional Patent Application Ser.
No. 60/779,068 ?led on Mar. 3, 2006, which are both incor
porated herein by reference in their entirety. This application
also claims the bene?t of US. Provisional Patent Application
Ser. No. 61/035,563 ?led on Mar. 11, 2008, which is incor
porated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

The present invention relates to correction of one or more
multi-state symbols in error in a sequence of symbols which
can be ordered in a matrix. More speci?cally, it relates to error
correction by ?rst identifying the location of possible errors
in a matrix of multi-state symbols, followed by reconstruction
of the original symbols from the remaining symbols believed
to be not in error.

Error correction in a plurality of multi-state symbols or a
sequence of binary symbols representing multi-state symbols
is known, especially in the ?eld of communications and infor
mation storage or transfer. In general, a series of symbols that
is being transferred may have experienced interference or
noise on a transmission channel. Possibly the storage
medium, such as an optical or magnetic disk, may have been
damaged. As a consequence, a received sequence of multi
state symbols may be different from the sequence from which
it originated. The difference between an original sequence of
symbols and a received sequence may be considered to be
errors.

Error control measures can be applied to detect and to
correct errors. These measures in general comprise adding
additional symbols to a sequence, based on the existing sym
bols in the original sequence. The redundancy of symbols
allows for detection and sometimes correction of errors.

It usually requires a greater number of redundant symbols
than errors to correct errors compared to the process of merely
detecting that symbols are in errors. For instance, in data
communications, wherein re-sending of information is pos
sible and not detrimental to the quality of data transfer, it may
be suf?cient to detect errors and request the transmitter to
resend the symbols. However, in many applications resending
of symbols is impossible or undesirable. In such cases error
correction is desirable and more symbols are added to a
sequence of symbols to enable error correction.

Error-correction techniques for symbols in a sequence
attempt to achieve the best result with as few redundant sym
bols as possible, and with as limited processing requirements
and memory or storage requirements as possible. Error cor
recting redundancy is usually set to address some maximum
or optimal expected symbol error ratio. If information is
coded into codewords, it is to be expected that many code
words are error-free and in error-free codewords extra sym
bols provided for error correction or detection are truly redun
dant.

It is known in error correcting codes like Reed Solomon
codes, which is multi-state based, that k extra symbols, which
can be called check symbols, may allow at most l/2k symbols
in error to be corrected. Arranging of data symbols in a matrix
such as a 2 dimensional matrix is known. Herein columns and
rows may for instance represent a Reed Solomon codeword.
Such a code is called a product code. A product code still has

20

25

30

35

40

45

50

55

60

65

2
the disadvantage that redundancy in the codewords is not
fully used to determine position of errors and based on the
positions of errors in a matrix calculate the correct state for
the symbols in error.

Accordingly, novel and improved methods and apparatus
providing improved use of check symbols and redundancy in
a multi-state symbol matrix are required.

SUMMARY OF THE INVENTION

In accordance with an aspect of the present invention an
apparatus is provided for correcting errors in a sequence of k
n-state data symbols, an n-state symbol being represented by
a signal, with n>2, and kzl, comprising, a memory enabled to
store instructions, a processor that retrieves and executes
instructions from the memory to perform the steps of receiv
ing on an input a plurality of signals representing the
sequence of k n-state symbols and p n-state check symbols
with psk, each of the signals representing p n-state check
symbols being generated by an implementation of one of p
independent reversible n-state expressions using the k n-state
symbols as variables, determining as an independent step
which of up to p of the k n-state data symbols are potentially
in error and solving as an independent step up to p indepen
dent n-state expressions to determine an n-state value for the
up to p of the k n- state symbols that are potentially are in error,
wherein the solving applies at least an implementation of an
n-state reversible logic function that is determined by an n by
n truth table.

In accordance with another aspect of the present invention
the apparatus as provided further comprises instructions to
perform receiving on the input one or more signals represent
ing one or more check-the-check symbols to correct an error
in one or more of the p n-state check symbols.

In accordance with yet another aspect of the present inven
tion the apparatus as provided further comprises instructions
to perform receiving on the input one or more signals repre
senting one or more additional sequences of n-state symbols,
each additional sequence containing k n-state data symbols
and p n-state check symbols, each of the p n-state check
symbols being generated by an implementation of one of p
independent reversible n-state expressions with the k n-state
symbols as variables, receiving on the input signals represent
ing at least q*k n-state check symbols with qzl and qsp,
determining additional n- state data symbols in error by recal
culating the n-state check symbols, and solving any addi
tional errors of up to p2 errors.

In accordance with yet another aspect of the present inven
tion the apparatus is provided, wherein a ?rst plurality of
n-state check symbols is determined by using a ?rst arrange
ment of the k n- state data symbols in a ?rst matrix and a
second plurality of n-state check symbols is determined by
using a second arrangement of the k n-state data symbols in a
second matrix.

In accordance with yet another aspect of the present inven
tion the apparatus is provided wherein, p errors have deliber
ately been introduced as nuisance errors.

In accordance with yet another aspect of the present inven
tion the apparatus is provided, wherein a position of an n- state
data symbol in error is known to the apparatus.

In accordance with yet another aspect of the present inven
tion the apparatus is provided, wherein instructions to solve
the p errors are provided to the apparatus through a network.

In accordance with yet another aspect of the present inven
tion the apparatus is provided, wherein instructions to solve
the p errors are unique to the sequence of k n-state symbols.

US 8,832,523 B2
3

In accordance with yet another aspect of the present inven
tion the apparatus is provided, wherein the apparatus is part of
a communication system.

In accordance with yet another aspect of the present inven
tion the apparatus is provided, wherein the apparatus is part of
at least one of the group consisting of an audio player, a video
player, a data storage device, and a communication device.

In accordance with a further aspect of the present invention
a method is provided for by a processor correcting of errors in
a sequence of k n-state data symbols, an n-state symbol being
represented by a signal, with n>2, and kzl, comprising,
receiving on an input of the processor a plurality of signals
representing the sequence of k n-state symbols and p n-state
check symbols with psk, each of the signals representing p
n-state check symbols being generated by an implementation
of one of p independent reversible n-state expressions using
the k n-state symbols as variables, determining as an inde
pendent step which of up to p of the k n-state data symbols are
potentially in error, and solving as an independent step up to
p independent n-state expressions to determine an n- state
value for the up to p of the k n-state symbols that are poten
tially are in error, wherein the solving applies at least an
implementation of an n-state reversible logic function that is
determined by an n by n truth table.

In accordance with yet a further aspect of the present inven
tion the method as provided further comprises receiving on
the input one or more signals representing one or more check
the-check symbols to correct an error in one or more of the p
n-state check symbols.

In accordance with yet a further aspect of the present inven
tion the method as provided further comprises receiving on
the input one or more signals representing one or more addi
tional sequences of n-state symbols, each additional sequence
containing k n-state data symbols and p n-state check sym
bols, each of the p n-state check symbols being generated by
an implementation of one of p independent reversible n-state
expressions with the k n-state symbols as variables, receiving
on the input signals representing at least q*k n-state check
symbols with qzl and qsp, determining additional n-state
data symbols in error by recalculating the n-state check sym
bols, and solving any additional errors of up to p2 errors.

In accordance with yet a further aspect of the present inven
tion the method is provided, wherein a ?rst plurality of n- state
check symbols is determined by using a ?rst arrangement of
the k n-state data symbols in a ?rst matrix and a second
plurality of n-state check symbols is determined by using a
second arrangement of the k n-state data symbols in a second
matrix.

In accordance with yet a further aspect of the present inven
tion the method is provided, wherein p errors have been
introduced deliberately.

In accordance with yet a further aspect of the present inven
tion the method is provided, wherein a position of an n-state
data symbol in error is known to the apparatus.

In accordance with yet a further aspect of the present inven
tion the method is provided, wherein instructions to solve the
p errors are provided to the processor through a network.

In accordance with yet a further aspect of the present inven
tion the method is provided, wherein instructions to solve the
p errors are unique to the sequence of k n-state symbols.

In accordance with yet a further aspect of the present inven
tion the method is provided, wherein the processor is part of
at least one of the group consisting of an audio player, a video
player, a data storage device, and a communication device.

In accordance with yet a further aspect of the present inven
tion the method is provided, wherein the processor is part of
a communication system.

20

25

30

35

40

45

50

55

60

65

4
In accordance with a further aspect of the present inven

tion, novel methods and system are provided that will correct
errors in a sequence of symbols by detecting which symbols
are in error and then reconstructing the error symbol by
n-state logic expressions with symbols in errors as unknowns.

In accordance with another aspect of the present invention,
a method is provided for coding and decoding of a plurality of
n-valued data symbols with n>2, comprising: associating the
plurality of n-state data symbols with a k-dimensional matrix
with kz2; generating p check symbols with p21 for q
instances with qz2 of a ?rst dimension of the ?rst matrix, each
check symbol in an instance of a ?rst dimension being gen
erated by applying an n-state logic expression with data sym
bols as variables; generating q check symbols for a plurality
of instances of a second dimension of the k-dimensional
matrix, each check symbol in an instance of a second dimen
sion being generated by applying an n-state logic expression
with data symbols as variables; associating the plurality of
n-valued data symbols and generated check symbols with a
second matrix of which the k-dimensional matrix is a sub
matrix and transmitting the symbols associated with the sec
ond matrix to a target; and correcting in a deterministic way at
least p><q symbols in error in the second matrix.

In accordance with a further aspect of the present inven
tion, a method is provided for coding and decoding of a
plurality of n-valued data symbols with n>2, further compris
ing correcting in a deterministic way up to p><q><q errors in the
second matrix.

In accordance with another aspect of the present invention,
a method is provided for coding and decoding of a plurality of
n-valued data symbols with n>2, further comprising correct
ing in an iterative way more than p><q symbols in error.

In accordance with a further aspect of the present inven
tion, a method is provided for coding and decoding of a
plurality of n-valued data symbols with n>2, further compris
ing a second set of check symbols associated with the second
matrix, wherein each check symbol in the second set of check
symbols is generated from an expression with two or more
check symbols generated from n-state data symbols as vari
ables.

In accordance with another aspect of the present invention,
a method is provided for coding and decoding of a plurality of
n-valued data symbols with n>2, wherein one or more check
symbols generated from n-state data symbols and two or more
check symbols from the second set of check symbols form a
Reed Solomon codeword.

In accordance with a further aspect of the present inven
tion, a method is provided for coding and decoding of a
plurality of n-valued data symbols with n>2, wherein an
expression for generating a check symbol is de?ned in GF(n).

In accordance with another aspect of the present invention,
a method is provided for coding and decoding of a plurality of
n-valued data symbols with n>2, wherein an expression is
implemented in binary logic.

In accordance with a further aspect of the present inven
tion, a method is provided for coding and decoding of a
plurality of n-valued data symbols with n>2, further compris
ing: determining a magnitude of an error for a symbol in error;
and adjusting a symbol in error with the magnitude of the
error.

In accordance with another aspect of the present invention,
a system is provided for coding and decoding of a plurality of
n-state data symbols with n>2, comprising: a processor
enabled to execute instructions upon the n-state data symbols;
means to store the instructions; and instructions enabled to
perform the steps of: associating the plurality of n-state data
symbols with a k-dimensional matrix with kz2; generating p

US 8,832,523 B2
5

check symbols with p21 for q instances with qz2 of a ?rst
dimension of the ?rst matrix, each check symbol in an
instance of a ?rst dimension being generated by applying an
n-state logic expression with data symbols as variables; gen
erating q check symbols for a plurality of instances of a
second dimension of the k-dimensional matrix, each check
symbol in an instance of a second dimension being generated
by applying an n-state logic expression with data symbols as
variables; associating the plurality of n-valued data symbols
and generated check symbols with a second matrix of which
the k-dimensional matrix is a sub-matrix and transmitting the
symbols associated with the second matrix to a target; and
correcting in a deterministic way at least p><q symbols in error
in the second matrix.

In accordance with a further aspect of the present inven
tion, a system is provided for coding and decoding of a
plurality of n-state data symbols with n>2, further comprising
correcting in a deterministic way up to p><q><q errors in the
second matrix.

In accordance with another aspect of the present invention,
a system is provided for coding and decoding of a plurality of
n-state data symbols with n>2, further comprising correcting
in an iterative way more than p><q symbols in error.

In accordance with a further aspect of the present inven
tion, a system is provided for coding and decoding of a
plurality of n-state data symbols with n>2, further comprising
a second set of check symbols associated with the second
matrix, wherein each check symbol in the second set of check
symbols is generated from an expression with two or more
check symbols generated from n-state data symbols as vari
ables.

In accordance with another aspect of the present invention,
a system is provided for coding and decoding of a plurality of
n-state data symbols with n>2, wherein one or more check
symbols generated from n-state data symbols and two or more
check symbols from the second set of check symbols form a
Reed Solomon codeword.

In accordance with a further aspect of the present inven
tion, a system is provided for coding and decoding of a
plurality of n-state data symbols with n>2, wherein an expres
sion for generating a check symbol is de?ned in GF(n).

In accordance with another aspect of the present invention,
a system is provided for coding and decoding of a plurality of
n-state data symbols with n>2, wherein an expression is
implemented in binary logic.

In accordance with a further aspect of the present inven
tion, a system is provided for coding and decoding of a
plurality of n-state data symbols with n>2, further compris
ing: determining a magnitude of an error for a symbol in error;
and adjusting a symbol in error with the magnitude of the
error.

In accordance with another aspect of the present invention,
a method is provided for coding and decoding of n-state data
symbols, an n-state symbol able to assume one of n states with
n>2, comprising, associating the n-state data symbols with a
k-dimensional matrix with k>2; generating p independent
n-state check symbols with q instances of a ?rst dimension of
the k-dimensional matrix, generating q independent n-state
check symbols with p instances of a second dimension of the
k-dimensional matrix; associating the n-state data symbols
and check symbols with a second matrix which has the k-di
mensional matrix as a sub-matrix; determining that m
instances of the ?rst dimension of the k-dimensional matrix
are in error with m>p but not more than q instances of the
second dimension of the k-dimensional matrix are in error;
and solving up to m><q symbols in error from the second
matrix.

20

25

30

35

40

45

50

55

60

65

6
In accordance with another aspect of the present invention,

a method is provided for coding and decoding of n-state data
symbols, an n-state symbol able to assume one of n states with

n>2, further comprising: making a symbol that is in an
instance of a ?rst and a second dimension in error of the
second matrix an unknown in an equation; and solving q
unknowns in an instance of second dimension of the second
matrix from a set of q independent equations.

In accordance with another aspect of the present invention,
a method is provided for coding and decoding of n-state data
symbols, an n-state symbol able to assume one of n states with

n>2, further comprising: determining a magnitude of an error
for a symbols in error; and adjusting a symbol in error with the
magnitude of the error.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a matrix in accordance with an aspect
of the present invention;

FIG. 2 is another diagram of a matrix in accordance with an
aspect of the present invention;

FIG. 3 is a diagram of an equation solver in accordance
with an aspect of the present invention;

FIG. 4 is another diagram of a matrix in accordance with an
aspect of the present invention;

FIG. 5 is yet is another diagram of a matrix in accordance
with an aspect of the present invention;

FIG. 6 is yet is another diagram of a matrix in accordance
with an aspect of the present invention;

FIG. 7 is yet is another diagram of a matrix in accordance
with an aspect of the present invention;

FIG. 8 is yet is another diagram of a matrix in accordance
with an aspect of the present invention;

FIG. 9 illustrates a system that is used to perform the steps
described herein in accordance with another aspect of the
present invention;

FIG. 10 illustrates a storage system for writing data to a
storage medium in accordance with yet another aspect of the
present invention;

FIG. 11 illustrates a storage system for reading data from a
storage medium in accordance with yet another aspect of the
present invention; and

FIGS. 12 and 13 illustrate an implementation of an n-state
truth table.

DESCRIPTION OF A PREFERRED
EMBODIMENT

According to one aspect of the present invention, an error
correcting code is provided for a matrix of multi-state sym
bols enhanced with check symbols.

Herein, the terms multi-state, n-state, multi-valued and
n-valued symbol will mean a symbol which may assume one
of 3 or more states, which distinguishes it from binary sym
bols or bits which can only assume one of 2 states. Further
more, the terms state or value and multi-state or multi-valued
will be used interchangeably. The logic functions that are
provided herein represent the switching of states. A state may
be represented by a digit or a number. This may create the
impression that an actual value is attached to a state. One may,
to better visualize states, assign a value to a state. However,
that is not a requirement for a state. A name or designation of
a state is just to indicate that it is different from states with
different designations. Because some logic functions herein
represent an adder the names state and value may be used
meaning the same.

US 8,832,523 B2
7

Furthermore, because of the practice in binary logic to
represent a state by a physical level of a signal such as a
voltage, one often assumes that different n-state signals have
different levels of a signal, such as voltage or intensity. While
such representations of a state are allowed it is not limited to
that. A state may be represented by independent phenomena.
For instance, different states of a signal may be represented by
different wavelengths of an optical signal. A state may also be
represented by a presence of a certain material, by a quantum
mechanical phenomenon, or by any other phenomenon that
can distinguish a state from another state.

Furthermore, a symbol, which is regarded herein as a single
element, may also be represented by 2 or more p-state sym
bols wherein p<n. For instance, a 4-state symbol may be
represented by 2 binary symbols.

The generation of check symbols, especially in sequences
of binary symbols, is known, and either a parity symbol or a
combination of symbols representing a checksum is gener
ated. One may also generate n-valued check symbols by
applying n-valued symbols to one or more n-valued logic
functions. For instance, one may have a sequence of 4 4-val
ued data symbols [d1 d2 d3 d4]. One may create a check
symbol c (or the ?fth symbol in the sequence) by for instance
adding modulo-4 the value (or representation of the state of
each data symbol) of each data symbol. One has thus created
the sequence [d1 d2 d3 d4 c]. Assume d1:0; d2:2; d3:2; and
d4:3. Then c:(d1+d2+d3+d4)mod-4:(7)mod-4:3.

This is merely an example. The symbols are n-state, with at
this stage no limitation to the number of states (just n>2). The
functions can be any n-valued switching function, related to
the n-state of the symbols. For error correction an n-valued
function for determining a check symbol is preferably a
reversible n-valued logic function. While it seems strange,
one may also solve equations with non-reversible n-valued
logic functions. A non-reversible n-valued logic function has
a truth table with at least one row or column that has two
identical output states for different input states. By providing
suf?cient different equations one can address the uncertainty
related to the states of for instance inputs (x1, x2) and (X1 , x3)
generating the same output state d1.

In accordance with a further aspect of the present inven
tion, one should arrange a sequence of symbols in a matrix.
For instance a sequence of 9 multi-state symbols d12, d12,
d13, d21, d22, d23, d31, d32 and d33 can be arranged in a
2-dimensional matrix as shown in FIG. 1 having rows and
columns. To each row of data symbols at least one check
symbol qi (q1, q2 and q3) is added. Further more to each
column 2 check symbols p and p are added. Each check
symbol is created from data symbols in its respective row or
column. One may also create a ?rst check symbol from data
symbols and a second symbol from data symbols and the ?rst
check symbol. FIG. 1 is merely an illustrative example. One
may have a multi-dimensional matrix (more than 2 dimen
sions). Multi-dimensional matrices are fully contemplated
and the term row and column are extended to other dimen
sions in a multi-dimensional matrix. One may have more or
fewer check symbols per column or row. One may have no
check symbols in one or more rows or columns. One may also
have a different number of check symbols in each row or each
column.

The position of a check symbol in a row or a column is
shown for illustrative purposes at the end of a row or the
bottom of a column. It should be clear that one may position
a check symbol anywhere in a matrix as long as one knows
from which data symbols a check symbol is determined.
A sequence of symbols can be arranged in a matrix for

analysis and determination of check symbols. It should be

20

25

30

35

40

45

50

55

60

65

8
clear that the symbols are usually not transmitted in a matrix.
One does not have to arrange symbols in an actual matrix for
analysis. It is required that one knows the relationships
between data symbols and check symbols and how two or
more different check symbols may have at least one data
symbol in common.
A preferred embodiment as one aspect of the present inven

tion, is to ?rst identify which symbols in a matrix are possibly
in error, and based on a selected coding scheme reconstruct
the symbols that were detected as being possibly in error by
using reversing equations. Assume that in a 2-dimensional
matrix each row has p check symbols and each column has q
check symbols and no more than q rows or no more than p
columns are in error one may solve up to p><q errors in a
deterministic manner. A row or a column being in error herein
means that a row or a column has at least one check symbol
which after being recalculated has a value or state different
from its received value. With more columns or rows in error
one may apply an iterative scheme, based on making an initial
assumption about at least one symbol that can possibly be in
error in actuality not being in error. Based on such an assump
tion one may then calculate the values or states of remaining
symbols that may be in error. If the thus calculated values
result in an error free matrix there is a high probability that the
assumption was correct and that the calculated values are
correct. If such an assumption leads to a matrix still contain
ing errors there is a high probability that the assumption was
wrong and a different assumption has to be tried, until an error
free matrix is achieved.
The advantage of a Reed Solomon code is that each word

having 2><k check symbols may correct up to k errors. How
ever in light of the complexity of solving for instance an error
location polynomial, solving errors is a relatively complex
process. If one can identify location of errors, reconstruction
of the symbol in errors is relatively simple.

Reconstruction of symbols (including n-valued symbols)
in error based on known correct symbols has been demon
strated by the Applicant in Us. patent application Ser. No.
11/566,725, ?led on Dec. 5, 2006 entitled ERROR COR
RECTING DECODING FOR CONVOLUTIONAL AND
RECURSIVE SYSTEMATIC CONVOLUTIONAL
ENCODED SEQUENCES, which is incorporated herein in
its entirety by reference. Reconstruction of symbols in error
in Reed Solomon codes and in what the Applicant calls Reed
Solomon like codes also are described in Us. Non-provi
sional patent application Ser. No. 11/739,189, ?led on Apr.
24, 2007, which claims the bene?t of Us. Provisional Patent
Application Ser. No. 60/807,087 ?led Jul. 12, 2006; Us.
Non-provisional patent application Ser. No. 1 1/743,893, ?led
on May 3, 2007, which claims the bene?t of Us. Provisional
Patent Application Ser. No. 60/821,980 ?led Aug. 10, 2006,
which are all four incorporated herein by reference in their
entirety.

Especially in a matrix wherein errors are distributed in such
a way that only a limited number of rows or columns (or on
dimensions in a multi-dimensional matrix) are in error, the
use of Reed Solomon codes may be excessive and use of error
detection and symbol reconstruction as provided herein as an
aspect of the present invention may be simpler and more
effective, achieving a bigger “bang-for-the-buck” so to speak
for each check symbol.
The issue with matrix based codes is that multiple errors

may hide errors by creating a check symbol that appears to be
correct. Assume that the previously provided example before
transmission creates the sequence: [d1 d2 d3 d4 c]. Wherein
d1:0; d2:2; d3:2; and d4:3 and c:(d1+d2+d3+d4)mod-4:
(7)mod-4:3. Accordingly, [d1 d2 d3 d4 c]:[0 2 2 3 3].
Assume that after transmission one receives [0 2 3 2 3]. Both
d3 and d4 are in error. However when one recalculates the
check symbol one determines c:3. Based on that it is impos

US 8,832,523 B2

sible to determine that two errors have occurred. The errors
cancel each other out in determining the check symbol. In
other words the errors are hidden. It was shown by the inven
tor inU.S. patent application Ser. No. 11/969,560 ?led on Jan.
4, 2008, which is incorporated herein by reference, that errors
in a matrix code can be unhidden by applying check symbols
which are determined from different arrangements of sym
bols in a matrix.

In accordance with an aspect of the present invention, one
can solve a set of p errors in a plurality of symbols if one has
p independent equations wherein the p symbols in errors are
the unknowns.
Independent Equations for Determining Check Symbols

Binary check symbols or parity bits are based on a limited
relationship between the constituting bits. The relationship is
commonly established by the binary XOR function. N-valued
check symbols can have more varied reversible relationships
as was explained in the earlier cited application Ser. No.
l 1/ 680,719. For instance one may have a word of 4 n-valued
symbols [a b c d]. One may create a ?rst n-valued check
symbol Cl:a@b@0@d. One may also create a second check
symbol c2:a ® b ® c ® d. Ifonly one ofthe symbols a, b, c or
d is in error one can reconstruct the symbol in error both from
cl or c2 if these are not in error and both 69 and ® are
reversible operations. It should also be clear that two symbols
in error can be reconstructed if the equations for cl and c2 are
independent and the operations are reversible. Calculation of
cl and c2 by 69 and ® may be independent because the
operations are different and/or independent. The equations
for cl and c2 may be independent because the symbols a, b, c
and d are processed with the same function but with for
instance different n-valued inverters. For instance,
c2:a€92b€93c€92d in an n-valued code. The advantage of
using n-valued coders with LFSRs either in Galois or in
Fibonacci con?guration is that each next generated check
symbol has an independent equation from another check
symbol in the code. That is a reason why Reed Solomon (RS)
codes work as error correcting codes.

The advantage of using an LFSR is that one does not need
to execute each expression or equation in full to generate a
check symbol. The appropriate con?guration of the LFSR
takes care of generating the check symbols in accordance
with independent expressions or equations. The drawback of
the RS code is that the location of an error ?rst has to be found
by for instance solving an error correction polynomial. In
order to be able to do that for each error there have to be 2
check symbols. By knowing where the errors occur, for
instance by using a matrix with error symbols derived from
columns and rows, one may be able to use just one check
symbol per error.
Methods for Solving N-Valued Error Equations

There are actually several different methods to solve the
n-valued error equations. Which method one applies may
depend on the complexity of the equations, the properties of
the functions and which of the symbols are in error. The
complexity and properties of functions is directly related to
the value of n. For instance, if n:2p then one can use a function
scl which is an addition over GF(2P) and multipliers over
GF(2P). In that case scl is self-reversing, commutative and
associative. This makes solving equations much easier. An
illustrative example will be provided.
Under conditions where the position of an error symbol can

be determined unambiguously, it is also possible to solve the
equations unambiguously. If for some reason it is impossible
or undesirable to solve equations in an algebraic fashion, one
can solve the equations iteratively by using all possible values

20

25

30

35

40

45

50

55

60

65

10
for the symbols in error. One will ?nd only one combination
of values that solves all equations correctly.
One method is to solve the equations in an algebraic fash

ion. In order to solve equations it is useful to review the rules
for reversible, non-commutative and non-associative n-val
ued logic functions. Assume n-valued logic function ‘ sc’ to be
reversible, non-commutative and non-associative.
When (a sc b:c) then (b scT a:c), with the truth table of scT
being the transposed of the truth table of sc.
When (a sc b:c) then (c scrc b:a), with the function ‘scrc’
being the reverse of ‘sc’ over constant columns.

When (a sc b:c) then (a scrr c:b), with the function ‘scrr’
being the reverse of ‘sc’ over constant rows.

When (b scT a:c) then (b scTrr c:a), etc.
Assume a coder using 3 data symbols x1, x2 and x3 and

generating two check symbols pl and p2 using the following
two equations for generating pl and p2: pl:{xl sc2 (x2 scl
x3)} and p2:{pl sc2 (xl scl x2)}.

Algebraic method. As a ?rst 4-valued example, assume that
of [x1 x2 x3 pl p2] x3 and pl are in error. Clearly a ?rst simple
step is to solve p2:{pl sc2 (xl scl x2)} which has pl as
unknown. One can rewrite the equation as: {p2 sc2rc (xl scl
x2)}:pl. The truth tables of scl and sc2 are provided in the
following tables.

scl 0 l 2 3

0 0 l 2 3
l l 0 3 2
2 2 3 0 l
3 3 2 l 0

$02 0 l 2 3

0 0 l 2 3
l 2 3 0 l
2 3 2 l 0
3 l 0 3 2

Herein the function sc2rc is the reverse of sc2 over constant
columns. Its truth table is provided in the following table.

chrc 0 l 2 3

0 0 3 l 2
l 3 0 2 l
2 l 2 0 3
3 2 l 3 0

The assumption was that x3 and pl were in error, so in the
example the received codeword was [3 3 x3 pl 0] using the
earlier example. Filling in the values in the equation provides
pl:{0 sc2rc (3 scl 3)} or pl:0 sc2rc 0:0.
From pl:{xl sc2 (x2 scl x3)} wherein now only x3 is an

unknown one can derive: (x2 scl x3):{xl sc2rr pl} wherein
sc2rr is the reverse of sc2 over constant rows. Keeping in mind
that scl is self reversing: x3q2 scl (xl sc2rr pl). The truth
table of sc2rr is provided in the following table.

chrr 0 l 2 3

0 0 l 2 3
l 2 3 0 l
2 3 2 l 0
3 l 0 3 2

US 8,832,523 B2
1 1

Thus, X3:x2 scl (Xl sc2rr pl) leads to: X3:3 scl (3 sc2rr 0)
or X3:3 scl 1:2.

One may apply the same approach when X2 and X3 are in
error. In that case, one may apply p2:{pl sc2 (Xl scl X2)} to
achieve (Xl scl x2):pl sc2rr p2 and thus achieve x2ql scl
(pl sc2rr p2). This will provide X2:3. Etc.
A more difficult situation occurs when X1 and X2 are deter

mined to be in error. The equations will be fairly difficult to
solve. Assume that X 1 :el and X2:e2. The equations will then
be:

pl:{el 302 (22 scl x3)} and

p2:{pl 302(21 scl 22)}.

The value of pl and p2 are correct. So one way to solve the
equation in an iterative manner is to solve the equations:

ll:{el 302 (22 scl x3)} and

12:{pl 302 (el scl e2)}

for all values of el and e2, and determine for which values of
(e1 ,e2) the value (pl—t1) and (p2—t2) are both 0. Not surpris
ingly this will be the case for (el,e2):(3,3). This is a time
consuming and not very elegant way to solve the problem,
and may be a solution of last resort.

Fortunately for codes with for instance check symbols
generated over GF(2P), one can also use a different approach.
Within GF(2P) the addition can be a self reversing, commu
tative and associative function. An LFSR in GF(2P) can be
realized with functions which are a combination of adders
with multipliers to generate check symbols. One may also
generate check symbols by evaluating an expression that
determines the check symbol. One can reduce the functions
by reduction of the truth tables according to the multipliers.
This makes the execution of the coder quicker. In order to
solve the equations one can revert back to associative adders
with multipliers.

The need for solving errors of 2 symbols in a word may be
because of the spill-over effect when one codes a symbol as
for instance a binary word. One can never be sure that only an
error in one symbol has occurred, so one should be prepared
to solve the equations for two adjacent n-valued symbols in
error. It is also possible that two errors have occurred in non
adjacent symbols in a word. This assumes a different error
behavior than for adjacent errors. Especially codewords gen
erated by LFSRs (Galois and Fibonacci) that can be created
by additions (with or without multipliers) over GF(2P), have
easier to solve equations because of the associative properties
of the addition function.

For instance, assume using again a 4-valued illustrative
example wherein X1 and pl are found to be in error. The
generating expressions were: pl:{xl sc2 (X2 scl X3)} and
p2:{pl sc2 (Xl scl x2)}. Assume an inverter inv2:[0 2 3 l]
which is a 4-valued multiplier over GF(4). One can easily
check that the inverter is multiplication over GF(4) with a
factor 2. It can be checked that the function (a sc2 b) can be
replaced by (inv2(a) scl b). One can then replace the gener
ating expressions by the next expressions: pl:{xtl scl (X2
scl X3)} and p2:{ptl scl (Xl scl X2)} using the earlier
de?ned functions. Herein xtl :inv2 (Xl) and pt 1 :inv2(p l) and
scl commutative, self-reversing and associative. The way to
approach this is to use arithmetic in GF(22). The following
rules apply using + and x in GF(22).

20

25

30

35

40

50

55

60

65

x 0 l 2 3

0 0 0 0 0
l 0 l 2 3
2 0 2 3 l
3 0 3 l 2

Accordingly multiplication can be shown as:

l 2 3

x1 1 2 3
x2 2 3 1
x3 3 l 2

For instance, in GF(22) under the earlier de?ned multiplica
tion 2><2xl:3xl, etc.

The distributive property applies to a><(b+c):a><b+a><c.
Division is the inverse of multiplying.

Accordingly, division by l is multiplying by l; division by 2
is multiplying by 3; and division by 3 is multiplying by 2.
One can then write the equations as pl:2><xl +x2+x3 and

p2:2><p1+x1+x2.
For instance, assume that X1 and X2 are known to be in

error. Then X2:2><xl+x3+pl. Substitute in the p2 equation:
p2:2><p1+x1+(2><x1+x3+p1) or 2><x1+x1:2><p1+p1+p2+x3,
or 3><xl:3><pl+p2+x3. Dividing by 3 is multiplying by 2 so:
xlrp l +2><p2+2><x3:0+2><0+2><2:3. Etc.
As another example, one may assume that not adjacent

symbols X1 and pl are in error. One must solve the equations
then for X1. This leads to 2><xl:3><x2+2><x3+p2; or xl:2><
x2+x3+3><p2:2><3+2+0:l+2:3. One achieves this result by
applying the arithmetic rules in GF(22) as stated before.

Galois ?eld arithmetic may be preferred for solving the
equations for in error symbols. However, these easy solutions
may only be available for codewords de?ned in extension
binary ?elds.
As an illustrative example, a 5 symbol 5-valued code will

be generated with 3 data symbols and two check symbols
generated by using 5-state switching function sc5, which is
the mod-5 addition with the following truth table.

$05 0 l 2 3 4

0 0 l 2 3 4
l l 2 3 4 0
2 2 3 4 0 l
3 3 4 0 l 2
4 4 0 l 2 3

The 5-valued equations for generating check symbols pl
and p2 are: pl:{xl sc5 (X2 sc5 2><x3)} and p2:{pl sc5 (Xl

US 8,832,523 B2
13

sc5 2><x2)} to generate codeword [X1 X2 X3 p1 p2]. Because
sc5 is an addition (mod-5) one can write the equations as:
p1q1+x2+2><x3 and p2:p1+x1+2><x2. The check symbols
can be generated by an LFSR.

For the 5-valued arithmetic the following truth table need
to be used for multiplication x and subtraction —, meaning
(a—b) wherein ‘a’ is the row and ‘b’ is the column of the truth
table.

— 0 l 2 3 4

0 0 4 3 2 l
l l 0 4 3 2
2 2 l 0 4 3
3 3 2 l 0 4
4 4 3 2 l 0

x 0 l 2 3 4

0 0 0 0 0 0
l 0 l 2 3 4
2 0 2 4 l 3
3 0 3 l 4 2
4 0 4 3 2 l

One should further keep in mind that dividing by 2 is
multiplying with 3, dividing by 3 is multiplying by 2 and
dividing by 4 is multiplying by 4. Further more 3x3:4 and
4x4:1, etc.

Accordingly, one will ?nd for x1: p2:2x1+3x2+2x3 or
3p2q<1+4x2+x3 or x1:(3p2—4x2)—x3. The data symbols [x1
X2 x3]:[0 4 3] will generate [p1 p2]:[0 3]. One may calculate
X1 and p1 from the other symbols (for instance when they are
in error). The equation correctly provides: X1:(3><3—4><4)—
3:(4—1)—3:0.

The methods here presented as different aspects of the
present invention also apply to detection and correction of
more than 2 errors, such as three errors. In order to detect k
errors in a codeword of 11 symbols, each codeword in a set of
codewords must have at least k+1 different symbols in com
mon positions from any other codeword in the set. Or each
codeword may at most have (n—k—1) symbols in common
positions. The best one can do in a 7 symbol codeword to
detect 3 errors is having at most 3 symbols in common. Such
a code would require 8-valued symbols and is generally
known as an RS-code. It is possible to meet the error detection
requirement in a lower valued symbol codeword. However,
that would require a codeword with more symbols. It is then
understood that other and different examples of detection 3
errors in a codeword can be provided according to different
aspects of the present invention.
As an illustrative example, an 8-valued 7 symbol codeword

with 3 check symbols will be provided to demonstrate error
correction when the position of errors is known.
One can identify the positions of the errors for instance by

establishing a matrix as shown in FIG. 2. The data symbols
occur sequentially as X1 . . . X4, y1 ...y4,v1 ...v4, 21 ...Z4.
The symbols are broken up as 4 columns of 4 data symbols
and horizontal check symbols t and tt are generated as well as
vertical check symbols p, q, and r. The symbols tt are check
symbols on the check symbols. The assumption in the
example is that errors will occur as at most 3 errors in a

column. One skilled in the art may, of course, design 2 or 3
dimensional matrices for different (also non adjacent) errors
and different symbol error ratios as well as different code
word sizes.

20

25

30

35

40

45

50

55

60

65

14
Assume that all symbols in the illustrative examples are

8-valued. By running 8-valued coders on the received data
symbols one can check the newly generated check symbols
against the received check symbols and determine which
rows and columns are in error, thus determining the position
of the errors. Based on the known error positions and the
coder one can reconstruct the correct symbols in the error
positions.
The truth tables of the addition sc1 and multiplier over

GF(23) are provided in the following truth tables.

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 4 7 2 6 5 3
2 2 4 0 5 1 3 7 6
3 3 7 5 0 6 2 4 1
4 4 2 1 6 0 7 3 5
5 5 6 3 2 7 0 1 4
6 6 5 7 4 3 1 0 2
7 7 3 6 1 5 4 2 0

X 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 3 4 5 6 7 1
3 0 3 4 5 6 7 1 2
4 0 4 5 6 7 1 2 3
5 0 5 6 7 1 2 3 4
6 0 6 7 1 2 3 4 5
7 0 7 1 2 3 4 5 6

The following table shows the division rule in GF(23).

Or division by 2 is multiplying by 7, division by 3 is multi
plying by 6, etc.

Four data symbols [x y v Z] in a column will generate 3
check symbols [p q r]. The equations for generating the check
symbols are:

The above check symbols may also be generated by an
8-valued LFSR. One can solve these equations for any of the
3 symbols to be unknown. As one example assume [x y v] to
be in error. One can solve the linear equations by matrices or
by substitution. Applying substitution one will ?nd:

and thus with symbols [Z p q r] known and error-free one can
solve the equations.
A partial set of 7 8-valued symbol codeword generated by

the above expressions is shown in the following table.

US 8,832,523 B2
15

x y v Z p q r

0 4 7 2 2 3 4
1 3 7 1 0 3 7
2 5 6 4 1 2 2
3 5 4 2 5 7 1
4 3 7 1 5 6 3
5 4 6 6 0 0 0
6 3 4 0 7 1 2
7 7 2 4 7 0 1

One can easily check for the provided codewords using [Z
p q r] in the equations to determine [x y Z].
One can provide the solution set for any of 3 or less sym

bols in a codeword being in error.
One may also determine solutions for independent sets of

unknowns by applying Cramer’s rule. As an example, the set
of equations for the above coder will be used. For application
of Cramer’s rule one should apply all additions and multipli
cations of this example in GF(8). When applying Cramer’s
rule using for other radix-n one should apply the appropriate
arithmetic. In this example, one should apply addition and
multiplication over GF(23) of which the truth tables are pro
vided above.
Assume that it is determined that x, y and Z are in error. The

codeword in error is [x y V Z p q r]:[el e2 7 e4 5 6 3]. One
should the create three equations with unknowns x1, x2 and
x4 from the known equations as:

Cramer’s rule then solves the above equations as:

d1 1 2

d2 1 0

d3 2 0

4 1 d1

1 1 d2

1 2 d3

4 l 2

l l 0

l 2 0

l 0

2 0

10

10

l 1 =4.]
l 2

as the rules of GF(8) are used.

01

25

30

w

M

50

55

60

65

This is in accordance with the elements in the word as gen
erated by FIG. 9.
One may also apply Cramer’s rule to other n-valued codes,

such as the 5-valued coder of above. Herein, one should use
the rules of modulo-5 addition and modulo-5 subtraction in
the provided example, as well as the proper multiplication.
Assuming that in a codeword [x1 x2 x3 pl p2] the symbols x2,
pl and p2 are correct and x1 and x3 are in error the equations
become:

d1 pl — x2

The solution vector is [] = [d2 p2 — pl — 2x2

Assume that the codeword [x1 x2 x3 pl p2]:[el 4 e3 2 0]
was received. According to Cramer’s rule:

Accordingly, the correct codeword is [x1 x2 x3 pl p2]:[0
4 4 2 0]. It is thus demonstrated that as long as the position of
errors are known one may correct any set of errors within the
constraints of the number of independent equations.

For illustrative purposes errors are solved by using n-val
ued adders and multiplications, either modulo-n or over
GF(n). An n-valued multiplication with a constant may be
dealt with as an n-valued inverter. One may reduce combina
tions of n-valued inverters and an n-valued logic function to a
function with a modi?ed truth table as was shown by the
inventor in Us. patent application Ser. No. 10/935,960, ?led
on Sep. 8, 2004, which is incorporated herein by reference.
An expression for a check symbol cs 1 :inv2(xl) sc5 inv3 (x2)
sc5 inv4(x3) may then be replaced by sclql sc51 x2 sc52,
wherein sc51 and sc52 are the function sc5 modi?ed in accor
dance with the inverters. This reduction may be applied to any
expression having inverters and functions, including
modulo-n adders and multipliers and adders and multipliers
over GF(n). Accordingly, an n-valued expression created
from adders and having at least one multiplier may be
changed to an expression having at least one function not
being an adder modulo-n or over GF(n). A function not being

US 8,832,523 B2
17

an adder over GF(n) or a modulo-n adder herein may be
de?ned as an n-valued non-adder function.

In accordance with an aspect of the present invention, one
may thus circumvent using an adder and multiplication by
using an n-valued non-adder function in an expression to
solve an error. Such an expression may be part of Cramer’s
rule.

Furthermore, one may overestimate the number of errors
within the constraints. For instance, if only Xl was in error
and X3 was not in error but the other conditions still apply then
one still will reconstruct the correct value for x3. Even though
X3 was not in error.

It is fairly simple to calculate the symbols in error ‘on-the
?y’, based on the errors. One can also already implement each
set of solutions based on the maximum number of errors.
Assuming 3 symbols in error even if only one is in error does
not matter to the ?nal error correction. One merely recalcu
lates the symbols. The only limitation is that one of course can
not solve in a deterministic way more errors than independent
equations. One can again see the clear advantage here of
knowing where the errors are located. It cuts the number of
required check symbols in half, as compared to an RS code for
instance.

FIG. 3 provides a diagram for solving different equations
depending on different errors. One can store the equations for
speci?c combinations of errors. As an example, it is assumed
that at most 3 consecutive symbols can be in error. For each
error combination a solution set is determined a stored for
instance as an executable program or is hard wired as a circuit.
Assume a codeword having 10 data symbols and 3 check
symbols and each codeword of the set has at most 9 symbols
in common with another codeword. Assume that, for
instance, through using also horizontal error check symbols
one can determine where errors occur in a column 1000 in

FIG. 3. Assume that errors occurred in position 1001 or in the
?rst 3 symbols of the codeword. The solution for this situation
is enabled as ‘solution 1’ in equation solver 1010. This equa
tion solver may be part of a computer program or hard wired
logic circuits. The solver is then provided with the known
correct symbols [X4 X5 X6 X7 X8 X9 x10 pl p2 p3] and then
generates the correct [X1 X2 X3].

Such a circuit or computer program may calculate a value.
This may be achieved by n-valued or n-state circuits or
devices. It may also be achieved by binary circuitry, wherein
an n-state symbol is represented in binary form. Ultimately,
the solver will generate the correct state for the symbols in
error. The correct symbols may be generated as n-state sig
nals, or in a binary signal representation or in any other signal
representation that can be used to represent the corrected
symbol. After error correction, a symbol in binary represen
tation may for instance be converted into an n-state signal by
applying a Digital/Analog converter as is well known to one
of ordinary skill in the art. A symbol in binary representation
may also be further processed in binary form. After error
correction, the complete set of symbols as received and cor
rected is then available for further processing by digital
devices or a processor or any other digital signal processing
device. Accordingly, actual devices are used. One requires
signals for further processing. For instance the received and
corrected n-valued symbols may be processed an converted
and provided by a device into an audio signal. It may also be
used to generate a video signal, a radar signal, or any other
useful signal. The methods and apparatus to correct n-valued
signals or representations of n-valued or n-state signals are
useful, as they prevent from errors to occur in for instance
audio and/ or video signals and thus prevent a negative expe
rience by the user of such audio or video signals. In one

20

25

30

35

40

45

50

55

60

65

18
embodiment an apparatus evaluates and/or processes at least
100 n-state check symbols per second. In another embodi
ment an apparatus evaluates and/or processes at least 1000
n-state check symbols per second. In yet another embodiment
an apparatus evaluates and/or processes at least 100,000
n-state check symbols per second. In yet another embodiment
an apparatus evaluates and/or processes at least one million
n-state check symbols per second.

For another error situation 1002 the solver addresses a
different ‘solution 2’ and generates [X5 X6 x7] and for error
situation 1003 the solver addresses yet another ‘solution 3’
which may generate just x10 or also [pl p2] if those symbols
are used in a later stage.
Checking the Check Symbols

It has been shown that n-state symbols in error can be
corrected once their location is known. In this section as an
aspect of the present invention a method is provided to detect
multiple errors over a dimension of a matrix and to provide
possible locations of symbols in errors. Based on the location
one may calculate directly the magnitude of an error (by using
a syndrome) or the correct value of a symbol in error. When a
dimension of a matrix (such as a row or a column) contains
many data symbols of which only a few are in error it may
reduce the number of calculations by ?rst determining a mag
nitude of an error and then correct the symbol in error by that
magnitude.

If a dimension of a matrix such as a row or a column has p

check symbols of which each check symbol is generated of an
independent equation compared to the other check symbols
then always p symbols in error can be detected. Errors in such
a case cannot cancel each other out. During coding the check
symbols are calculated. The symbols are then processed,
stored or transmitted. After receiving the processed, stored or
transmitted symbols the check symbols are recalculated. The
existence of one and up to p symbols in error in a dimension
of a matrix will create at least one recalculated check symbol
which is different from a received check symbol. The dimen
sion such as a row or column of a matrix is then called in error,
and may be called a row, column or dimension in error.

Because a data symbol in a matrix shares at least two
dimensions such as a row and a column, an error in a data
symbol will put at least two dimensions or for instance a row
and column in error. Accordingly, an error may exist at the
cross point of two dimensions in error.

In a dimension in error not only data symbols may be in
error. Also check symbols may be in error. If only check
symbols are in error one may not care to solve the symbols in
errors as the data symbols are correct. If a mix of data symbols
and check symbols are in error one may have to solve all
errors. It may be advantageous to assure that all check sym
bols are error free, for instance by applying excess check-the
check symbols ‘tt’ for instance by coding the check symbols
according to a Reed Solomon (RS) code. Such use of a RS
code does not fundamentally change the approach herein
provided. For illustrative purposes it is assumed that in one
embodiment check symbols are error free, possibly by using
RS codes. This is shown schematically in FIG. 4 in a matrix
code 400. Herein the data symbols are in 401. The check
symbols of the rows are in 402 and of the columns in 403.
Check-the check symbols are in 404. The size of block 404
re?ects that additional check on check-the check symbols are
included to allow error correction in the check symbols. It is
to be understood that in a different embodiment one may have
errors in check symbols that require correction.
Locating and Correcting Errors in a Matrix
The problem of narrowing the location of errors in dem

onstrated in FIGS. 5 and 6 which show a matrix with errors

US 8,832,523 B2
1 9

related to the matrix code of FIG. 2. The check-the check
symbols ‘tt’ are deliberately omitted in this illustrative
example to keep focus on error location, but may be assumed.

The situation in FIG. 5 is simple. The shaded row related to
check symbol t4 is in error. Also the shaded column related to
p3, q3 and r3 is in error. Accordingly the symbol in error is on
the crossing of this row and column: symbol Z3 is in error.
One may resolve the error by using one of the equations to
determine the relevant check symbols as shown above.

The situation in FIG. 6 is more complicated. The shaded
rows related to t2 and t4 are in error and the shaded columns
related to pl and p3 are in error. Even if it is assumed that only
one error occurs in a row, this situation indicates that poten
tially symbols y1, y3, 21 and Z3 are in error. One cannot
resolve the errors over the rows in a deterministic way as each

row has just one independent check symbol. However, one
can resolve at least two independent equations per column.
One may thus resolve y1 and 21 in the ?rst column. In case
just one symbol is in error one will ?nd one symbol to be
changed as to its received value and one symbol being the
same as to its received value. The same applies to the column
with y3 and Z3.
One can see in FIG. 6 that two columns are in error, even

though the error limitation of one error per row was not

exceeded. However, the limitation of 3 rows in error was not
exceeded. One may thus derive a rule for deterministic error
detection and correction in a matrix code.
A row of a matrix comprising n-state data symbols may

have p independent n-state check symbols. A column of the
matrix comprising n-state data symbols may have q indepen
dent check symbols. If m columns are in error with m>p but
not more than q rows are in error one can solve up to m><q
symbols in error by assuming each symbol that is in a row or
a column in error as an unknown; by solving q unknowns in a
column from a set of q independent equations; and by solving
all unknowns for all columns.
One may interchange the terms column and rows for the

situation wherein m rows are in error with m>q but no more

than q columns are in error.
One may also adapt the rule for k-dimensional matrices

with kz2. A ?rst dimension of a k-dimensional matrix com
prising n-state data symbols may have p independent n-state
check symbols. A second dimension of the k-dimensional
matrix comprising n-state data symbols may have q indepen
dent check symbols. If m instances of the ?rst dimension are
in error with m>p but not more than q instances of the second
dimension are in error one can solve up to m><q symbols in
error by assuming each symbol that is in an instance of a ?rst
and a second dimension in error as an unknown; by solving q
unknowns in an instance of second dimension from a set of q
independent equations; and by solving all unknowns for all
instances of a second dimension.
An instance of a dimension is then a row in that dimension.

An instance of a ?rst dimension in a 2-dimensional matrix
may be a row in horizontal direction, commonly called a row.
An instance of a second dimension of a 2-dimensional matrix
is then a row in the vertical direction or commonly called a
column. An instance of a third dimension of a 3-dimensional
matrix is a row that is perpendicular to the ?rst and second
dimensions, etc.
One may further code and decode a plurality of n-state data

symbols by associating the data symbols with a ?rst matrix.
One may then generate check symbols over instances of a
dimension (a row for instance). In order to enable decoding
the data symbols and check symbols are then associated with
a second matrix. It should be clear that the second matrix has
more dimensions that the ?rst matrix. Furthermore, one may

20

25

30

35

40

45

50

55

60

65

20
create Reed Solomon codewords for the check symbols by
creating check symbols for the check symbols (check-the
check symbols).

While one may solve errors by using the symbols in errors
as unknowns one may also solve the magnitude of an error by
using syndromes.
As described above and by the inventor in Us. patent

application Ser. No. 11/ 680,719 ?led Mar. 1, 2007 and in Ser.
No. 11/739,189 ?led Apr. 24, 2007 and in Us. patent appli
cation Ser. No. 11/969,560 ?led on Jan. 4, 2008, which are all
incorporated herein by reference, one may create n-state
check symbols by executing the n-state expression:
s1 1Qa*x1+b*x2+c*x3+d*x4 wherein + is an n-valued adder
(be it mod-n or over GF(n)) and * is an n-valued multiplica
tion. If one wants to solve the equation for unknowns the
multiplication must be a reversible function. This means that
the multiplication could be de?ned in the extension ?eld
GF(n:2P) ifn is a multiple of 2.

It was also shown earlier that an n-valued constant multi
plier applied to an n-state variable may be treated as an
n-valued inverter. Accordingly one may write the equation for
s11 as:

s1 1Qinva(x1) sc1 invb(x2) sc2 invc(x3) sc3 invd(x4).
Herein inva(x1) means that x1 is modi?ed according to an
inverter inva which is n-valued multiplication by a factor ‘a’.

It was shown by the inventor in Us. Non-Provisional
patent application Ser. No. 10/935,960, ?led on Sep. 8, 2004
which is incorporated herein by reference how a function with
inputs containing an inverter can be reduced to a function
having no inverter. According to this aspect one could write
s11 for instance as: s1 1Q(((x1 scml x2) scm2 x3) scm3 x4).
Herein a function scm is an n-valued function modi?ed
according to one or more inverters. For illustrative purposes
functions over GF(2P) will be used, as this make manipulation
of expressions easier. However, other n-state functions are
possible and are fully contemplated. Adders over GF(2P) are
associative, distributive and self reversing. As was shown
above, solving equations can easily be achieved with for
instance Cramer’s rule. Because Cramer’s rule will lead to
adding of terms which are multiplied by a coef?cient, one
may in implementation reduce these functions again accord
ing to the inverters which represent the multipliers, to reduced
functions not being an addition and not having multipliers,
thus making execution of an n-valued expression faster.

It was also shown that in n-valued or n-state logic one may
create from the same n-valued symbols two different and
independent equations to generate a check symbol. For
instance: s11Qa1*x1+b1*x2+c1*x3+d1*x4 s12Qa2*x1+
b2*x2+c2*x3+d2*x4
The above, and other n-state switching expressions pro

vided herein, may look like arithmetical expressions. It is
emphasized that these expressions are n-state switching or
logic expressions that are to be implemented in devices.
One can thus create a codeword [x1 x2 x3 x4 s11 s12]

which may be part of a code wherein each codeword differs at
least in 3 symbols in like positions. This means that in such a
code two errors can be detected in each codeword (without
determining a location) by recalculating the check symbols.
These errors may include errors in the check symbols. Code
words with such a property can be generated by LFSRs, but
also by direct execution of the expressions as shown above. If
one uses an LFSR such an LFSR may be in Galois or
Fibonacci con?guration. In general Galois con?guration
LFSRs are used in the literature, however this is not required
and Fibonacci con?gurations may have a speed advantage as
one may start generating check symbols directly. A Galois
LFSR needs to read-in each symbol to generate the correct

US 8,832,523 B2
21

content of the shift register and then needs to read-out the
generated symbols. LFSR methods are for instance used in
CRC error detection. By using this type of codewords errors
in case of two errors in a codeword cannot be hidden by
canceling each other out under certain conditions.

For illustrative purposes the number of errors will not
exceed 3 in a word. One may use a 4-valued or higher valued
code to achieve the required number of independent equa
tions to generate n-valued check symbols. While the selection
of n does not affect the number of errors that can be detected
with 100% certainty, it does affect the chance of hiding addi
tional errors.Assume that a codeword has 5 n-valued symbols
of which 2 are check symbols generated by independent
equations. Assume further that 2 symbols are in error and can
be detected. The chance that a third error in one of the other
symbols will create a correct codeword is smaller as n
becomes greater and the chance that an additional error is
hiding becomes smaller.

For instance one may generate two 4-valued check sym
bols s1 and s2 by the following equations:

wherein + and * are de?ned in GF(4).
There are 64 4-valued codewords [X1 X2 X3 s1 s2] . Assume

2 errors: el and e2 in the codeword for instance as: [el X2 e3
s1 s2].

In accordance with an aspect of the present invention a
value of n is selected for creating codewords that will detect at
least p errors and that increases the chance to detect p+l
errors.

As an example apply the 4-valued codeword [X1 X2 X3 sl
s2]:[0 0 3 3 2], wherein check symbols sl:3 and s2:2 are
generated by the earlier provided independent expressions.
Assume that symbols X2 and s2 are received correctly. This
means that errors in X1, X3 and s1 must occur in such a way
that a correct codeword will be formed. The correct code
words in this set of codewords with X2:0 and s2:2 are:
[l 0 l 0 2];
[2 0 0 2 2]; and
[3 0 2 l 2].

For an 8-valued code one may apply the expressions:

wherein + and * are de?ned over GF(8).
Assume an 8-valued codeword [X1 X2 X3 sl s2]:[l 7 4 6 3]

wherein check symbols sl:6 and s2:3 are generated by the
provided independent 8-valued expressions. Assume that
symbols X2 and s2 are received correctly. This means that
errors in X1, X3 and s1 must occur in such a way that a correct
codeword will be formed. The correct codewords in this set of
codewords with X2:7 and s2:3 are:
[0 7 l 3 3];
[2 7 7 2 3];
[3 7 2 4 3];
[4 7 6 l 3];
[5 7 5 7 3];
[6 7 3 5 3]; and
[7 7 0 0 3].

Accordingly it is less likely for an 8-valued codeword with
3 symbols in errors to generate a correct codeword than it is
for errors in a 4-valued codeword to do the same. However it
is probably fair to say that that for higher values of n it already
is fairly unlikely to generate a correct codeword from errors.

20

25

30

35

40

45

50

55

60

65

22
This means that most likely an n-valued codeword with p

check symbols over a ?rst dimension with k n-valued sym
bols generated by p independent equations but with m
instances of a second dimension in error with k>p, but
wherein a second dimension with q check symbols over a
second dimension has not more instances of the ?rst dimen
sion in error than p, one is likely able to solve q><m>p><q
errors.

Assume the three check symbols over a data symbols [X1
X2 X3 x4] are determined by three independent n-valued
expressions:

For illustrative purposes assume ‘+’ to be an addition over
GF(8) and ‘ * ’ be a multiplication over GF(8). Check symbols
may be generated by either executing the above expressions
by 8-valued switching functions, or by running an LFSR that
will generate [r1 r2 r3], or by executing three 8-valued expres
sions in a 8-state switching device which are equivalent to the
above expressions. It has been shown by the inventor in the
earlier cited patent applications that expressions containing a
multiplication by a constant and an addition may be reduced
to a function not being an addition and containing not a
multiplication. Such an equivalent expression may determine
a check symbol faster than an expression containing an mul
tiplication. It may be easier to ?rst determine all expressions
with multiplications and additions because in GF(8) these
functions are commutative, associative and distributive, and
reduce the obtained ?nal expressions.

For solving the errors in a matrix wherein the number of
potential errors is signi?cantly smaller than the number of
data symbols, it may be easier to apply syndrome calcula
tions. In the above example one may assume that any of the
?ve symbols in the ?rst row can be in error. It is also assumed
that the check symbols are known to be error free. One may
also use the methods disclosed herein for check symbols that
are not error free. However one then has to solve the equations
for solving errors in check symbols, as in that case no funda
mental difference can be made between data symbols and
check symbols.

FIG. 7 shows a matrix code with 3 independent check
symbols per column and per row. An error situation is shown
in FIG. 7. After recalculation of check symbols it is clear that
errors have occurred in rows 1, 2 and 5; and it is clear that
errors have occurred in columns 1, 2, 3 and 4. Assume that the
code is dimensioned in such a way that “illegal” errors which
are more than 3 errors in a row or in a column have not

occurred. In fact an error ‘eij’ is an assumed error, not an
actual error. The actual errors are indicated as ‘aeij’ and are
printed in bold and a larger font in FIG. 7. The positions of the
actual errors are of course unknown a priori solving the errors.
However the total assumed number of errors can all be
resolved using the independent n-valued expressions.
Assuming that the check symbols are error free, one may

then determine:

