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1
METHODS AND APPARATUS IN ALTERNATE
FINITE FIELD BASED CODERS AND
DECODERS

BACKGROUND OF THE INVENTION

The present invention relates to apparatus and methods for
coding and for decoding. In particular, it relates to methods
and apparatus for coding and for decoding that apply an
implementation of at least an n-state addition over an alter-
nate finite field GF(n) and at least one n-state inverter defined
by a multiplication over the alternate finite field GF(n) or an
implementation of a truth table defined by said addition and
inverter, with n>2, with n>3 or with n>4.

Finite fields GF(n), including classical extension fields are
known. Presently, certain type of coders apply additions and
multiplications over a classical finite field GF(n). This makes
certain elements of an encoder and/or decoder relatively pre-
dictable. It would make a coded signal of n-state symbols with
n>2, n>3 or n>4, including certain check symbols generated
as part of a code word less predictable if novel functions with
attractive properties as defined in an alternate and currently
unknown finite field would be used.

Accordingly, novel and improved methods and apparatus
for encoding and decoding n-state symbols with functions
defined over an alternate finite field are required.

SUMMARY OF THE INVENTION

As an aspect of the present invention methods and appara-
tus for encoding and decoding n-state symbols with n>1,n>2,
n>3 and n>4 are provided wherein a single truth table is
implemented which is a truth table of an addition over an
alternate finite field or a truth table of an addition over the
alternate finite field that is modified in accordance with at
least one inverter defined by a multiplication over an alternate
finite field, wherein an alternate finite field has a neutral
element that is not O.

In accordance with a further aspect of the present inven-
tion, an apparatus is provided for encoding a first sequence of
n-state symbols, each symbol being represented by a signal,
comprising an input enabled to receive the first sequence of
n-state symbols, a device implementing an addition over an
alternate finite field GF(n) with n=3, and an output that pro-
vides a second sequence of encoded symbols.

In accordance with yet a further aspect of the present inven-
tion, the apparatus is provided, wherein n>4.

In accordance with yet a further aspect of the present inven-
tion, the apparatus is provided, further comprising an imple-
mentation of at least one inverter defined by a multiplication
over the alternate finite field.

In accordance with yet a further aspect of the present inven-
tion, the apparatus is provided, further comprising an n-state
shift register with at least two n-state shift register elements.

In accordance with yet a further aspect of the present inven-
tion, the apparatus is provided, wherein the apparatus is a
Linear Feedback System Register based encoder.

In accordance with yet a further aspect of the present inven-
tion, the apparatus is provided, wherein the second sequence
is applied in symbol error correction.

In accordance with yet a further aspect of the present inven-
tion, the apparatus is provided, wherein the device is part of a
Feistel-like network.

In accordance with yet a further aspect of the present inven-
tion, the apparatus is provided, wherein the apparatus is an
Advanced Encryption Standard (AES) encoder.
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Inaccordance with yet a further aspect of the present inven-
tion, the apparatus is provided, wherein the apparatus is an
Elliptic Curve Coding encoder.

Inaccordance with yet a further aspect of the present inven-
tion, the apparatus is provided, wherein the apparatus modi-
fies a statistical distribution of symbols in the first sequence
compared to the second sequence.

Inaccordance with yet a further aspect of the present inven-
tion, the apparatus is provided, further comprising a corre-
sponding apparatus to decode the second sequence into the
first sequence.

Inaccordance with yet a further aspect of the present inven-
tion, the apparatus is provided, wherein the second sequence
includes at least one check symbol.

Inaccordance with yet a further aspect of the present inven-
tion, the apparatus is provided, wherein n is a prime number.

Inaccordance with yet a further aspect of the present inven-
tion, the apparatus is provided, wherein n=2" with m>1.

Inaccordance with yet a further aspect of the present inven-
tion, the apparatus is provided, wherein the apparatus is a
transposition encoder.

Inaccordance with yet a further aspect of the present inven-
tion, the apparatus is provided, wherein the apparatus per-
forms a Galois arithmetical operation for encoding.

Inaccordance with yet a further aspect of the present inven-
tion, the apparatus is provided, wherein the apparatus is part
of'the group consisting of a communication system and a data
storage system.

In accordance with another aspect of the present invention,
an apparatus is provided for encoding a first sequence of
n-state symbols, each symbol being represented by a signal,
comprising an input enabled to receive the first sequence of
n-state symbols, a device implementing a single truth table
that is a truth table of an addition over an alternate finite field
GF(n) modified by at least one n-state inverter defined by a
multiplication over the alternate finite field GF(n) with n=4,
and an output that provides a second sequence of encoded
symbols.

In accordance with yet another aspect of the present inven-
tion, the apparatus is provided, wherein the apparatus is one
of the group consisting of scramblers, convolutional coders,
Reed-Solomon coders, Hamming coder, check-symbol based
error correcting coders, transposition coders, hopping rule
coders, Linear Feedback Shift Register based coders, Feistel-
like network based coders, Elliptic Curve Coding coders,
symbol statistical distribution modifying coders, Galois
arithmetic based coders, sequence generator based encoders,
streaming coders, block coders and Advanced Encryption
Standard (AES) coders.

In accordance with a further aspect of the present inven-
tion, a method is provided for decoding a sequence of n-state
symbols with n>3, each symbol being represented by a signal,
comprising providing a plurality of signals representing the
sequence of n-state symbols on an input of a processor, the
processor processing the plurality of signals representing the
sequence of n-state symbols by an implementation of a single
truth table, wherein the single truth table is a truth table of an
addition over an alternate finite field or a truth table of an
addition over the alternate finite field that is modified in
accordance with at least one inverter defined by a multiplica-
tion over an alternate finite field, providing a plurality of
signals representing a decoded sequence of symbols on an
output; and wherein the sequence of n-state symbols was
generated by an encoder in the group consisting of scram-
blers, convolutional encoders, Reed-Solomon encoders,
Hamming coder, check-symbol based error correcting encod-
ers, transposition encoders, hopping rule encoders, Linear
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Feedback Shift Register based encoders, streaming cipher
encoders, block coders, Feistel-like network based encoders,
Elliptic Curve Coding encoders, symbol statistical distribu-
tion modifying encoders, Galois arithmetic based encoders
and Advanced Encryption Standard (AES) encoders.

DESCRIPTION OF THE DRAWINGS

FIGS. 1-7 illustrate Linear Feedback Shift Registers (LF-
SRs) representing a minimal polynomial to generate p state
symbols representing states of a field over p?;

FIG. 8 illustrates reduction of an n-state truth table over at
least one n-state inverter in accordance with an aspect of the
present invention;

FIGS. 9-10 illustrate a sequence generator in accordance
with an aspect of the present invention;

FIG. 11 illustrates a coder in accordance with an aspect of
the present invention;

FIG. 12 illustrates a coder in accordance with an aspect of
the present invention;

FIG. 13 illustrates a decoder in accordance with an aspect
of the present invention;

FIG. 14 illustrates a system that implements a truth table in
accordance with an aspect of the present invention;

FIG. 15 illustrates a scrambler in accordance with an aspect
of the present invention;

FIG. 16 illustrates a descrambler in accordance with an
aspect of the present invention;

FIG. 17 illustrates a sequence generator in accordance with
an aspect of the present invention;

FIGS. 18 and 19 illustrate a coder in accordance with an
aspect of the present invention;

FIG. 20 illustrates a decoder in accordance with an aspect
of the present invention;

FIGS. 21 and 22 illustrate coding matrices in accordance
with an aspect of the present invention;

FIG. 23 illustrates a coder in accordance with an aspect of
the present invention;

FIG. 24 illustrates another coder in accordance with an
aspect of the present invention;

FIG. 25 illustrates a device that implements a truth table in
accordance with an aspect of the present invention;

FIG. 26 illustrates another device that implements a truth
table in accordance with an aspect of the present invention;

FIG. 27 illustrates a coder in accordance with an aspect of
the present invention;

FIG. 28 illustrates a coder in reverse direction in accor-
dance with an aspect of the present invention;

FIG. 29 illustrates a communication system in accordance
with an aspect of the present invention;

FIG. 30 illustrates part of a data storage system in accor-
dance with an aspect of the present invention;

FIG. 31 illustrates another part of a data storage system in
accordance with another aspect of the present invention;

FIG. 32 illustrates a processor based system to perform
coding and decoding steps in accordance with an aspect of the
present invention;

FIG. 33 illustrates a Linear Feedback Shift Register
(LFSR) in accordance with an aspect of the present invention;

FIGS. 34 and 35 illustrate a coder in accordance with an
aspect of the present invention;

FIG. 36 illustrates an n-state inverter with n=4 in accor-
dance with an aspect of the present invention;

FIGS. 37-38 illustrate implementing an n-state logic func-
tioninaccordance with an aspect of the present invention; and

FIG. 39 illustrates an addressable memory.
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DESCRIPTION OF A PREFERRED
EMBODIMENT

The term n-valued or n-state herein is used generally as
non-binary wherein n>2, unless the binary case is included.
Herein also the term n-state symbol is used. An n-state sym-
bol is a symbol that has one of n states. A symbol or an n-state
symbol is a single entity. A symbol herein is being generated
orprocessed as a signal by an apparatus. A symbol such as an
n-state symbol can be represented by a single n-state signals
that can have one of n states; it can also be represented and
processed as a plurality of signals such as binary signals.

Herein also the term check symbol is used. In binary appli-
cations one generally uses the term parity bit or symbol.
Because the binary check function is the XOR function a
check symbol generated by the XOR function is a 0 if there
was an even number of 1s and a 1 if there was an odd number
of 1s. Hence, the name parity. The name parity has no such
meaning in n-valued functions. Accordingly, the name check
symbols will be used.

Parity calculation in binary error correction is the process
wherein a number of bits in a codeword or sequence or block
have for instance an even parity or even number of 1s, includ-
ing the parity bit. Assume one has an 8 bit code word [abcd
e f g h] and a parity bit p is added. For instance, a rule for
determining a parity symbol could be: the number of 1s in [a
b c de fghp]should always be even.

This can be expressed in the equation a+b+c+d+e+f+g+h+
p=0. The operation ‘+ in this equation is the modulo-2 addi-
tion or XOR function.

It is one aspect of the present invention to create a check
symbol for a codeword comprised of k n-valued symbols by
using a reversible n-valued operation scl. In n-valued logic
one may use different ways or functions to create a “parity’ or
check symbol. One may use reversible and non-reversible
operations. For instance, a non-reversible parity n-valued
operation is one wherein a 1 is added (modulo-n) to a sum
when a symbol is not 0, and a 0 when a symbol is zero. The
reversibility is related to determining the original value of'the
symbols of which a parity symbol is determined.

One method as an aspect of the present invention is to apply
reversible n-valued logic operations to calculate the ‘check’
or parity symbol of a sequence of n-valued symbols. The
advantage of a reversible operation is that an equation can be
solved. For instance, two n-valued symbols x1 and x2 com-
bined by a function sc1 will generate a symbol p1 according
to the equation: x1 sc1 x2=pl.

Assume that scl is self reversing and commutative. In that
case (as is for instance explained in U.S. patent application
Ser. No. 10/912,954 filed Aug. 6, 2004 entitled: Ternary and
higher multi-value digital scramblers/descramblers, which is
incorporated herein in its entirety): x1=p1 sc1 x2. For calcu-
lation and notation purposes it is sometimes preferred to write
the parity symbol equations with a result 0. In that case (x1
sc1 x2=0) can be written for instance as: (x1 sc1 x2 scl p1)=0.
This is the result of (x1 scl x2)=(p1 scl1 0) again with scl
assumed to be a commutative self-reversing n-valued func-
tion.

It should be clear that p1 can also be calculated in a differ-
ent fashion. For instance by: (x1 sc1 x2)=(p1 sc2 0) so that
((x1 sc1 x2) sc3 p1)=0. Herein the function sc3 is the reverse
of'sc2. If sc2 is self-reversing then: ((x1 sc1 x2) sc2 p1)=0.

The n-valued self-reversing functions are in general not
associative. This means that even though a function may be
commutative, the order of variables in a multi-variable equa-
tion does matter. The expression (x1 sc1 x2 sc2 p1) should be
evaluated as {(x1 scl x2) sc2 p1}. In words: first evaluate (x1
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scl x2) as ‘term’ and then {term sc2 p1}. Assuming scl and
sc2 being commutative one will get the same results by evalu-
ation {p1 sc2 (x1 sc1x2)} or {p1 sc2 (x2 sc1 x1)} or {(x2 scl
x1) sc2 pl}.

To demonstrate the above one may apply two functions:
scl and sc2, which are self-reversing and commutative. For
instance, one can use two 4-valued switching functions scl
and sc2 of which the truth tables are provided below.

scl 0 1 2 3
0 3 2 1 0
1 2 1 0 3
2 1 0 3 2
3 0 3 2 1

sc2 0 1 2 3
0 1 0 3 2
1 0 3 2 1
2 3 2 1 0
3 2 1 0 3

Assume x1=1 and x2=2. Then (x1 sc1 x2)=0 according to
the truth table of'scl. If one wants (x1 sc1 x2)=(p1 sc1 0) then
p1=3. Or (x1 sc1 x2 sc1 p1)=0. Forinstance (x1 sc1 p1) in this
case is (1 scl 3)=3. And (x2 scl 3)=(2 sc1 3)=2 which is
different from 0. So the expression is not associative. How-
ever the expression is reversible when one observes the order
of the variables.

For illustrative purposes the associative 4-valued function
sc3 is also provided in the following truth table.

Sc3 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Itis easy to check that (x1 sc3 x2 sc3 p1)=0will apply if (x1
sc3 x2)=pl. Alternate Extension Fields

Binary extension fields or Galois Fields represented as
GF(n=2?) with p=2 are applied in generating n-state check
symbols from 2 or more n-state symbols. An n-state or n-val-
ued symbol is a symbol which assumes one of n possible
states. One may also use the term n-valued. An n-state or
n-valued symbol for processing in an apparatus or a device is
represented by a signal. Such a signal may be a single signal,
which has one of n states. For instance, a 4-state symbol has
one of 4 states or values. A 4-state symbol may have the
values or states 0, 1, 2 and 3. Each state is represented by a
single n-valued signal. For instance the value or state of a
signal may be determined by a voltage. It should be clear that
it is not required that the states 0, 1, 2 and 3 are represented by
0, 1, 2 and 3 Volt respectively. The 4 different states may be
represented by for instance 0.5V, 1V, 1.25V and 1.75 V. Or
a state in an n-state signal may be represented by an optical
signal of a particular wavelength which in certain cases are
considered independent instances of a physical phenomenon.
Linear combinations of these independent instances will just
mix the states but will not create a signal of a different state.
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Circuitry or apparatus that processes these type of n-state
signals are in general non-linear.

Furthermore, an n-state symbol may be represented by 2 or
more signals. For instance, each possible state of a 4-state
symbol may be represented by 2 binary signals. To emphasize
that a value in an n-valued symbol is a distinguishing property
and not a true value the term n-state symbol is preferred.

Extension fields GF(¢”) with q=2 and p=2 as applied in for
instance error correction are in general binary extension field.
These extension fields are defined by a finite (n) number of
field elements, by a first operation usually called an addition,
its reverse being a subtraction, by a function called a multi-
plication and its reverse called a division all over GF(n). The
addition over GF(n=2%) is self reversing, which means that
addition and subtraction over GF(n) have the same truth table.
Furthermore, the addition is commutative (which means that
a+b=b+a over GF(n)) and the addition is associative (which
means that (a+b)+c=a+(b+c)=(a+c)+b etc. over GF(n)). The
field also has an operation multiply, which is also commuta-
tive and associative. And the addition and multiplication are
distributive (which means that c¢*(a+b)=c*a+c*b.) Further-
more there is a neutral element e or a zero element in the field
so that an addition a+e=a, wherein a and e both belong to the
field. There is a neutral element i (or identity or the one
element) so that a*1=a wherein a and i both belong to the
field. Furthermore each multiplication a has an inverse a™*
that is also part of the field (except the zero element perhaps).
Addition ‘scn’ and multiplication ‘mn’ can be represented as
+ and *. One should keep in mind that these operations are
defined by a truth table and in many cases are different from
the standard addition and multiplication.

In general, elements of an extension field GF(¢”) are gen-
erated by a primitive polynomial in q of order p or by a p-state
LFSR expressing such a polynomial. Such polynomials are
provided for the binary extension fields in, for instance, the
earlier mentioned book of Lin and Costello in appendix A.
However, there is more than one minimal polynomial for
larger values of n. While there is only one minimal polyno-
mial for GF(4), there are 2 minimal polynomials for GF(8)
and 4 for GF(16).

For instance, the adder sc81 over GF(8) of paragraph
[0113] is created from elements in GF(8) generated by the
binary LFSR 1400 of FIG. 1 with binary logic function 1401
being XOR. Assume that the initial state of the LFSR is [1 0
0]. The consecutively generated states are then:

GF state

—Fm,m, O, OO RO
CoO R, RO RO O
Ok~ O~ OOO
—No U bW RO

The state [0 0 0] is the forbidden or degenerative state of the
LFSR and represents GF(8) state 0. By modulo-2 addition of
the individual binary elements of a GF(8) state one gets the
GF(8) addition result. For instance [1 0 0] XOR [0 1 0]—[1 1
0] which is GF(8) state 4 in accordance with the state diagram.
One may run the LFSR with starting state [0 1 O] as initial
state (which may be called element 1 in GF(8)). Every ele-
ment in GF(8) except 0 moves up one place and [0 1 0] is
GF(8) 1 and [00 1] is GF(8) 2. Then [0 1 0] is GF(8) 4.[0 1
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0] XOR [0 0 1]—=[0 1 1] which is the new representation of
GF(8). So changing the initial state of the LFSR does not
change the addition or the related multiplication.

Another minimal polynomial to generate elements of
GF(8) is implemented by the LFSR 1500 of FIG. 2. Starting
with initial state [1 O O] this LFSR generates the following
states:

GF state
0 0 0 0
1 0 0 1
0 1 0 2
0 0 1 3
1 0 1 4
1 1 1 5
1 1 0 6
0 1 1 7
1 0 0 1

Herein the XOR addition of GF(8) states 1 and 2 is [1 0 0]
XOR [0 1 0]—=[1 1 0] which is GF(8) state 6. Accordingly, a
different addition over GF(8) is created. The truth table for
this addition over GF(8) is provided by the following truth
table:

sc82

=3
—
S}
w
N
w
=N
-~

B R N N
B R N N
LMW h O
[ NV R <N )
NV O AW
N O = WA
= WO R W
A OWQU OO
O~ N WL

This function is also self reversing and associative and is
distributive with the multiplication of paragraph [0113]. Let’s
call the addition of paragraph [0113] sc81 and the just created
addition sc82. One can create a symbol c1=al1*x1 sc81 b1*x2
by using function sc81 and a different symbol c2=al*x2 sc82
b1*x2. For instance, create the symbols c1 and ¢2 from x1=2
and x2=6 with al=3 and b1=5. The two expressions then
generate:

c1=3*2 sc81 5*6 and

c2=3%2 5c82 5*6.

Remember that in both expressions the same multiplica-
tion m81 of paragraph is used. This will generate:

c1=4 s¢81 3=6 and

c2=4 sc82 3=1.

Assume that in a coder one has to determine x2 from c1 or
c2 and x1.

Using c1: ¢c1=3*x1 sc81 b1*x2 which leads to x2=b171*
(c1 sc81 3*x1) wherein b1~! is the reverse of b1. (the reverse
of multiplier 5 is 5~ or multiplier 4 as one can derive from the
multiplication table.) This leads to x2=4*(6 sc81 3*2)=4*(6
sc81 4)=6. If one would have used the wrong function sc82
one would have as result x2=4*(6 sc82 3*2)=4*(6 sc82
4)=4*7=3.

Using c2: ¢2=3%x1 sc82 b1*x2 which leads to x2=b171*
(c2 5¢82 3*x1) wherein b1~! is the reverse of b1. (the reverse
of multiplier 5 is 5~ or multiplier 4 as one can derive from the
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multiplication table.) This leads to x2=4*(1 sc82 3*2)=4*(1
sc82 4)=4*3=6. If one would have used the wrong function
sc81 one would have as result x2=4*(1 sc81 3*2)=4*(1 sc81
4)=4%*2=5.

Accordingly, using different adder functions wherein the
functions are distributive with the same multiplier. Because
there is a limited number of these functions, one may try a
limited number of functions to apply the correct one. To
further confuse an unauthorized decoder one may create an
expression using more than 2 variables and at least 2 different
functions. For instance, c=al sc81 a2 sc82 a3. Herein, the
order of execution will become an issue. However, solving
equations also may become more involved.

One easy generation of an adder over GF(n) such as GF(8)
is using consecutive binary representation and adding the
elements as before by XORing all bits. This generates the
following states over aGF(8) as an example wherein aGF(8)
stands for alternate Galois Field.

aGF state

O R H R =P, OO OO
O == OO~ OO
OO, ORORO
O~k W= O

This will create the following adder sc83 over aGF(8) (by
XORing the bits of an element in aGF(8)).

s083 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

One can apply the multiplication m81 of paragraph [0113] to
the function sc83 for checking if the functions are distribu-
tive. This means checking if x1 m81 (x2 sc83 x3)=(x1 m81
x2) sc83 (x1 m81 x3). The functions sc83 is not distributive
for m81. However, it turns out sc83 is distributive for a mul-
tiplication function m82 which is defined by the following
truth table.

x/m82 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 5 7 1 3
3 0 3 6 5 1 2 7 4
4 0 4 5 1 7 3 2 6
5 0 5 7 2 3 6 4 1
6 0 6 1 7 2 4 3 5
7 0 7 3 4 6 1 5 2

Checking if x1 m82 (x2 sc83 x3)=(x1 m82 x2) sc83 (x1
m82 x3) for all possible states of x1, x2 and x3 demonstrates
that the combination of sc83 and m82 is distributive.
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There are actually several other distributive combinations
of'self reversing additions over aGF(n) which cannot be gen-
erated by an LFSR with multipliers which are not the multi-
plier m81.

Different classes of adders over GF(n) with n>1 and
GF(p?) with p>1 and g>1 wherein n, p and q are integers.

In general a field like GF(4) or GF(8) or GF(29) cannot be
generated from modulo-4 or modulo-8 addition and
modulo-4 or modulo-8 multiplication. In order to generate a
finite field GF(8) one defines GF(8) as an extension field, such
as GF(n=2>) by using the earlier shown LFSR methods. How-
ever, especially for n>2 there are more reversing and even
self-reversing two-input n-state functions than those defined
by the classical LFSR methods. First of all, for values greater
than 4, there are several different primitive or minimal poly-
nomials of degree q in n=p? of which each will define an
addition over GF(p?) as was shown in the case of GF(8). Each
of'these additions based on a primitive or minimal polynomial
has the same multiplier over GF(p?) over which the operation
c*(a+b) is distributive. Each of the multipliers has an inverse
in the field.

FIGS. 3-7 are diagrams of LFSRs with a 5-stage shift
register that generate a field over GF(32=2). A circle in these
figures, even if not provided with a numeral indicates the
same as 1401, which is a XOR function. Each field thus
generated has a different 32-state addition function which is
associative. Each field thus generated has the same multiplier
function, which combined with the appropriate addition over
GF(32) is distributive. Each individual constant multiplier
herein has an inverse (or a divisor) which is also an element of
the field. As n=27 becomes larger for larger values of q the
number of fields or extension fields over GF(n=29) becomes
larger.

The field generated by XORing, for instance for binary
words of 5-bits, over all 32 binary words ranging from [0 0 0
00]to[1111 1] will create a proper 32-state addition
function that is associative. However, as was already shown in
the 8-state case, this 32-state addition and the ‘standard’
GF(2°) combination are not distributive. In accordance with
an aspect of the present invention different adders and revers-
ible multipliers over GF(n) and especially over GF(27) will be
provided that constitute a field which allows these to be
applied in n-state coders, n-state decoders, n-state sequence
generators, n-state LFSRs and n-state polynomial and arith-
metical circuits. Any n-state switching function herein be itan
n-state function with at least two inputs and an output or an
n-state inverter can be implemented in a switching device.
The switching device can be a true n-state switching device
wherein an n-state symbol having one of n-states is repre-
sented by an n-state signal. In the alternative, an n-state
switching function, be it an n-state function with at least two
inputs and an output or an n-state inverter, can be imple-
mented in a memory device, wherein the corresponding truth
table of an n-state function is implemented in a memory. A
memory can be a true n-state memory. It can also be a binary
memory, wherein an n-state symbol is represented as a binary
word, and inputted, stored and outputted as a binary word of
binary signals. An analog/digital (A/D) and digital/analog
(D/A) converter can be used to generate a true n-state signal
from a binary word.

The extension field GF(4) which is a traditional field is
defined by the following addition and multiplication over
GF(4) sc4 and m4 respectively of which the truth tables are
provided in the following tables.
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sc4 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

m4 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

In this case a 4-state symbol can be represented by a 2-bit
word. By adding (with XOR) the corresponding bits of two
two-bits word one will get the above addition. The functions
are associative and distributive. The addition is also commu-
tative and self-reversing. The multiplication is reversible with
elements of the field. It is again noted that a multiplication
with a constant (or element) of the field is applying an n-state
inverter with an input and an output of which the function is
defined by a column or a row in the truth table of m4.

A first alternate or not traditional addition over alternate
field GF(4) is provided in the following truth table.

sc4 0 1 2 3
0 3 2 1 0
1 2 3 0 1
2 1 0 3 2
3 0 1 2 3

This addition is selfreversing, it has a ‘zero’ element (sym-
bol 3) and it is commutative and associative. There is a cor-
responding multiplier which combined with the above adder
will be distributive, which means [a m4 (b sc4 ¢c)=(am4 b) sc4
(a m4 ¢)]. The truth table of this multiplier is provided in the
following table.

m4 0 1 2 3
0 0 1 2 3
1 1 2 0 3
2 2 0 1 3
3 3 3 3 3

The ‘zero’ element is again 3 (any multiplication with 3
results in 3) and the ‘1’ element (multiplying a symbol ‘a’ with
this element will again create ‘a’) is ‘0’. Furthermore, a divi-
sion is defined within this field as each factor of multiplication
‘b’ has a reverse ‘b™'” which is also an element of the field.
(element 0 has O as inverse; element 1 has element 2 as
inverse; and element 2 has element 1 as inverse. Furthermore,
element 3 is the ‘zero’ element).

A multiplier over GF(4) in this case is actually a 4-state
inversion. The inversion is indicated by [0 1 2 3]—=[abc d].
This means that the elements in the vector [0 1 2 3] are
transformed into the elements of vector [a b ¢ d] in their
corresponding positions or: 0—a; 1—=b; 2—=c; and 3—d,
wherein a, b, ¢ and d are elements of GF(4). The multipliers 0,
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1, and 2 are defined by the 4-state inversion [0 1 23]—=[01 2
3] for multiplier O; [0 1 2 3]—[1 2 03] for multiplier 1; and [0
123]—+[201 3] for multiplier 2. One can easy check that each
multiplier has an inverse: 07'=0; 17'=2; and 2-'=1. One proof
is to multiply for instance 1*2=0 or invert [1 2 03] with [2 0
1 3] which will generate [0 1 2 3].

Atleast one implementation of sc4 and m4 is shown in FI1G.
8. FIG. 8 shows a device 2101 which implements the function
scd in 2100, which may be a memory or a switching circuit
with inputs a and b and an output ¢ which represents a 4-state
symbol c. The output symbol on ¢ which is represented by a
signal is determined by the truth table of sc4 and the input
symbols on a and b which are also are represented by signals.
The relationship between a, b and ¢ can be expressed by (c=a
sc4 b) wherein sc4 is represents the above truth table.

Indevice 2102 input ‘a’to a device 2100 which implements
scd is provided with an inverter (or multiplier) invl, which
may be a multiplier which is defined by a row or column in
md. Assume that inv1 is a multiplier. The resulting symbol on
d1 is then determined by {d1=(inv1(a) sc4 b)}. Assume that
invl is the inverter representing multiplier 2. One can then
write the relationship between a, b and d1 as d1=(2 m4 a) sc4
b. It is more common to name m4 as * and sc4 as +. This will
create the expression d1=2*a+b, keeping in mind that * and +
have a special meaning.

Assume that the top input ‘a’ to a device 2100 determines
the rows of the truth table. The truth table of 2100 (sc4) with
a multiplier [2 0 1 3] at the top input can be reduced to the
single truth table sc41 as provided in the following table.

sc4l 0 1 2 3
0 1 0 3 2
1 3 2 1 0
2 2 3 0 1
3 0 1 2 3

The circuit of 2102 can thus be replaced by equivalent
circuit 2103 which implements a single truth table defined by
sc41 and by an expression d1=a sc41b. Itis noted that sc41 is
non-commutative.

A similar approach can be taken with circuit 2104 which
has an inverter inv1 in input a and an inverter inv2 in input b
and output d2 is defined by d2=inv1(a) sc4 inv2(b). Assume
that inv1 is multiplier 2 and inv2 is multiplier 1. We can then
replace the combination of 2100 with the two inverters inv1
and inv2 with the equivalent circuit 2105 with no inverters on
the inputs, wherein 2105 implements the single truth table of
sc42 which is provided in the following table.

sc42 0 1 2 3
0 0 3 1 2
1 2 1 3 0
2 3 0 2 1
3 1 2 0 3

The input b 0f 2100 is determined by the columns of a truth
table. Accordingly, one has to modify the rows of sc4 in
accordance with inv1 and the columns of that transformation
in accordance with inv2 to arrive at sc42. One can also say that
sc4 is modified in accordance with invl and inv2. In circuit
2105 the output d2 can be expressed as d2=a sc42 b, noting
that if invl and inv2 are not identical then sc42 is non-com-
mutative.
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Circuit 2106 has an inverter inv3 at the output. This means
that d3=inv3 (a sc4 b), which is a commutative function if sc4
is commutative. The circuit 2106 can be replaced by the
circuit 2107 with no inverter at the output and that implements
sc43 wherein d3=a sc43 b.

The same approach is applied to reduce 2108 to 2109. One
can also say that d4=inv3 (invl(a) sc4 inv2(b)) is reduced to
d3=a sc44 b, wherein sc44 is created by modifying sc4 in
accordance with inv1, inv2 and inv3.

The reduction examples have been shown for 4-state fields.
These reductions of at least 2 input/1 output truth tables by
their applied inverters apply to an n-state truth table with n>2
of a function in a field.

In a further embodiment of the present invention, a
sequence generator for generating a sequence of n-state sym-
bols, using implementations of the addition and multiplier or
the inverter reduced form thereof is provided. In yet a further
embodiment, the sequence generator generates an n-state
pseudo-noise or maximum length sequence of n-state sym-
bols. An n-state sequence generator can be implemented by
an n-state Linear Feedback Shift Register (LFSR), either in
Galois or Fibonacci configuration. An n-state LFSR based
sequence generator in Galois configuration is shown in FIGS.
9 as 2201 and 2202. The LFSR has a shift register of 3 storage
elements, each element able to store and provide an n-state
symbol. As common in a Galois LFSR, at least one 2-input
n-state function sc is implemented between two storage ele-
ment. In the illustrative example the LFSR 2201 has 3 storage
elements, two functions sc (though one may apply two dif-
ferent functions) and three inverters inv1, inv2 and inv3. The
maximum length sequence that can be generated with this
n-state generator is a sequence of n>-1 n-state symbols. In an
illustrative 4-state case the function sc is the above defined
4-state adder sc4 over alternate or non-traditional field GF(4).
The inverters invl, inv2 and inv3 are the 4-state inverters
defined by the rows or columns of the truth table of m4 over
alternate field GF(4). It should be noted that a generator may
also have other functions than sc4 and inverters defined by m4
over alternate field GF(4) or have a function sc4 defined over
alternate field GF(4) and n-state inverters that are not defined
by m4.

The sequence generator provides a sequence ‘outg’ on an
output. In one embodiment of the present invention one has to
determine the actual inverters inv1, inv2 and inv3 to generate
an n-state m-sequence. In the example a 4-state inverter will
be selected from m4 and being [0 1 2 3] which is the identity,
[1203]and[201 3]. Theinverter [3 3 3 3] is effectively a 0
inverter or open connection. (Keep in mind that ‘0 herein is
merely one of n n-state symbols. What ‘0’ does is determined
by a truth table, not by the common interpretation that O is
nothing and does nothing. The truth tables of sc4 and m4
show that the ‘0’ role is assumed by 3°).

A relatively simple method to determine if a sequence is a
m-sequence has been developed by the inventor of the present
invention for instance in U.S. Pat. No. 7,580,472 to Lablans
issued on Aug. 25, 2009 and in U.S. Pat. No. 7,725,779 to
Lablans issued on May 25, 2010, which are both incorporated
herein by reference. An auto-correlation graph of an n-state
sequence can determine if a sequence is an m-sequence or a
pseudo-noise sequence. However, the standard method of
calculating an n-state auto-correlation graph will show side-
peaks. Some sequences, which are not m-sequences, also
have side-peaks. This sometimes makes it difficult to deter-
mine if an n-state sequence is pseudo-noise. The novel
method determines a correlation value by adding a constant
value to a sum if corresponding symbols in two sequences are
identical and subtracting a constant or nothing when the two
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symbols are different. This will create a single peak correla-
tion graph for any n-state m-sequence.

By applying this correlation method to the generator 2201
of FIG. 9 one finds that inv1=[2 0 1 3] and in2 and inv3 are
both [1 2 0 3]. The function sc is sc4 in the alternate field
GF(4). The generator can generate a 4-state m-sequence on
‘outg’ of length 63 4-state symbols. Assume that the initial
state of the LFSR is [3 2 1], then the first 10 generated 4-state
symbols on ‘outg’are [1312023311].

The two functions sc in 2201 have inv2 and inv3 respec-
tively at an input. These functions can be reduced to scvl and
scv2 respectively by modifying the first function sc in accor-
dance with inv2 and the second sc in accordance with inv3 in
accordance with the method as was described earlier herein.
Because sc is commutative, the functions scvl and scv2 will
be non-commutative.

FIG. 10 illustrates a 3 stage n-state sequence generator
2301 in Fibonacci configuration. It has the n-state inverters
inrl, inr2 and inr3, which are inr1=[1 20 3]; inr2=[1 2 03] and
inr3=[2 0 1 3]. Assume that the initial state of the LFSR of
2301 is [3 2 1], then the first 10 generated 4-state symbols on
‘outf’are [222100101 3].

The two functions sc in 2301 have inr2 and inr3 respec-
tively at an input. The first function sc also has inrl at an
output. These functions sc can be reduced to scrl and scr2
respectively by modifying the first sc in accordance with inrl
and inr2 and the second sc in accordance with inr3 as is shown
in 2302 and according to the method as was described earlier.
Because sc is commutative, the functions scrl and scr2 will be
non-commutative.

It is noted that there are other ways to generate an m-se-
quence equivalent to the m-sequence generated by an LFSR
based sequence generator. All states of an LFSR are deter-
ministic. Ifan initial state of the 4-state LFSR 2301 of FIG. 10
is [a b c] then all following states of the LFSR and the
generated sequence are determined by n-state (in this case
4-state) expressions. Assuming function sc4 and inverters
inrl, inr2 and inr3 over the alternate field GF(4) one can
provide the expression: outf=inr1{inr2(a) sc4 inr3() scd c}.
In the Fibonacci configuration, the content of the first shift
register element is identical to the previous output symbol.
Assume that at moment k the output symbol is s,. This means
that at moment k the content of the shift register is [s; | s,
$;3]- The expression that determines an output symbol can
thus be written as: s,=inr1{inr2(s, ;) sc4inr3(s,,) scd s, 5 } as
a recursive expression. One can also express all generated
symbols as a function of {a, b, ¢}. This approach applies to all
n-state Fibonacci and Galois configuration LFSR based
sequence generators as one can easily check.

A sequence generator as provided in FIGS. 9 and 10 can be
combined by a circuit as provided in FIG. 8 wherein in the
combination at least one function over an alternate field
GF(n) such as GF(4) is used to generate an n-state combined
sequence such as an n-state Gold sequence as is disclosed in
U.S. Pat. No. 7,580,472 to Lablans issued on Aug. 25, 2009
which is incorporated herein by reference.

In one embodiment of the present invention a sequence
generator applying functions over an alternate field GF(n)
such as alternate field GF(4), be it a Gold sequence generator
or an m-sequence generator or any other sequence generator,
is applied to generate a “known’ sequence to be applied in a
scrambler in one of the configurations as shown in FIG. 8.
Such a scrambler 2400 is illustrated in FIG. 11. It has a
sequence generator 2401 to generate a known sequence
which is provided on an input to a scrambling device 2402
such as provided in FIG. 8 and explained above. The input of
the ‘known’ sequence to device 2402 has an inverter insl,
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which may be an identity. This inverter is preferably an
inverter defined by a multiplication over an alternate field
GF(n). However, the inverter ins1 may also be any reversible
n-state inverter if 2402 implements an addition over an alter-
nate field GF(n). A to be scrambled n-state sequence ‘in’ is
provided on a second input of 2402 with n-state inverter ins2,
which may be an identity inverter. The device 2402 scrambles
‘in’ against ‘known’and generates on an output the scrambled
n-state sequence ‘out’. The output has an n-state inverter ins3
which may be an identity inverter.

It should be clear that the scrambler or coder of FIG. 11 has
a corresponding descrambler by applying the corresponding
descramblers as explained related to FIG. 8. It is to be under-
stood that for clarity inverters ins1, ins2 and ins3 are used to
explain the working of the scrambler. However, the n-state
function implemented in 2402 may be reduced in accordance
with ins1, ins2, ins3 so that 2402 implements a single reduced
truth table without having inverters at inputs or output. A
further requirement for correct descrambling with a descram-
bler is that the sequence generator of a descrambler is syn-
chronized with a sequence generator used by the correspond-
ing scrambler.

LFSR based encoders such as LFSR based scramblers are
known as streaming ciphers or streaming encoding as they
work continuously generating a coded symbol after an input
symbol has been entered.

Yet another coder provided in accordance with an aspect of
the present invention is a reversible transposition coder
wherein symbols in a sequence of symbols are transposed in
accordance in part at least with an n-state pseudo-noise or
maximum-length sequence generated by using at least an
n-state addition and one n-state inverter that are defined over
an alternate finite field GF(n) as provided herein. Yet another
coder is a coder with a hopping rule based on an n-state
pseudo-noise or maximum-length sequence generated by
using at least an n-state addition and one n-state inverter that
are defined over an alternate finite field GF(n) as provided
herein. How to create these transposition encoders and hop-
ping rules and their corresponding decoders is disclosed in
U.S. patent application Ser. No. 11/534,777 to Lablans filed
on Sep. 25, 2006 which is incorporated herein by reference.
This type of encoder can also be applied for hopping type of
communication system, wherein a transposition rule deter-
mines a hopping rule.

Another coder provided in accordance with an aspect of the
present invention is an n-state LFSR based scrambler and a
corresponding self synchronizing descrambler in Fibonacci
configuration using at least an addition function over an alter-
nate field GF(n) and preferably with an addition and an
inverter defined by a multiplication over the alternate field
GF(n). An illustration of such a scrambler 2500 is shown in
FIG. 12. The illustrative scrambler has a 3 stage n-state shift
register, each register element enabled to store and provide an
n-state symbol. It is to be understood that an LFSR can have
more shift register elements than 3, and also less than 3. The
scrambler 2500 has feedback taps to implementations 2501
and 2502. The LFSR 2500 has an output 2504 and an input
2505. The output 2504 is connected to an input of an imple-
mentation 2503 of an n-state scrambling function indicated as
being ‘sc’. Another input of 2503 receives a sequence of
n-state symbols ‘in” which may be inverted by an inverter
‘inv4’. The output 0 2503 is connected to an input 2505 of the
LFSR, which may include an inverter ‘inv1’. The output of
2503 or (if present) the output of ‘invl’, will generate the
sequence of scrambled n-state symbols ‘scram’ resulting
from ‘in’. It should be clear that an input sequence ofk n-state
symbols will result in k scrambled output n-state symbols.
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The scrambler may include additional inverters, for instance
‘inv2’ and ‘inv3’. The implementations 2501, 2502 and 2503
all are indicated as implementing a function ‘sc’.

In accordance with an aspect of the present invention, at
least one implemented truth table to realize an n-state LFSR
based scrambler is an n-state truth table of an addition over an
alternate field GF(n). Preferably, such a scrambler also imple-
ments at least one n-state inverter being defined by the mul-
tiplication over the alternate field GF(n). This means that F1G.
12 in accordance with an aspect of the present invention
implements one function ‘sc’ being the addition over the
alternate field GF(n) and that 2 of the functions now desig-
nated as ‘sc’ may be any n-state reversible, or even non-
reversible, n-state function.

The self-reversing descrambler 2600 corresponding to the
scrambler of FIG. 12 is shown in FIG. 13. The descrambler
2600 has the same structure as the scrambler. However, the
scrambled sequence ‘scram’ is provided on the input 2605 of
the LFSR of the descrambler. The inputted symbols are also
inputted on 2603 which may be an implementation of sc,
potentially after inversion by inverter invlr, wherein inv1 in
the scrambler and inv1r in the descrambler establish identity.
The inverters inv1 and inv1r combined should establish iden-
tity. This means that a symbol inverter by both inv1 and inv1r
should be un-transformed. Implementation 2603 which may
be a device implementing a 2-dimensional truth table is then
the descrambling device that has also one input connected to
output 2604 of the LFSR of FIG. 13. An output 0of 2603 then
outputs a descrambled symbol. If the scrambler has an
inverter inv at the input of the scrambling device 2503 then
2603 should have the inverter inv4r at its output. Inverters
inv4 and inv4r should establish identity.

As an example, assume that FIGS. 12 and 13 pertain to a
4-state device, that all functions sc are the addition sc4 over
the alternate finite field GF(4) as provided above and that inv1
and inv4 are identity inverters and inv2 is 4-state inverter [1 2
03] and inv3 is 4-state inverter [2 0 1 3] as defined by the
multiplication over the alternate finite field GF(4).

Assume thata sequence in=[13 02023 1 3] is inputted on
the scrambler of FIG. 12 with initial LFSR state [3 2 1]. This
will create scrambled sequence scram=[133 02003 1].
Assume that the descrambler of FIG. 13 has initial LFSR state
[2 1 3] and that the descrambler receives scram. This will
generate dscram=[12 12 02 3 1 3], which only has the first
3 symbols in error due to the error in the initial setting of the
LFSR of the descrambler and illustrates the self-synchroniz-
ing aspect.

It is again pointed out that any of the coders and decoders
described herein may be implemented in true n-state devices,
as disclosed forinstance in U.S. Pat. No. 7,218,144 to Lablans
issued on May 15, 2007 and U.S. Pat. No. 7,002,490 to
Lablans issued on Feb. 21, 2006 and U.S. Pat. No. 7,548,092
to Lablans issued on Jun. 16, 2009 and in U.S. Pat. No.
7,643,632 to Lablans issued on Jan. 5, 2010, which are all
incorporated herein by reference in their entirety. N-state
memory devices are disclosed in U.S. Pat. No. 7,397,690
issued on Jul. 8, 2008 to Lablans and in U.S. Pat. No. 7,656,
196 to Lablans on Feb. 2, 2010 which are incorporated herein
by reference. A memory device or a dual memory device with
appropriate clocking acts as a shift register element as is
known to one of ordinary skill A shift register and in particular
an n-state LFSR can also be implemented in an addressable
memory, which may be an addressable n-state memory as is
disclosed in U.S. Patent Application Publication Ser. No.
20070088997 to Lablans published on Apr. 19, 2007 and in
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U.S. Patent Application Publication Ser. No. 20070098160 to
Lablans published on May 3, 2007 which are all incorporated
herein by reference.

An n-state symbol with n>2 is a designation of a processing
unit which is processed by an implementation of an n-state
truth table with n>2. An n-state truth table can be a one
dimensional truth table that defines an n-state inverter having
one input and one output. It is a vector (which may be repre-
sented as a column or a row vector) that defines how each of
n possible input states of an input symbol is transformed into
a state of an output symbol. A reversible n-state inverter
transforms one of n states of an input symbol into one of n
states of an output symbol, wherein each of n input states is
transformed into a unique output state. An inverter can also be
non-reversible in which case n input states or transformed
into less than n output states. An n-state truth table can also be
2-dimensional wherein an output n-state symbol is deter-
mined by 2 n-state input symbols.

An implementation of a 2 dimensional n-state truth table
can be an actual active switching device. It can also be a
memory device. In that case an n-state output symbol may be
addressed by 2 n-state input symbols. Or in other words: an
n-state output symbol has an address that is determined by 2
n-state input symbols. Such an n-state truth table can be
implemented as for instance a 2 by 2 matrix in a computer
program running on a processor with memory such as an
Intel® microprocessor with memory running a language such
as MatLab® of The MathWorks, Inc. of Natick, Mass. or
FreeMat, an open source computer programming language,
available from <URLwww.sourceforge.net>. The following
truth table of sc4 can be implemented and the function sc4 can
be executed in such a processor system.

sc4 1

S}
w
N

— oW A
(SR NI VE)

Bowro o~
WA=
Bowro o~

The following is a listing of a program in MatLab perform-
ing all possible 4-state input combinations and the resulting
output 4-state symbol of sc4.

% generating all possible 4-state symbols ‘out’ as result of
all possible input
% symbols ‘inl’ and ‘in2’
sc4=[4321;3412;2143;1 23 4]; % this is the truth table stored in
memory
for inl=1:4
for in2=1:4
out=sc4(inl,in2) % the generated output
end
end
% end program

The possible states of a 4-state symbol in this program are
1, 2, 3 and 4. Each n-state symbol in this implementation
sample is represented by a plurality of binary symbols,
wherein a binary symbol or a bit is represented by a binary
signal. An n-state symbol is thus represented by a word of
binary signals. An illustrative system that implements a truth
table and transforms an input to an output is shown in FIG. 14.
A binary processor 2703 has an input to receive a binary word
in_b. A binary word may be received as a serial sequence of
bits or may be received on a plurality of parallel inputs. The
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binary input word may be generated from an n-state signal
in_non a device 2701 which may be an Analog/Digital (A/D)
converter which transforms a single n-state signal into a plu-
rality of binary signals. The system may be provided with two
binary words ‘word1’ and ‘word2’ in series or in parallel. In
the parallel case the system may have at least two A/D con-
verters. After having received a single, or after receiving at
least two input words the processor 2703 will address in one
embodiment of the present invention the memory 2702 with
and address based on the single input word or with the two
input words to find in 2702 the related output word. The
memory provides the processor with the output symbol or
output binary word which may be applied for further process-
ing or will be provided on an output by the processor to
provide out_b as for instance a binary word. In a further
embodiment of the present invention the binary output word
out_bisprovidedto a Digital/Analog (D/A) converter 2704 to
generate an n-state signal out_n.

The following demonstrates the difference between an
implementation of sc4 with an inverter [3 1 2 4] at the input
that determines a row in the truth table and applying the
reduced single truth table sc41 as provided in the following
table.

sc4l 1 2 3 4
1 2 1 4 3
2 4 3 2 1
3 3 4 1 2
4 1 2 3 4

The following is a listing of a program in MatLab perform-
ing all possible 4-state input combinations and the resulting
output 4-state symbol of sc4 with the inverter [3 1 2 4] at the
input that determines a row in the truth table.

% generating all possible 4-state symbols ‘out’ as result of
all possible input
% symbols ‘inl’ and ‘in2’ on sc4 with inverter [3 1 2 3] at
an input
sc4=[4321;3412;2143;1 2 34]; % this is the truth table stored in
memory
inv=[3124];
for inl=1:4
for in2=1:4
inl=inv(inl); % this is the inversion
out=sc4(inl,in2) % the generated output
end
end
% end program

The execution takes an extra step for inversion, requiring at
least an additional clock pulse.

The following is a listing of a program in MatLab perform-
ing all possible 4-state input combinations and the resulting
output 4-state symbol of sc41 which is sc4 modified in accor-
dance with inverter [3 1 2 4] at the input that determines a row
in the truth table.

% generating all possible 4-state symbols ‘out’ as result of all

possible input

% symbols ‘inl’ and ‘in2’ on sc41
sc41=[2143;4321;3412;1234]; % this is the truth table stored in
memory
for inl=1:4
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-continued

for in2=1:4
out=sc41(inl,in2) % the generated output
end
end
% end program

The execution of this does not require an extra step for
inversion, and does not require an additional clock pulse and
is faster than using an implementation of the inverter.

A signal be it binary or n-state with n>2 may be an electric
signal, an optical signal, a magnetic signal, a radiation, an
magneto-optical signal, an electro-magnetic signal, a
mechanical signal or a mechanical impulse, a presence of a
material or a quantum-mechanical state or any other physical
state of a material that will represent at least one of 2 states in
one embodiment of the present invention or at least 1 of 3
states in a further embodiment of the present invention or at
least 1 of 4 states in yet a further embodiment of the present
invention. In yet a further embodiment an implementation of
an n-state truth table, of which an example is provided in FIG.
14, can process n-state symbols with n>2 at a speed of at least
100 Hz (=100 symbols per second). In yet a further embodi-
ment an implementation of an n-state truth table with n>2, of
which an example is provided in FIG. 14, can process n-state
symbols at a speed of at least 1000 Hz (=1000 symbols per
second). In yet a further embodiment an implementation of an
n-state truth table, of which an example is provided in FIG.
14, can process n-state symbols with n>2 at a speed of at least
100 Hz (=100 symbols per second). In yet a further embodi-
ment an implementation of an n-state truth table, of which an
example is provided in FIG. 14, can process n-state symbols
with n>2 at a speed of at least 1 MHz (=1,000,000 symbols
per second). In yet a further embodiment an implementation
of an n-state truth table, of which an example is provided in
FIG. 14, can process n-state symbols with n>2 at a speed of at
least 100 MHz (=100,000,000 symbols per second). It should
be clear that processing of n-state symbols in accordance with
an n-state truth table with n>2 at the above speeds are only
possible with a processor and cannot be performed mentally
or with paper and pencil by a human operator.

In accordance with an embodiment of the present invention
an n-state scrambler with an n-state LFSR in Galois configu-
ration is provided and a corresponding self synchronizing
descrambler. Illustrative embodiments are shown in FIGS. 15
and 16. The scrambler 2800 of FIG. 15 is based on an n-state
LFSR with a 3-stage shift register with two connecting n-state
functions sc and a scrambling function sc that receives the to
be scrambled n-state sequence on input ‘in’. Two feedback
taps contain n-state inverters inv2 and inv3 respectively. The
end feedback to the output that provides the scrambled n-state
sequence ‘scram’ contains an n-state inverter inv1. A corre-
sponding descrambler 2900 is shown in FIG. 16. The
scrambled sequence is provided on input ‘scram’. The tap
from the input has n-state inverter inv1lr, which combined
with inverter inv1 of FIG. 15 forms identity. The descrambler
2900 also has inverters inv2 and inv3. The descrambled
n-state sequence is provided on ‘dscram’. All functions in the
example are called ‘sc’. However, in accordance with an
aspect of the present invention a ‘scrambler’ and/or a
descrambler in the configuration like FIGS. 15 and 16 only
needs to have one of the devices or implementations named
‘sc’ to be an addition over alternate finite field GF(n). An
inverter in a scrambler or descrambler that is like the Galois
configuration in FIGS. 15 and 16 can be any n-state inverter,
though preferably at least one inverter is defined by a multi-
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plication over the alternate finite field GF(n). “Like” FIGS. 15
and 16 means a Galois configuration based scrambler with a
corresponding Galois configuration shift register self syn-
chronizing descrambler. More details of the workings of
LFSR and Linear Forward Connected Shift Registers
(LFCSR) in Galois configuration are disclosed in U.S. Pat.
No. 7,487,194 to Lablans issued on Feb. 3, 2009 which is
incorporated herein by reference.

Galois configuration means a shift register with at least two
adjacent shift register elements connected through an imple-
mentation of an n-state truth table from an output of a first
shift register element to an input of a directly adjacent shift
register element in the signal flow direction as is shown in
FIG. 15. Preferably, the connecting implementation is an
implementation of an at least 2 dimensional n-state truth
table. Fibonacci configuration means that no implementation
of an at least 2-dimensional n-state truth table is placed
between an output of a first shift register element to an input
of a directly adjacent shift register element in the signal flow
direction as is shown in FIG. 12.

In one embodiment an LFSR is provided wherein two
adjacent shift register elements are connected through an
inverter as is shown in FIG. 17. The shift register elements
3001 and 3002 are connected through an inverter inv4 and not
through an implementation of an at least two dimensional
n-state truth table. The Galois LFSR 3000 in FIG. 17 is shown
as a sequence generator with functions scl and sc2 and feed-
back inverters invl, inv2 and inv3 to generate an n-state
sequence on output ‘seq’. By changing ‘inv4’ to one of 24
possible 4-state inverters one can generate several different
4-state m-sequences.

In accordance with a further aspect of the present invention
a convolutional n-state encoder and decoder is provided for
n>2, including a forward encoder, a recursive encoder and a
systematic encoder and corresponding decoders. These
n-state encoders and corresponding decoders are disclosed in
U.S. patent application Ser. No. 11/566,725 with Lablans as
named inventor and filed on Dec. 5, 2006 which is incorpo-
rated herein by reference. These encoders may be forward
coders, recursive coders and systematic coders or any com-
bination thereof and their corresponding decoders. In one
embodiment of the present invention the functions and invert-
ers applied in these coders and decoders include at least one
addition and one inverter derived from a multiplication over
an alternate finite field GF(n).

FIG. 18 illustrates a forward convolutional coder 3100 with
at least two different forward coders applying a shift register
(in this case of 3 stages) with functions and inverters imple-
mented.

The coder 3100 is shown in its two component coders 3201
and 3202. Each of the coders is provided with an input
sequence of n-state symbols ‘in’. The coders 3201 and 3202
bothuse a forward connected shift register. Because both shift
registers are provided with the same sequence their shift
register states will be identical. Coder 3201 has four taps
including the start tap with inverters inv11, inv12, inv13 and
inv14 respectively connected to the function ‘sc’ which for
illustrative purposes will all be the addition over alternate
finite field GF(n). The output sequence is inverted by inverter
inv15 to create output sequence outl. All inverters herein for
illustrative purposes are assumed to be derived from the mul-
tiplication over alternate finite field GF(n).

The coder 3202 is similar to 3201, but has one less tap and
thus function sc and has inverters inv21, inv22, inv23 and
inv24 to generate sequence out2. All inverters and functions
are again defined over alternate finite field GF(n).
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The corresponding decoders 3301 and 3302 are illustrated
in FIG. 20. The structure of the decoders is similar to that of
the corresponding coders with some directions reversed. This
requires that inv15 in the decoder 3301 is replaced by inv15~!,
inv11 in the decoder 3301 is replaced by inv11~!, that inv21 in
the decoder 3301 is replaced by inv21~", inv24 in the decoder
3301 is replaced by inv24~". Because of the field properties
(which include associativity and distributivity) and the self
reversing properties one can easily manipulate equations that
determine output symbols and state of the shift register.

To ease the burden of notation in inverters, an equation of
afirst n-state symbol in1 inputted on an n-state inverter that is
defined by a multiplication over an alternate finite field GF(n)
can be written as m1*inl, wherein m1 is the position of the
column or row in the truth table of the multiplication. Accord-
ingly, the inverter [0 1 2 3] in m4 of the alternate finite field
corresponds with ‘0’; [12 03’ corresponds with “1°;[20 1 3]
corresponds with ‘2” and [3 3 3 3] corresponds with ‘3°. One
should keep in mind that the “*’ operation then is different
from the commonly used meaning of *. Furthermore, the
function sc4 can be replaced with “+’. A function ‘sc’ with a
first inverter ‘1 provided with input n-state symbol ‘x1° and
with a second inverter ‘2’ provided with input n-state symbol
‘X2’ to generate n-state symbol y, can be expressed as:
y=1*x1+2%*x2.

FIG. 20 shows two convolutional decoders 3301 and 3302,
provided with scrambled symbols outl=[n1 n2 n3] and out2=
[m1 m2 m3] respectively to both generate in=[x1 x2 x3].
Based on the construction of the coders and decoders, the
content of the decoders 3301 and 3302 must be identical if the
decoders are working error free. Assume that all inverters in
the decoders are inverters [0 1 2 3] or 0°, which represents
identity in this case. The following equations determine the
content [s1 s2 s3] of the shift register when symbols nl and
m1 are entered on the inputs outl and out2:

x1=n1+514+52+53
x2=n2+4x1+s14s52
X3=n3+x2+x1+51
x1=ml+s2+s3
x2=m2+s1+s2

x3=m3+x1+s1
Solving by substitution leads to:

sl=nl+ml

M

s2=nl+ml+m2+n3+m3

@
$3=nl+n2+n3+m3 3)

The above equations show that, when the 3 consecutive
symbols inputted into the decoders are error free, then the
content of shift register is determined. The content of the shift
register also reflect the 3 previous correctly generated
decoded symbols. Thus if the symbols [n1 n2 n3] and [m1 m2
m3] have been preceded with symbols in error then one can
correct some of these errors as is explained in detail in U.S.
patent application Ser. No. 11/566,725.

The above equations show [x1 x2 x3] and [s1 s2 s3] as
unknowns, while [n1 n2 n3] and [m1 m2 m3] are known
entities. This means there are 6 equations with 6 unknowns,
which can be resolved with for instance Cramer’s rule,
wherein ‘*’ and ‘+” have a meaning as defined by the truth
tables of sc4 and m4. Furthermore a division by ‘a’in a finite
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field is a multiplication with ‘a™". Accordingly, one can solve
the above equations also when the inverters in the decoders
are not identity inverters ‘0’ or [0 1 2 3].

In a further illustrative example the inverters in FIG. 19 are
assigned as follows: all inverters as shown in 3201 are the
inverter ‘2’ or [2 0 1 3] in the alternate finite field GF(4) and
all inverters in 3202 are the inverter ‘1” or [1 2 0 3] in the
alternate finite field GF(4). This determines that in the corre-
sponding decoders 3301 and 3302 most inverters are identi-
cal, except inv11~" and inv15~! which should be the reverse of
3201 and thus are ‘1” and except inv21~" and inv24~" which
should be the reverse of 3202 and thus are ‘2°. The function
‘sc’ is again the addition in the alternate finite field GF(4).

The above establish the following equations for the decod-
ers 3301 and 3302:

For 3301:

2%x14+2 5142 %s2+5%53=1 *n1;
2¥x14+2 *x2+4+2 %5142 *s2=1*n2;

2¥x14+2 ¥x24+2%x342 *s1=1*u3;
For 3302:

1*x1+1 %s2+1*s3=2*m1;
1#x2+1 %s1+1*52=2 *m2;

1%x1+1%x3+1 *s1=2*m3.

The above equations establish 6 equations with 6
unknowns (the generated x1, x2 and x3 and the shift register
state s1, s2 and s3). One canresolve the set by substitution and
by Cramer’s rule for instance. Cramer’s rule establishes the
determinant for the coefficients of the unknown and
unknowns as:

D|xl x2 x3 sl s2 3 knowns
0 3 3 0 0 0 2xnl
0 0 3 0 0 3 2%n2
0 0 0 0 3 3| |=| 2«n3
0 3 3 3 0 0 1xml
30 3 0 0 3 1xm2
0 3 0 0 3 3 1+m3

In calculating the corresponding value of the determinants
one should keep all the rules of the alternate field GF(4) in
mind. When an unknown does not have a coeflicient in an
equation its coefficient is actually ‘3’ which is the zero-cle-
ment in the finite field. The value of D is ‘0’, which is the
neutral element. The inverse of ‘0 is also ‘0’.

The unknown ‘s1’ for instance under Cramer’s rule is then:

xl x2 23 51 52 3
0 3 3 2«n1l 0 0
0 0 3 2«n2 0 3
0% 0 0 0 2«n3 3 3
0 3 3 1xml 0 0
3 0 3 1xm2 0 3
0 3 0 1+m3 3 3

A similar approach is applied to determine s2 and s3.
Accordingly, after receiving a sequence of coded n-state
symbols outl and a sequence of coded n-state symbols out2,
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one can determine the state of the shift register [s1 s2 s3] that
corresponds to these sequences. Using [s1 s2 s3] as the initial
state of the shift register in decoders 3301 and 3302 one can
determine if these decoders will generate identical output
symbols ‘in’ for the next two clock cycles. If that is the case,
the sequences out1 and out2 may be considered error free, and
previous errors can be corrected by using the calculated state
[s1 s2 s3].

A similar approach can be applied to coders that include a
recursive shift register and an encoder that includes an
uncoded sequence which is usually called a systematic
encoder. As an aspect of the present invention a similar
approach using the functions over an alternate finite field
GF(n) is applied to encoders with at least one shift register in
Galois configuration as is disclosed in U.S. patent application
Ser. No. 12/774,092 to Lablans filed on May 5, 2010 and
which is incorporated herein by reference.

In accordance with an aspect of the present invention an
encoder is provided that creates one or more n-state check
symbols from one or more n-state data symbols generated by
using at least an n-state addition and one n-state inverter that
are defined over an alternate finite field GF(n) as provided
herein, and that in one embodiment provides an error detec-
tion capability in a sequence containing an n-state data sym-
bol and an n-state check symbol and that in a further embodi-
ment provides an error correction capability in a sequence
containing an n-state data symbol and an n-state check sym-
bol.

An example is provided using the function addition and at
least one inverter based on a multiplication over alternate
finite field GF(n) and the following relations in a (7,4) n-state
Hamming code to generate 3 n-state check symbols from 4
n-state data symbols

pl=(invl(x1)sc x2)sc inv2(x3);
p2=(x1 sc x3)sc x4;

P3=(x2 sc x3)sc x4.

Assume thatinv1 is multiplier ‘1 in the alternate finite field
GF(4) and inv2 is multiplier ‘2°. The function ‘sc’is ‘+’ in the
alternate finite field. The above equations can then be written
as:

Pp1=1%x14x2+2%x3;
P2=x1+x3+x4;

P3=X2+x3+x4.

The expression (1*x1+x2) in one embodiment is replaced
by an implementation of a non-commutative n-state function.
This aspect has been explained earlier above.

Itis assumed that only one symbol in the 7 n-state symbols
is in error. One can run through all possible error situations
with only one data symbol or check symbol in error. One
recalculates all check symbols from the received data sym-
bols and then compares the calculated and the received check
symbols. The requirements for an n-valued (n,k) code then
may be: each of the k data symbols in a n-valued Hamming
codeword should be a function of at least 2 check symbols.
There are (n-k) check symbols. One check symbol in error
should mean just that: only one check symbol and no data
symbol is in error. No check symbol in error means that no
single error has occurred. What one does with a Hamming
code is mapping each state of a codeword into a unique word
formed by check symbols. For a (7,4) n-valued Hamming
code:
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x1=p1,p2,~p3;
x2=pl,~p2,p3;
x3=pl,p2,p3;
x4=~p1,p2,p3;

no error=~pl,~p2,~p3;
pl in error=pl,~p2,~p3;
p2 in error=~p1,p2,~p3;

p3 in error=~pl,~p2,p3;

Accordingly all 8 combinations of p1, p2 and p3 are used.

If it is determined that x1 is in error x1 has to be recon-
structed from x2, x3, x4, p1, p2 and p3 which are not in error.
The equation p2=x1+x3+x4 provides that x1=p2+x3+x4
which establishes the correct value for x1. One can perform a
similar calculation to determine x2, x3 and x4 when one of
these symbols is in error. The check symbol can also be
corrected if desired.

The aspects of determining n-state check symbols and
error detection and error correction of an n-state symbol in
error based on the check symbols including an n-state Ham-
ming code have been disclosed in U.S. patent application Ser.
No. 11/680,719 to Lablans filed on Mar. 1, 2007 which is
incorporated herein by reference.

N-state check symbols can be determined from at least 2
n-state data symbols by applying an addition and at least one
inverter based on a multiplication over an alternate finite field
as disclosed herein. The symbols in one embodiment are
arranged in a matrix to determine at least a location of an error
which may be called an erasure. Errors can be located by
re-calculating the check symbols. Once errors are located one
can use the expressions or equations that have been used to
determine the check symbols and by using check symbols and
data symbols that are known to be error free to create an
expression that determines a correct state of a symbol in error.
To prevent that multiple errors in a column or a matrix prevent
calculating a correct state 2 check symbols can be determined
by arranging data symbols in a first matrix and determine a
check symbol from a row or a column and arrange data
symbols in a second matrix and determine a check symbol
from a row or a column from the second matrix. The equa-
tions that determine a correct state of a symbol in error are
derived from the equations or expressions that generate the
check symbols.

The above matrix approach is explained in U.S. patent
application Ser. No. 11/969,560 to Lablans filed on Jan. 4,
2008 and in U.S. patent application Ser. No. 12/400,900 to
Lablans filed on Mar. 10, 2009 which are both incorporated
herein by reference.

An illustrative example is provided using FIG. 21. FIG. 21
illustrates an arrangement of 4 rows and 3 columns of n-state
data symbols d, and m, and with two rows of check symbols
p,andr, and 1 column of check symbols q,. Assume that it is
determined that after re-calculation check symbols q3 and q4
and r2 and p2 are different from the received check symbols.
In one embodiment a check symbol on check symbols con-
firms that the check symbols are not in error. It is determined
that d6 and m6 are in error. There are several ways to solve the
errors. For instance check symbol g3 may have been created
from the expression c1*d2+c2*d6+c3*d10=q3. For instance
the equations in one embodiment is implemented by using the
function addition and at least one inverter based on a multi-
plication over alternate finite field GF(n). In this example
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n=4. Let 1*d2+2*d6+0*d10=q3. Assume that [d2 d6 d10]=[2
2 3]. This will create q3=2. Assume, received was [d2 d6 d10
q3]=[2 0 3 2]. It was already determined that dé is in error.
One can rephrase the check symbol expression or equation as
2*d6=1%d2+0*d10+q3. Multiplying left and right by “1° will
result in d6=2%*d2+1*d10+1*q3. Evaluating this expression
will provide d6=2 of course.

In a further embodiment also a set of equations is resolved.
For instance the following equations apply:

r2=al *d5+a2*m5+a3*d6+ad*m6; and

p2=b1*d5+b2*m5+b3*d6+b4*m6. Herein d6 and m6 are
in error and can be resolved from the set of two equations, for
instance by applying Cramer’s rule. The equations in one
embodiment are again implemented by using the function
addition and at least one inverter based on a multiplication
over alternate finite field GF(n).

In one embodiment of the present invention at least two
check symbols are generated by using the function addition
and at least one inverter based on a multiplication over alter-
nate finite field GF(n) with two expressions which have at
least one n-state data symbol in common as a variable and
wherein each check symbol is achieved by arranging n-state
data symbols in different matrices. This embodiment is illus-
trated in FIG. 22 in matrices 3501 and 3502. Assume data
symbols d6, d7 and d11 in error. By arranging the data sym-
bols dl, . . ., d12 in two different ways to generate check
symbols one can determine the symbols in error, even if
double errors occur in a row or a column that only generates
a single check symbol. Like with the Hamming code one can
establish a table that determines under what conditions which
data symbol is in error. One can then use a check symbol
generating expression or equation to determine the correct
value of a symbol in error.

Itis noted that in accordance with an aspect of the invention
an expression or equation (a*x1+b*x2+c*x3+ .. . m*xk) can
be modified to {(x1 sc4l x2)+ . . . } wherein sc4l is an
implementation of a single non-commutative n-state function
which is created by modifying ‘+’ in accordance with invert-
ers ‘a’ and ‘b’ and wherein the addition ‘+” function and at
least one inverter based on a multiplication are defined over
alternate finite field GF(n).

In one embodiment a coder is provided which is based on
an n-state Linear Feedback Shift Register (LFSR) or expres-
sions that evaluate the states and/or outputs of such an LFSR,
wherein the LFSR through a function is provided with n-state
data symbols and one output s a final state of the shift register
as a plurality of check symbols, which can be applied to
determine if an error has occurred in a sequence containing
the data symbols and the final shift register content of the
LFSR and wherein the LFSR and/or the expressions apply the
addition ‘+” function and at least one inverter based on a
multiplication that are defined over alternate finite field
GF(n). Such a coder is illustrated in FIG. 23 with a coder
3600. At least 4 n-state data symbols in this example are
entered on a function ‘+’ to be combined with a content of the
last shift register element of the LFSR which has at least 2
n-state shift register elements, which is in this case an n-state
LFSR in Galois configuration. A Fibonacci configuration can
also be used. The LFSR also has two n-state inverters of
which at least one is defined by the multiplication over the
alternate finite field GF(n). As an example n=4 and inv1 is
multiplier ‘1” and inv2 is multiplier ‘2’. One can generate all
codewords [x1 x2 x3 x4 s1 s2] wherein s1 and s2 represent the
content of the shift register after processing. The content of
the shift register at the start may be [0 0] or [3 3] or any other
state. One may check that each 4-state codeword has a dis-
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tance of at least 2 symbols. That means that at least one error
in a codeword can be detected by recalculating the codeword.

In a further embodiment, one may take as a codeword
generated by 3600 the word formed by [x1 x2 x3 x4 s1], for
instance when both invl and inv2 are the multiplier ‘2’ over
the alternate finite field GF(4). In that case the distance
between all codewords is still 2, thus allowing to determine if
a symbol was in error. As an example a word [1 03 2 0] is
received. The check symbol is re-calculated from [1 0 3 2] to
generate codeword [1 0 3 2 3] which is different from the
received word, which indicates that an error had occurred.

In one embodiment at least one erasure can be corrected in
a coder as shown in FIG. 23. To explain how expressions can
determine a state of an LFSR such as an n-state LFSR without
actually running the LFSR the embodiment in FIG. 9 will be
applied. Assume the content of the three n-state shift registers
to be a, b and c. The inverters are invl1=‘1"; inv2="2" and
in3="1" defined by the multiplication over alternate finite field
GF(4) and sc is the addition over alternate finite field GF(4).
The approach is the following: each element in the shift
register gets its own assigned symbol. For instance the first
element has content [s1 3 3]. The 3 is used because that is the
‘0’ element. The second element has as content [3 s2 3] and
the final element has content [3 3 s3]. The multipliers then are
expressed as invl=[1 1 1] and inv2=[2 2 2] and inv3=[1 1 1].
The multiplication of the content of the third shift register
element with inv1=[1 1 1] is [1*3 1*3 1*s3]. This approach
allows tracking the effects and contributions of each indi-
vidual shift register element. The result of addition of inv3
times the content of the third shift register element plus the
content of the second shift register element is: [{(1%*3)+3}
{(1#3)+s2} {(1*s3)+3}] as all operations take place on indi-
vidual values. The actual final content of a shift register can be
determined by adding all three components, keeping in mind
that the ‘+ herein is the addition over the alternate finite field.
The following table provides the content of the individual
shift register elements after staring with s1=[03 3]; s2=[3 03]
and s3=[3 3 0].

12}
a
=
12}
a
Ko
12}
a
w

start 0 3 3 3 0 3 3 3 0
1 3 3 1 0 3 2 3 0 1
2 3 1 2 3 2 2 0 1 3
3 1 2 3 2 2 2 1 3 2
4 2 3 0 2 2 1 3 2 1
5 3 0 2 2 1 3 2 1 0
6 0 2 1 1 3 3 1 0 1
7 2 1 2 3 3 2 0 1 2
8 1 2 0 3 2 0 1 2 1
9 2 0 2 2 0 3 2 1 1

10 0 2 2 0 3 1 1 1 2

This approach uses the associative a distributive properties
of the addition and multiplication. One may replace [0 3 3]
with [0¥s1 3 3] which is of course [s1 3 3] and means that all
states in the first position of a shift register content have to be
multiplied with s1, etc. The table shows only the first 10
results of the content of the shift register. One can expand that
to any length. It should be clear that after 63 cycles the content
will return to the original initial content. The above also
means that if an initial state of a shift register is known one can
determine the actual content (and the generated symbol) at
any time after and before the initial time without having to run
the LFSR.

The following table shows the content of the shift register
of'the LFSR of FIG. 23 after starting with content [3 3] and
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being entered with [x1 x2 x3 x4]. The input states are reflected
as x1=[03 3 3]; x2=[3 03 3]; x3=[3 3 03] and x4=[3 3 3 0].
All shift register contents are expressed as depending on x1,
x2, x3 and x4. This means that: s1=[3 3 3 3] and s2=[3 3 3 3].
The states of the two shift register elements are then:

cycle sl s2
0 3 3 3 3 3 3 3 3
1 2 3 3 3 2 3 3 3
2 1 2 3 3 0 2 3 3
3 2 1 2 3 0 0 2 3
4 2 2 1 2 3 0 0 2

As was described above, the check symbol in a codeword is
the content of the first shift register element after 4 cycles and
thus entering x1, x2, x3 and x4. From the above one can see
that after 4 cycles s1=2*x1+2*x2+1*x3+2%x4. In the earlier
example it was shown that [1 0 3 2 0] was received with one
symbol in error. Assume that it was decided that x2 is an
erasure and that thus s1 was correct. This means that:
2¥x2=2%x1+1*x3+2%*x4+s1 or x2=x1+2*x3+x4+1%s1 or
x2=2. This demonstrates that in one embodiment of the
present invention one can determine the correct state of a
symbol in error from an expression that determines a state of
a check symbol. This approach can be applied for all type of
expressions. However, it has here been shown to apply to a
coder using at least an addition and an inverter defined by a
multiplication over an alternate finite field GF(n) with n=4.

In one embodiment of the present invention the combina-
tion of an addition and an inverter defined by a multiplication
over alternate finite field GF(n) as applied in coders and
decoders as shown in FIGS. 15-20 and FIG. 23 are imple-
mented in a single non commutative truth table. One imple-
mentation of a combination of the above addition and inverter
in a further embodiment of the present invention is a single
non-commutative truth table stored in a memory device.

The addition over an alternate finite field GF(n) and invert-
ers defined over a multiplication defined over an alternate
finite field GF(n) as disclosed herein can be used in any
reversible coder. For instance it can be applied in a scrambler
as disclosed by Kuhlman et al. in U.S. Pat. No. 7,099,469
issued on Aug. 29, 2006 which is incorporated herein by
reference. The methods can also be used in for instance the
S-box of Feistel ciphers or Feistel networks.

The Feistel network is illustrated in FIG. 24. Herein 3721
is the coding or ciphering network and 3722 is the decoding or
deciphering network. The order of use 0o 3721 and 3722 can
the exchanged as long the one reverses the other. The working
is well known to one of ordinary skill in the art, but will be
briefly explained herein. A plaintext word 3701 of 2p (with
p=z1 or p>1) n-state symbols with n=2 will be spilt into two
parts 3702 and 3703 of n-state symbols. These words and
their parts may be binary symbols. They may also be n-state
symbols with n>2. They may also be n-state symbols which
are represented as binary symbols. An n-state symbol may be
represented by n-state signals to be processed by n-state
switching functions. They also may be binary symbols rep-
resented by binary signals to be processed by binary switch-
ing functions as n-state symbols. They may also be n-state
symbols represented by binary signals that are processed by
n-state switching functions that are implemented by binary
switching technology. In the last case, signals and switching
technology often represent symbols and functions over
GF(27) with g>1.
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In 3721 word 3701 is split up in word 3702 and 3703. Word
3703 is modified by an n-state function 3704 against a word
KO0. The n-state functions implemented in 3704, 3706 and
3708 may be reversible or non-reversible. They have as input
a known signal such as a key word K0, K1, . . . Kn or apply
some known confusion scheme. These functions have to be
applied with the same corresponding key in the coder 3721
and in reversed order in decoder 3722. The n-state functions
3705, 3707 and 3709 in coder 3721 have to be reversible
n-state functions and have to be applied in reversed order in
their corresponding reversing function in 3722. The revers-
ible n-state functions may be commutative or non-commuta-
tive but at least one of them is an addition over alternate finite
field GF(n) or is an addition over alternate finite field GF(n)
with at least one n-state inverter at an input or an output which
is defined by a multiplication over the alternate finite field
GF(n) or is an addition over alternate finite field GF(n) that is
modified in accordance with an inverter which is defined by a
multiplication over the alternate finite field GF(n) and is
implemented as a single n-state truth table for instance in a
memory device, wherein the truth table may be a non-com-
mutative truth table.

Assume that function 3709 can be represented as sc1 and
function 3708 as sc2. Further assume that the reverse of
function scl is function ds1. This can be illustrated by the
expressions c=a sc1 b and a=c ds1 b. In general one applies the
adder over GF(2") as the reversible n-state function. This
adder is self-reversing and commutative and can be imple-
mented in a binary logic circuit or a memory device.

The last stage of 3721 can be expressed as Cn=S sc1 Kn
and R=An sc2 Cn. The first stage 0f 3722 has a function 3713
which reverses sc2 and can be called ds2. The first stage of the
decoder 3722 canbe expressed as Cn=S sc1 Knand An=R ds2
Kn. This demonstrates that the decoder 3722 reverses the
coder 3721. One has to make sure that the generated code-
word 3710 which is formed from 3711 and 3712 is entered in
the proper way as the to be decoded codeword into decoder
3722. A similar reasoning applies to reversible functions
3714 and 3715.

The structure of a Feistel network, wherein coding includes
“rounds” of confusion and substitution are also applied in
advanced codes such as Rijndael and the related Advanced
Encryption Standard (AES) coding scheme. The rounds
herein apply what is called herein a Feistel-like network. This
means that a word of k n-state symbols (with n=2, or n>2, or
n>3) and k=2, is split at least in two sub-words of at least one
symbol and wherein at least one of the sub-words is being
processed by either an implementation of an addition over an
alternate finite field or by an addition over an alternate finite
field and an inverter defined by a multiplication over a finite
field or by an implementation of a truth table of an addition
over an alternate finite field that is modified in accordance
with an inverter defined by an alternate finite field. At least the
reversible part of for instance DES and AES in one embodi-
ment of the present invention apply functions and inverters
defined by the alternate finite fields as defined and explained
herein.

How to generate and decode an AES code is for instance
provided in U.S. Pat. No. 7,421,076 issued on Sep. 2, 2008 to
Stein et al. and U.S. Pat. No. 7,383,435 to Fellerer issued on
Jun. 3, 2008 which are both incorporated herein by reference.

Feistel-like or Feistel network based encoders generally
work in blocks of n-state symbols. A plurality of symbols that
is received sequentially, rather than in parallel are thus con-
sidered words or blocks of symbols. These codes are gener-
ally called block codes as a coder can operate only after a
block of symbols has been entered. The same applies to error
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correcting coders wherein check symbols are determined
over a block of n-state symbols. A decoder cannot complete
decoding until all symbols of a block have been entered into
the decoder and can be processed.

In accordance with an embodiment of the present invention
atwo input n-state function of FIG. 24 may be represented by
an n by n truth table. Such a truth table in one embodiment is
implemented in a memory device. Ifthe function is reversible
a column and/or a row of'the truth table have to be a reversible
n-state inverter. One may modify the adder by providing
n-state inverter at one or both of the inputs and/or by provid-
ing an n-state inverter at the output. An n-state inverter over
GF(29) can be implemented in binary logic for processing of
words of q bits by using combinational binary circuitry, by
switching outputs or by using a memory device. FIG. 38
shows in diagram an n-state switching device 3800 imple-
menting an n-state function with inputs 3801 and 3802 and
output 3803.

One may implement an n-state function by using a device
3804 that implements an adder over alternate finite field
GF(n) with inverters 3805 and 3806 at the inputs and inverter
3807 at the output wherein at least one of the inverters is
defined by a multiplication over the alternate finite field
GF(n). An inverter may be identity, which is a direct connec-
tion, which may is called a multiplier ‘0’ in the alternate finite
field GF(4) as was developed above. In one illustrative
example the device 3804 implements the 4-state adder:

scd 0 1 2 3
0 3 2 1 0
1 2 3 0 1
2 1 0 3 2
3 0 1 2 3

In a further example one of the inverters 3805, 3806 and
3807 is 4-state inverter [2 0 1 3] while the other 2 inverters are
[0 1 2 3] or identity. Inverter 3805 has input 3802, inverter
3806 has input 3802 while inverter 3807 has an output 3803.

Case 1: inverter 3805 is [2 0 1 3]. The device of FIG. 38 is
reduced to the device of FIG. 39 (assuming that input 3801
determines a row in the truth table and input 3802 a column)
with a device 3900 that implements a single truth table:

sc4 0 1 2 3
0 1 0 3 2
1 3 2 1 0
2 2 3 0 1
3 0 1 2 3

This is clearly a non-commutative truth table. However, the
device of FIG. 39 in this example does not require separate
inverters at inputs or output. In one embodiment the truth
table of FIG. 39 is implemented on a processor for instance on
a memory device of a processor.

Case 2: In the second example invert 3806 is [2 0 1 3] while
the other inverters are identity. This results in a device 3900
that implements a single truth table:
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sc4 0 1 2 3
0 1 3 2 0
1 0 2 3 1
2 3 1 0 2
3 2 0 1 3

This is also a non-commutative truth table. The device of
FIG. 39 in this example does not require separate inverters at
inputs or output. In one embodiment the truth table of FIG. 39
is implemented on a processor for instance on a memory
device of a processor.

Case 3: inverter 3807 is [2 0 1 3]. The device of FIG. 38 is
reduced to the device of FIG. 39 with a device 3900 that
implements a single truth table:

sc4 0 1 2 3
0 3 1 0 2
1 1 3 2 0
2 0 2 3 1
3 2 0 1 3

This is a commutative truth table. The device of FIG. 39 in
this example does not require separate inverters at inputs or
output. In one embodiment the truth table of FIG. 39 is imple-
mented on a processor for instance on a memory device of a
processor.

Case 4: inverter 3805 is [2 0 1 3], inverter 3806 is [1 2 0 3]
and inverter 3807 is [2 0 1 3]. The device of FIG. 38 is reduced
to the device of FIG. 39 with a device 3900 that implements a
single truth table:

scd 0 1 2 3
0 2 3 0 1
1 1 0 3 2
2 3 2 1 0
3 0 1 2 3

This is again a non-commutative truth table. The device of
FIG. 39 in this example does not require separate inverters at
inputs or output. In one embodiment the truth table of FIG. 39
is implemented on a processor for instance on a memory
device of a processor.

It is noted that all of the truth tables after reduction are still
reversible. The reduced function can be called scnm.

It has been noted before that in alternate finite field GF(4)
that the inverse of inverters are 0—inv 0~'; 1—sinv 27'; and
2—inv 171,

For instance, the function device of FIG. 38 can be
expressed as y=c*(a*x1+b*x2), wherein a, b and ¢ are the
inverters 3805, 3806 and 3807, x1 is the representation of the
signal on 3801, x2 is the representation of the signal on 3802,
andy is the representation of the signal provided on 3803, and
+ is the function scn performed by 3804. Assume that x2 and
y are known. The state of x1 can then be determined by:
x1=c '*a~!*y+a'*b*x2, keeping in mind that ‘+ is self
reversing and if a, b and c are inverters in the alternate finite
field GF(n) then a™', b~ and c_, are also inverters in the
alternate finite field GF(n).

In one embodiment of the present invention the device or
implementation of FIG. 25 or 26 can be applied in any coder
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which processes an n-state symbol in accordance with an
n-state addition over an alternate finite field GF(n) which is
modified in accordance with at least one inverter which is
defined by a multiplication over the alternate finite field
GF(n) or has such an inverter at an input or an output.

In one embodiment of the present invention a coding
device performs a polynomial arithmetical calculation over
the alternate finite field GF(n). This means that additions,
multiplications and divisions are all performed over the alter-
nate finite field GF(n). The division over such a field is the
reverse of the multiplication as was explained earlier. It is
believed that calculations over finite fields are known. In
general one performs these calculations over the classical
fields GF(2™). One reason to apply GF(2™) is that symbols
over GF(2™) can be represented in binary form as binary
words using mainly XOR and AND operations. By using
functions over an alternate finite field GF(n) the results
become less predictable and hard to analyze for an unautho-
rized or uninformed receiver of n-state symbols coded or
generated over an alternate finite field.

The following patents disclose n-state arithmetic over a
finite or Galois field GF(n=2"). U.S. Pat. No. 4,745,568 to
Onyszchuk et al. issued on May 17, 1988; U.S. Pat. No.
7,372,960 to Lambert issued on May 13, 2008; U.S. Pat. No.
7,506,015 to Graham issued on May 17, 2009; U.S. Pat. No.
7,711,763 issued on May 4, 2010 which are all incorporated
herein by reference. In one embodiment these Galois field
calculators apply a shift register to determine a multiplication
or division of polynomials or a remainder thereof, such as in
U.S. Pat. No. 4,797,848 to Walby issued on Jan. 10, 1989 and
U.S. Pat. No. 5,999,959 to Weng et al. issued on Dec. 7, 1999
which are also incorporated herein by reference. While in one
embodiment a calculator over an alternate finite field has an
implementation of an addition and an inverter both over an
alternate finite field GF(n), an implementation may also be an
implementation of a single truth table which is a truth table of
an addition over an alternate finite field GF(n) modified in
accordance of at least inverter which is defined by a multipli-
cation over an alternate finite field GF(n).

Above, at least one alternate finite field GF(4) has been
provided. While GF(4) has not many alternate finite fields it
still has at least 3 alternate finite fields. It will be shown that
for instance GF(8) has many more alternate finite fields.

The following truth tables define two more alternate finite
fields GF(4).

scda 0 1 2 3 mda 0 1 2 3
0 1 0 3 2 0 1 2 3
1 0 1 2 3 1 1 1 1
2 3 2 1 0 2 1 3 0
3 2 3 0 1 3 1 0 2

The functions scd4a (addition) and m4a (multiplication)
form a field: requirements of commutativity, associativity and
distributivity are met. There is a neutral element ‘0’ in the
multiplication so that 0*x=x for each element in the field.
There is also a zero element (which is ‘1”) so that a+(-a)=1
and a+1=a. Furthermore the inverse of every multiplication is
also in the field (0—0), (2—3) and (3—2) and 2*3=0 and
3*2=0. Furthermore, every power of an element of the field is
also in the field: X>—X*X so that 2%2=3 and 3%*3=2, etc.
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Yet another alternate finite field GF(4) is defined by:

sodb 0 1 2 3 m4b 0 1 23
0 2 3 0 1 0 1 23
1 3 2 1 0 1 3 2 0
2 0 1 2 3 2 2 2 2
3 1 0 3 2 3 0 201

The functions sc4b (addition) and m4b (multiplication)
form a field: requirements of commutativity, associativity and
distributivity are met. There is a neutral element ‘0’ in the
multiplication so that 0*x=x for each element in the field.
There is also a zero element (which is ‘2”) so that a+(-a)=2
and a+2=a. Furthermore the inverse of every multiplication is
also in the field (0—0), (1—=3) and (3—1) and 1*3=0 and
3*1=0. Furthermore, every power of an element of the field is
also in the field: X*>~—X*X so that 1¥1=3 and 3*3=I, etc.

As an example a multiplication of two polynomials over
GF(n) defined by sc4a and m4a is provided: (2*x+3)*(3*x+
2)=2%3*x74(3%342%2)*x4+2*3=0*x"+0*x+0. Keeping in
mind that ‘0’ in this field is the neutral element. In a similar
manner one may conduct a polynomial division. For instance
add 0*x+0to the above polynomial product, which will create
03> +0*x+0+0%x+0=0%x>+1*x+1=0%x> as 1 is the ‘0’ ele-
ment. Dividing 0*x> by (2*x+3) will generate 3*x+0 with a
remainder 3. One can check this result by evaluating (2*x+
3)*(3*x+0)+remainder which will generate 0%x>.

In one embodiment of the present invention at least one of
the functions or inverters used in a coder during coding is
changed from being defined in a first alternate finite field to
being defined in a second alternate finite field. For instance
use the scrambler and descrambler of FIGS. 12 and 13.In a
first instance the functions and inverters are defined related to
scda and mda, and in a second instance to sc4b and m4b. For
instance assume that in FIG. 12 sc is sc4a and the inverters
invl and inv4 are identity and inverter inv2 is multiplier 2 in
mda and inv3 is multiplier 3 in mda. FIG. 13 is the corre-
sponding descrambler. Further assume that after coding 10
symbols the functions are changed to sc4b and m4b for cod-
ing the next 10 symbols. With the initial state of the LFSR
being [0 1 3] and the inputted symbols being twenty zeros [0
0000000000000000000] then the scrambler of FIG.
12 will generate [12303120232313302021]. When
the descrambler follows the scrambler using the same initial
state then the descrambled sequence will be twenty zeros.
However, if the descrambler keeps on using the same func-
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tions sc4a and m4a then the descrambled sequence will be [0
000000000313302021 2] whichis clearly not correct.
Implementations of the functions herein in memory are easy
to realize and easy to change. Accordingly it is not required to
keep the same functions for a long period. If one so desires
functions and/or inverters can be changed per coding of a
single symbol. One should be careful in coding procedures
wherein a plurality of symbols or a word of symbols is coded,
for instance in accordance with a Galois Field. In such a case
it is generally beneficial to not change functions during cod-
ing of the word. However, if one is prepared to handle the
complexities of changing functions in the corresponding
decoding process one may also change functions during cod-
ing of a word of n-state symbols.

We will turn our attention now to alternate finite fields for
n>4. It has been shown above that one can a finite field with
addition such as sc81 and sc82 and multiplication over GF(8)
by a primitive polynomial for instance implemented in a
3-stage LFSR. The number of additions that establish a field
combined with a standard multiplication such as above pro-
vided multiplication m81 in the n=8 case will increase for
n=2" and m>3. For m=4 there are 4 generator polynomials
and for m=5 there are 6 and for m=8 there are 34 generator
polynomials according to Lin and Costello’s Error Control
Coding. Each of the additions in these polynomial fields has
the ‘standard’ multiplication. The additions and inverters
related to the multiplication in such finite fields can be used in
coders and decoders as provided herein. It is believed to be a
novel aspect that different additions as generated by primitive
or minimal polynomials can be used in coders, including
reversible coders that are provided herein. Itis a further aspect
of'the present invention that coders and/or decoders provided
herein apply inverters or a multiplication defined over the
field, which in these cases is known as an extension field.
These different additions can also be modified or provided
with inverters that are not defined over the finite field.

It has been shown above that addition sc83 is associative, it
has a neutral element (0) it is commutative and it is distribu-
tive with m82 which also has a neutral element and a zero
element. The addition is also self reversing. Furthermore the
multiplication has for each multiplier an inverse in the field.
Accordingly, sc83 and m82 form an alternate finite field
GF(8) in which all of the coders and decoders as already
described herein are enabled.

The following truth tables are of combinations of additions

> and multiplications that establish an alternate finite field over
GF(8). One such combination is:
s8¢ 0 1 2 3 4 5 6 7 mga O 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7 00 0 0 0 0 0 0
1 1 0 5 6 7 2 3 4 0 1 2 3 4 5 6 7
2 2 5 0 7 6 1 4 3 0 2 3 5 6 7 1 4
303 6 7 0 5 4 2 1 0 3 5 7 1 4 2 6
4 4 7 6 5 0 3 2 1 0 4 6 1 5 2 7 3
5 5 2 1 4 3 0 7 6 0 5 7 4 2 6 3 1
6 6 3 4 2 2 7 0 5 0 6 1 2 7 3 4 5
7 7 4 3 1 1 6 5 0 0 7 4 6 3 1 5 2
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The functions sc8a and m8a establish an alternate finite
field over GF(n) with n=8 and can be applied in the coders and
decoders as described herein. One can see that m8a is not the
traditional multiplication over GF(8).

34

Once one has selected the rows or columns and arranges
them in a commutative table, the next check is associativity.
After finding a proper addition, a next step is to find a corre-
sponding multiplication. One can limit a search for appropri-

Another combination that defines an alternate finite field 5 ate rows or columns in a multiplication truth table by first

GF(n) with n=8 is: limiting all to be considered n-state inverters to the reversible
s8 0 1 2 3 4 5 6 7 m8 0O 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7 00 0 0 0 0 0 0
1 1 0 7 5 6 3 4 2 01 2 3 4 5 6 7
2 2 7 0 4 3 6 5 1 0 2 3 5 1 6 7 4
3 3 5 4 0 2 1 7 6 0 3 5 6 2 7 4 1
4 4 6 3 2 0 7 1 5 0 4 1 2 7 3 5 6
5 5 3 6 1 7 0 2 4 0 5 6 7 3 4 1 2
6 6 4 5 7 1 2 0 3 0 6 7 4 5 1 2 3
7 7 2 1 6 5 4 3 0 0 7 4 1 6 2 3 5

The functions sc85 and m85b establish an alternate finite
field over GF(n) with n=8 and can be applied in the coders and
decoders as described herein. One can see that m85 is not the
traditional multiplication over GF(8) and is also different
from m8a.

All neutral elements in the above addition are ‘0’ (a+(-a)
=0) and in the multiplication is 1 (a*1=a).

There are several ways to find the appropriate addition and
corresponding multiplication functions by using the required
properties of the functions. For instance, one may require that
the addition is self reversing. In that case each column and
row in the truth table of the addition is a self reversing n-state
inverter. Furthermore, one may require that all additions have
the field characteristic 2 or that (a+(-a))=e, wherein e is the
zero element. A requirement of a field is the existence of e so
that a+e=a. This means that at least one column and row are

20 inverters that are distributive with the addition. The multipli-

25

cation is also commutative further limiting a search for appro-
priate n-state inverters. A further limitation is that none of the
inverters that are considered for an addition or multiplication

should have an identical symbol in an identical position.

The earlier provided examples of alternate finite fields over

39 GF(n)withn=8 have as neutral element ‘0’. In the 4-state case

it was already shown that one can also generate an alternate
finite field with neutral element ‘3’ or ‘2” or ‘1°. The same

applies for other alternate finite fields, for instance for n=8.

35 For instance, one can construct at least one alternate finite

field over GF(8) with neutral element 5. The truth tables of the
addition and multiplication that define this field are provided

the identity. Communitivity also limits the construction. For next.
s 0 1 2 3 4 5 6 7 m8 O 1 2 3 4 5 6 7
0 5 3 7 1 6 0 4 2 01 2 3 4 5 6 7
1 3 5 4 0 2 1 7 6 1 2 3 4 6 5 7 0
2 7 4 5 6 1 2 3 0 2 3 4 6 7 5 0 1
3 1 0 6 5 7 3 2 4 3 4 6 7 0 5 1 2
4 6 2 1 7 5 4 0 3 4 6 7 0 1 5 2 3
5 0 1 2 3 4 5 6 7 5 5 5 5 5 5 5 5
6 4 7 3 2 0 6 5 1 6 7 0 1 2 5 3 4
7 2 6 0 4 3 7 1 5 7 0 1 2 3 5 4 6

each row selected in a truth table the next row selection
becomes more restricted as the rows and columns are sym-
metric around the diagonal of the truth table.

The following illustrative example shows the truth tables of
the addition and multiplication that define an alternate finite
field GF(8) with neutral element “7°.

se8d 0 1 2 3 4 5 6 7 m8d O 1 2 3 4 5 6 7
0 7 3 6 1 5 4 2 0 0 1 2 3 4 5 6 7
1 3 7 4 0 2 6 5 1 1 2 3 4 5 6 0 7
2 6 4 7 5 1 3 0 2 2 3 4 5 6 0 1 7
3 01 0 5 7 6 2 4 3 3 4 5 6 0 1 2 7
4 5 2 1 6 7 0 3 4 4 5 6 0 1 2 3 7
5 4 6 3 2 0 7 1 5 5 6 0 1 2 3 4 7
6 2 5 0 4 3 1 7 6 6 0 1 2 3 4 5 7
7 0 1 2 3 4 5 6 7 77 7 71 71 71 7 1
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The following illustrative example shows the truth tables of
the addition and multiplication that define an alternate finite
field GF(8) with neutral element 3°.

36

and ‘b’ in the alternate finite field. This means that all func-
tions are associate, distributive and commutative and the “+’
herein is self reversing. The following table shows the calcu-

sc8 O 1 2 3 4 5 6 7 m8 O 1 2 3 4 5 6 7
0 3 2 1 0 5 4 7 6 0 1 2 3 4 5 6 7
1 2 3 0 1 6 7 4 5 1 4 6 3 5 7 0 2
2 1 0 3 2 7 6 5 4 2 6 5 3 0 1 7 4
3 0 1 2 3 4 5 6 7 3 3 3 3 3 3 3 3
4 5 6 7 4 3 0 1 2 4 5 0 3 7 2 1 6
5 4 7 6 5 0 3 2 1 5 7 1 3 2 6 4 0
6 7 4 5 6 1 2 3 0 6 0 7 3 1 4 2 5
7 6 5 4 7 2 1 0 3 7 2 4 3 6 0 5 1

The following illustrative example shows the truth tables of ,, lated states of the shift register starting with [s1 s2] as x1 and

the addition and multiplication that define another alternate
finite field GF(8) with neutral element ‘3°.

x2 are entered, as developed by executing the functions that
are implemented in the coder.

sc8e2 O 7 mBe2 0

B N N A =
[V N =T Syt
= N R N = IR VU R Y
N I ST VR e
B N N A =
NO = WA L
O N W o= oy AW
T N SR <R~ NV R N
W = O NN AW
B N N A =
A O NN W L A
—_ A O W W oo W N
Wow W W W W W W
[ RS e N, B VSRR B S RN

A0 = W O

[V T T S R UL I N e T
oo A O W=y

The above shows that there are different alternate fields
based on the same addition but with different multiplications.

In accordance with an aspect of the present invention a
decoder is provided to a Reed Solomon coder that is enabled
to detect at least one n-state symbol in error. A diagram of an
illustrative encoder 4000 is shown in FIG. 27. The n-state
encoder 4000 has an n-state Linear Feedback Shift Register,
in this example with 2 shift register elements s1 and s2. As is
known in the art this encoder can generate two n-state sym-
bols, which is the content of the shift register after all n-state
data symbols x=[x1 x2 . . . xk| have been entered into 4000.
The encoder implements two n-state additions, which in this
case are assumes to be identical additions over alternate finite
field GF(n). The two functions may be different functions, but
for illustrative purposes they are assumed to be the same.
Furthermore, an inverter inv2 is included in a feedback tap
and an inverter inv1 is included in the tap into the first shift
register element. At least one of inv1 and inv2 is defined by a
multiplication over alternate finite field GF(n).

Assume that the sequence of n-state symbols contains 4
n-state symbols [x1 x2 x3 x4], though more symbols may be
entered. The shift register starts with an initial content [s1 s2].
Assume that sc is an addition ‘+’ over an alternate finite field
GF(n) and inverters inv1 and inv2 are constant multipliers ‘a’

45

return srl sr2

sl s2

x1 +s2
b* (x1 +52) +
sl

a*(xl+s2) a*(xl+s2)
b* (x1+s2)+sl+
x2

a*{b*
(x1 +s2) +
sl +x2}

a* {b*(xl+s2)+
sl +x2)

b*{b*

(x1 +82) +
sl +x2) +

a* (xl+s2)

One can see that the expressions in each state as the LFSR
advances in processing greatly accumulate in terms. One can
take at least two approaches in showing the individual states
of'the LFSR at each clock cycle: show the evaluated state by
performing the expressions for each cycle. However, this
requires the actual states of symbols. In an embodiment of the
present invention one provides the coefficients of the depen-
dent terms like s1, s2, x1, x2, x3 and x4 etc. The coefficient of
aterm containing for instance s1 does not depend on any other
term, but only on the functions such as additions and multi-
plications. The end state of the shift register is then dependent
on sl, s2, x1, x2, x3 and x4 and can be expressed as c1*s1+
c2%s2+c3%x1+c4*x2+c5%x3+c6%x4 and can be represented
as[cl c2 c3 c4 ¢5 ¢6]. During processing a term ¢5%x3 can be
achieved by composite processing. As an illustrative example
c5%x3=(t1*x3+t2*x3)*t4. Because of properties of the func-
tions in the alternate finite field one can simply apply multi-
plication and addition to calculate c5=t4*(t1+12).
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The simplest way to represent the states of the shift register
is to represent each shift register as dependent upon the vari-
ables s1, s2, x1, x2, x3 and x4. For instance the initial content
of'the first shift register in FIG. 27 is s1 and does not depend

38

All the steps as described above can easily be performed by
aprocessor. I[f one performs the reverse steps (or down direc-
tion) starting with the states as determined in the forward
direction (or up direction) then one will arrive at initial shift

on other variables. One can then represent this content as [s1 5 register state [333333]and [3 333 3 3] as is to be expected.
7. 7.7 7 7] wherein 7 is the zero state. The second shift register Ifno errors have occurred, all the shift register states going
has initial content [z s2 z z z z]. The first symbol x1 to be up have to be identical to the shift register states going down
entered in the LFSR is then [z z x1 z 7 7] and so on. In the or in reverse. As a further aspect of the present invention
example field GF(8) with sc8¢2 and m8e2 the zero element is corresponding states going up and down are compared.
3.To provide a general representation of the states one canuse 19 Because addition in the alternate finite field is identical to
the neutral identity state for the state of s1, s2 etc. To deter- subtraction one may add corresponding states. The sum of
mine an actual state one then substitutes this actual state for corresponding states then has to be the all zero elements or [3
the identity state. In the example field the neutral state is 0. 3333 3]. The sum (or subtraction) of all corresponding states
(0*x1=x1 for instance). One can then represent s1=[03333 . 1§ shown in the following table.
3];52=[303333];x1=[330333];x2=[333 03 3];x3=[3
33303]and x4=[33 333 0]. Assume that inv2=[4 2735
61 0] or b=4 and inv1=[14 53 2 7 0 6] or a=1. Starting the comparative state srl comparative state sr2
LFSR in initial state [0 0] and withx=[0 00 Q] the consecutive d 2 xl %2 %3 xd sl s xl x2 x3 xd
states of the LFSR as a consequence of entering the 4 symbols 5,
is provided in the following table. t=1 2 2 3 0 1 0 4 6 0 3 6 0
t=2 2 0 1 3 0 1 6 0 4 0 3 6
t=3 0 1 2 4 3 0 0 6 4 2 0 3
t=4 1 0 2 5 5 3 6 3 6 2 71 0
end state 0 3 o 5 6 3 3 0 0 0 7 3
st element 1 st element 2
25
sl 52 xI x2 x3 x4 sl s2 x1 x2 x3 x4 Because it is known that all comparative states are the zero
miial 3 03 3 3 3 3 3 3 3 3 3 3 state (or state 3 in this case) one can now determine if a
t=1t 3 3 1 3 3 3 3 3 4 3 3 3 received symbol was in error. One can see that each compara-
t=2 3 3 2 1 3 3 3 3 4 4 3 3 tive state has at least one component that is in state 3. This
t=3 3 3 2 2 13 3 3 6 4 4 3 30 means that no matter what state that component is, the com-
t=4 3 3 0 2 2 1 3 3 0 6 4 4 . . .
parative state is not influenced by the state of such compo-
nent. For instance comparative state of srl at t=1 the com-
The end state of the first shift register element is deter- parative state is [2 2 3 0 1 0] and the symbol x1 contributes 3,
mined by: 3*s143%s24+0*x1+2*x24+2%x3+1*x4. So, if the 50 it does not depend upon x1. This also means that if x1 is
shift register’s initial state was [3 3] and x=[0 1 2 3] then the 33 received in error, then the comparative state of sr1 will still be
end state of the first shift register element is [3*3+3*3+0*1+ 3 if all other symbols were correct.
2¥142%241*3]=[3+3+145+6+3]=0. As an illustrative example assume that what is received is
As a further aspect of the present invention a coder such as [s152x1 x2x3 x4]=[1 7 01 2 3]. Entering these states in the
provided in FIG. 27 is reversed, starting from an end state and 0 comparative table and evaluating the expressions will lead to:

entering the symbols of x=[x1 x2 x3 x4] in reverse order. This
is shown in FIG. 28 in a coder 4100. The change compared to
FIG. 27 is the reversed direction of the flow of symbols. All
functions are the same (because the function sc8e2 is self
reversing) and inv2 is the same as in FIG. 27. Only the last
inverter which was invl=a is now reversed and should be
invl™' or a~*. The reverse of 1 is 6 in this field. In reverse
direction the shift register starts with initial end content
[sles2e] wherein sle and s2e can be determined from the
above step. The end state can be represented as: [sle 3333 3]
and [3s2¢3333]oras[033333]and [303333]. The
symbols entered are x4=[3 3 3 3 3 x1]; x3=[3 3 3 3 x3 3];
x2=[3 33 x2 3 3] and x1=[3 3 x1 3 3 3] wherein the state of
x1, x2, x3 and x4 can be set to the identity state 0. The
following table shows the states of the shift register at each

45
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evaluated comparative states

sr2

t=1 3 3
t=2 3 3
t=3 3 3
t=4 3 3
end state 3 3

One may conclude that if only one error can occur, then
based on this evaluation no error has occurred.

Assume that what is received is [s1 s2 x1 x2 x3 x4]=[17 7
1 2 3]. Entering these states in the comparative table and

clock stage in reverse order (starting from end state to t=1). 35 evaluating the expressions will lead to:
sr element 1 st element 2 evaluated comparative states
60
sl s2 xl x2 x3 x4 sl s2 x1 x2 x3 x4 srl sr2
t=1 2 2 3 0 1 0O 4 6 0 3 6 0 t=1 3 5
t=2 2 0 3 3 0 1 6 0 3 0 3 6 t=2 7 6
t=3 0 1 3 3 3 0 0 6 3 3 0 3 t=3 0 6
t=4 1 0 3 3 3 3 6 3 3 3 3 0 t=4 0 2
endstate 0 3 3 3 3 3 3 0 3 3 3 3 65 end state 5 5
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Because there are comparative states that are not 3 there is
a symbol in error. Because srl at t=1 is state 3 it can be
determined that x1 as received is in error.

As only x1 is in error, the end state of srl is not in error.
Recall that [s1 s2 x1 x2 x3 x4]=[1 7 7 1 2 3] was received.
Thus for instance comparative state srl at t=4 should be 3 or:
0*s143*s2+0*x1+5%x2+6*x3+3%x3=3. Or: 0*x1=0*1+
3%74+5%1 +6*2+3%3=1+3+7+4+3=0, which was the correct
state of x1.

The outcome of the comparative states depends on the
selected inverters. In one embodiment of the present inven-
tion one creates a computer program, for instance in Matlab®
of The Mathworks of Natick, Mass. that implements the up
and down version of an LFSR and determines the compara-
tive states based on different inverters. Preferably at least one
inverter is defined by a multiplication over the alternate finite
field GF(n) and at least one function sc is defined by the
alternate finite field. Based on a selected inverter one can
review the comparative states and determine which configu-
ration is most convenient to determine at least one symbol in
error.

In accordance with a further aspect of the present invention
an LFSR with at least three (3) shift register elements is
created to determine three check symbols and send a word of
a plurality of data symbols and the at least three check sym-
bols to a receiving device that implements the comparative
states calculations as explained herein. This allows the receiv-
ing device to determine at least 2 symbols in error. How
detectable symbols in error are distributed over a codeword
depends on the selected inverters.

In accordance with a further aspect of the present invention
a very long sequence, much longer than the number of shift
register elements, can be coded this way into a word with only
two or more shift register elements. The number of compara-
tive states will increase. However, the method as provided
herein will still identify a symbol in error. At least for a small
number of errors that appear in a burst of consecutive errors,
the herein provided methods can be arranged to provide a fast
way to determine an error location and resolve the symbols in
error, for instance as compared to standard Reed Solomon
methods. This is especially true for detecting one or more
consecutive errors in a long sequence or even a very long
sequence of symbols.

In one embodiment of the present invention the up/down
approach is applied to a sequence of binary symbols. For
instance, a coder as illustrated in FIG. 23 is a binary coder
with invl and inv2 being identity and the ‘+’ being an imple-
mentation of a XOR function. The following table shows the
comparative state table for this coder with an input of a
sequence of 4 bits and an initial shift register state [0 0].

comparative state srl comparative state sr2

sl 2 x1l x2 x3 x4 sl s2 x1 x2 x3 x4

t=1 1 1 o 1 1 o 1 o0 1 o0 1 1
t=2 1 0 1 0o 1 1 o 1 1 1 0 1
t=3 0 1 1 1 0 1 1 1 o0 1 1 0
t=4 1 1 o 1 1 o 1 o0 1 o0 1 1
end state 1 0 1 0 1 1 0o 1 1 1 0 1
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One is reminded that 0 herein means that that symbol does
not contribute to the state and 1 means it does. Fort=1 one can
thus express the two comparative states as srl—
(s1252=x2=x3) and sr2—(s1=x1=x3=x4). This means that if
bit x1 is in error sr1 will be 0 but sr2 will be 1.

A similar result can be achieved for binary coders with 3 or
more shift registers and with binary coders wherein at least
one implementation of an EQUAL (=) function or an XOR
function with an inverter [1 0] is used.

The above methods for error location and error correction
also apply to alternate finite fields for n is smaller than 8. One
example is n=4. The following provides an addition and a
multiplication over an alternate finite field GF(4).

sod 0 1 2 3 m4 0 1 2 3
0 3 2 1 0 0 1 2 3
1 2 3 0 1 1 2 0 3
2 1 0 3 2 2 0 1 3
3 0 1 2 3 3 3 3 3

Using the configurations of FIGS. 27 and 28 and inv1=[2 0
13] ora=2 and inv2=[0 1 2 3] or b=0 and a~'=1, will provide
the following comparative states.

comparative states srl comparative states srl

sl s2  x1 x2 x3 x4 sl s2 x1 x2 x3 x4

t=1 3 0 30 1.0 1 1 0 3 1 2
t=2 0 0 2 3 0 1 1 2 0 0o 3 1
t=3 0 1 2 2 3 0 2 1 1 0 0 3
t=4 1 0 o 2 2 3 1 3 0 1 0 O
end state 0 3 2 0 2 2 3 0 3 0 1 o0

The state corresponding to t=1 is the initial state. In an
example this state should be [3 3]. Assume that a word [s1 s2
x1 x2 x3 x4]=[1 2 3 1 2 0] was received. The evaluated
comparative states based on the received word are:

evaluated comparative states

srl sr2

t=1 3 2
t=2 1 2
t=3 1 0
t=4 2 2
end state 1 3

From the earlier individual components based comparative
states one can see that for t=1 (wherein the comparative state
of'srl is 3) that comparative state srl does not depend upon
x1, while the other comparative states do. As a check one can
also see that the same is the case for the end state of sr2.
Accordingly x1 is in error. And one can solve, as before, x1 by
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solving for instance the expression that determines the com-
parative end state for srl. The expression is 0*s1+3*s2+
2*X1+0%X2+2%x3+2%x4=3. Or 2*x1=0*s1+3*s2+0%x2+ sh 0t 2 3 4 mw 0t 2 34
2*x3+2*x4. The word [1 2 3 1 2 0] was received or: s ? g i g ? i ? é i ; ‘21
2¥x1=0*1+3*2+0%*1+2*240*0=1+3+1+1+1=3. Or xl1= 5 2 0 1 2 3 > 4 1 3 0
17'#3=3. Thus x1=3. 30 1 2 3 4 303 3 3 3
- 4 1 2 3 4 o0 4 2 0 3 1
Odd Alternate Finite Fields
In the above alternate finite fields of order n=27 have been 10 o ] ] ] ] ]
disclosed. As illustrative examples self reversing additions [Each multiplier has an inverse in the field: 0 is the identity;
over such fields have been provided. As is known to one of 1 is self reversing; 2 has 4 as inverse and 4 has 2 as inverse.
ordinary skill a field can also be over n is an odd number. In Other alternate finite fields over GF(5) can also be con-
particular pnme fields wherein n is pnme or Zn are of interest. structed with O as 1dent1ty element and 1 or 2 as the neutral
These and other fields are of interest in certain coders suchas 15 €lement.
Elliptic Curve Coders. In many of these cases the ‘normal’ The following tables provides additions and multiplica-
field is usually defined by using the modulo-n addition and the tions that establish an alternate finite field over GF(7).
s7a. 0 1 2 3 4 5 6 mla O 1 2 3 4 5 6
0 1 2 3 4 5 6 0 0 1 2 3 4 5 6
1 2 3 4 5 6 0 1 1 3 5 0 2 4 6
2 304 5 6 0 1 2 2 5 1 4 0 3 6
3 4 5 6 0 1 2 3 30 4 1 5 2 6
4 5 6 0 1 2 3 4 4 2 0 5 3 1 6
5 6 0o 1 2 3 4 5 5 4 3 2 1 0 6
6 0o 1 2 3 4 5 6 6 6 6 6 6 6 6
modulo-n multiplication. In accordance with an aspect of the 30 All multipliers are also in the alternate finite field.
present invention an alternate finite field is created over GF(n) The following tables also establish an alternate finite field
whereinn is prime. As an example an alternate finite field over GF(7).
s7b 0 1 2 3 4 5 6 mib 0 1 2 3 4 5 6
0 6 0o 1 2 3 4 5 0 1 2 3 4 5 6
1 0o 1 2 3 4 5 6 11 1 1 1 1 1
2 1 2 3 4 5 6 0 2 1 0 6 5 4 3
3 2 3 4 5 6 0 1 31 6 4 2 0 5
4 304 5 6 0 1 2 4 1 5 2 6 3 0
5 4 5 6 0 1 2 3 5 1 4 0 3 6 2
6 5 6 0 1 2 3 4 6 1 3 5 0 2 4
GF(5) is provided that is defined by the following addition 45  Again, all multipliers not being the zero element have an
and multiplication. inverse in the field.
The following 3-valued or ternary function establishes a
standard finite field GF(3).
s5a 0 1 2 3 4 msa 0O 1 2 3 4 50
0 1 2 3 4 0 o 1 2 3 4 sc3 0 1 2 m3 0 1 2
1 2 3 4 0 1 1 3 0 2 4
2 3 4 0 1 2 20 3 1 4 (1) (1) ; é 8 (1) g
3 4 0 1 2 3 32 1 0 4
4 0o 1 2 3 4 4 4 4 4 4 7 2 2 0 ! 0 2 !
One can easily check that the following 3-valued or ternary
The functions sc5a is commutative, associative, it has a ‘0’ functions also establish an alternate finite field.
element (4) so that “x sc5a 4=x” and it is distributive with
m5a which has a zero element 4 and a neutral element ‘0’ and %°
which function is also commutative and associative. Further-
more, each multiplier has an inverse that is also in the alter- scda O ! 2 mia 0 ! 2
nate finite field: O has itself as inverse, the inverse of 1 is 2, the 0 1 2 0 0 1 2
inverse of 2 is 1, and the inverse of 3 is 3. 1 2 0 1 1 0 2
65 2 0 1 2 2 2 2

The following table provides an addition and multiplica-
tion that establish an alternate finite field GF(5).
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sc3b 0 1 2 m3b 0 1 2
0 2 0 1 0 1 2
1 0 1 2 1 1 1
2 1 2 0 2 1 0

One can generate the states for an n-state extension field
with n=3> with a 2-state LFSR with one of the above 3-state
additions and an inverter being one of the inverters in the field
in a sequence generator as shown in FIG. 32. For instance
with sc being sc3b and invl is [0 1 2] and inv2=[2 1 0] as
defined by m3b. The following table shows the addition and
multiplication over GF(9) that can be generated from this.
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being prime and m>1, wherein p preferably is 2, or composite
fields GF((p™)") with p being prime and m and r>1, or a prime
field such as a Mersenne prime field GF(n) or any other finite
field with n~p™ and preferably n~2". For instance Odd Char-
acteristic Extension Fields including Optimal Extension
Fields are known that are defined over GF(n)=GF(2"+c) as
disclosed for instance in U.S. Pat. No. 7,069,287 issued on
Jun. 27, 2006 to Paar et al. which is incorporated herein by
references. One application of finite field arithmetic is in
Elliptic Curve cryptography, wherein product symbols based
on an elliptic curve over a finite field is generated from the to
be coded symbols and random numbers. How to apply a
Galois Field in elliptic curve cryptography is also disclosed in
U.S. Pat. No. 5,351,297 issued on Sep. 27, 1994 to Miyaji et

s9 0 1 2 3 4 5 6 7 8 m9 O 1 2 3 4 5 6 7 8
0 0 1 2 3 4 5 6 7 8 0 0 0 0 0 0 0 0 O
1 1 5 8 4 6 0 3 2 7 01 2 3 4 5 6 7 8
2 2 8 6 1 5 7 0 4 3 0 2 3 4 5 6 7 8 1
3 3 4 1 7 2 6 8 0 5 0 3 4 5 6 7 8 1 2
4 4 6 5 2 8 3 7 1 0 0 4 5 6 7 8 1 2 3
5 5 0 7 6 3 1 4 8 2 0 5 6 7 8 1 2 3 4
6 6 3 0 8 7 4 2 5 1 0 6 7 8 1 2 3 4 5
7 7 2 4 0 1 8 5 3 6 0 7 8 1 2 3 4 5 6
8 8 7 3 5 0 2 1 6 4 0 8 1 2 3 4 5 6 7

One way to generate an alternate field over GF(9) is to for
instance determine that the new ‘zero’ or neutral element of
the alternate field is 5. This means that ‘a+5=a’ or: the row and
column corresponding to element 5 should be[01234567
8]. A way to achieve that is to invert the whole truth table of
sc9 with the inverse of the column or row of element 5
because 57*(5)—e. This means that the new column of element
5 in the inverted truth table should be [S07 63 1 4 8 2]'=[1
5846032 7]. The functions sc9a generated by inverting sc9
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al. which is incorporated herein by reference. The use of
binary fields or binary extension fields in elliptic curve cryp-
tography is disclosed in U.S. Pat. No. 6,721,771 issued on
Apr. 13, 2004 to Chang which is incorporated herein by
reference.

In elliptic curve coding repetitive addition also called sca-
lar multiplication is applied for for instance doubling of a
point on an elliptic curve. A new point Q on such a curve is for
instance found by addition such that 2P=P+P. And 3P=2P+P,

with the above inverter will create: and kP=P+P+ . . . P (k times). The ‘+’ operator is herein
s9a 0 1 2 3 4 5 6 7 8 m9a O 1 2 3 4 5 6 7 8
0 1 5 8 4 6 0 3 2 7 0 1 2 3 4 5 6 7 8
1 5 0 7 6 3 1 4 8 2 1 0 3 2 7 5 8 4 6
2 8 7 3 5 0 2 1 6 4 2 3 1 0 8 5 4 6 7
3 4 6 5 2 8 3 7 1 0 32 0 1 6 5 7 8 4
4 6 3 0 8 7 4 2 5 1 4 7 8 6 2 5 0 3 1
5 0 1 2 3 4 5 6 71 8 5 5 5 5 5 5 5 5 5
6 3 4 1 7 2 6 8 0 5 6 8 4 7 0 5 3 1 2
7 2 8 6 1 5 7 0 4 3 7 4 6 8 3 5 1 2 0
8 7 2 4 0 1 8 5 3 6 8 6 7 4 1 5 2 0 3

One should first check if sc9a is associative. One can create
m9a by first setting column and row of 5to all 5 (as this is now
the neutral element). Furthermore, one can determine all
reversible 9-state inverters that are distributive with sc9a and
construct the truth table m9a from the compliant inverters. A
simple computer program will demonstrate that sc9a and
m9q are distributive. There is a zero element, the multiplica-
tion has an identity (0), all non-zero elements in the field have
an inverse that is also in the field, the functions are commu-
tative. Accordingly, sc9a and m9a establish an alternate finite
field GF(9). Other alternate finite fields can be constructed in
a similar way.

Galois Field (or finite field) arithmetic is widely used in
cryptography. The applied fields can be for instance a field
GF(p) with p being prime, or extension fields GF(p™) with p
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defined as the addition over a finite field, for instance over an
alternate finite field. This ‘doubling’ and ‘scalar multiplica-
tion’ is the basis for Elliptic Curve Coding, which can be
performed in a finite field, and in one embodiment of the
present invention it is performed in an alternate finite field.
It has been shown already above that alternate finite fields
exists for binary, binary extension fields and prime fields and
prime extension finite fields. Any field (if it is a traditional or
an alternate field) as is known in the art has a minimal set of
common properties. However, where at least one class of
alternate finite fields differ from traditional finite fields is that
the neutral or ‘zero’ element is not 0. Name the neutral ele-
ment ‘e’ and ‘a’ is any element in a finite field not being ‘e’
then ‘e’ is defined as ‘a+e=a’ with ‘+’ being the addition over
the field and wherein the neutral element ‘e’ is not 0 in at least



US 8,577,026 B2

45

one class of alternate finite fields. A parallel definition in the
alternate finite field is related to the multiplication ‘*’ over the
finite field. Herein ‘e*a=e’ for all states of ‘a’ including all
states not being ‘e’ and wherein ‘e’ is not ‘0’. As the same field
properties to traditional finite fields apply to alternate finite
fields one may define an elliptic curve over an alternate finite
field and develop the cryptography over that elliptic curve in
a similar way as in the traditional finite field but now by
applying the alternate finite field. In general one applies finite
field arithmetic by using a modulo-polynomial calculation.
However, a much faster way is to either store the truth table or
calculate the elements of the truth table from a known inver-
sion as was explained above. This allows for very fast calcu-
lations in binary logic if one so desires. Thus an embodiment
is provided of an elliptic curve encoder and a corresponding
decoder that applies addition and multiplication (and division
when required) over an alternate finite field.

An encoder is provided that modifies the statistical distri-
bution of symbols in a coded message as disclosed in U.S. Pat.
No. 7,659,838 issued on Feb. 9, 2010 to Lablans, which is
incorporated herein by reference. In one embodiment of the
present invention as illustrated in FIG. 34 a coder 3400 with
a corresponding decoder 3401 is provided. The encoder 3400
in one embodiment of the present invention has a first coding
stage 3402 in accordance with an encoding method as herein
provided an using at least an implementation of an addition
over an alternate finite field and preferably an addition over an
alternate finite field and an inverter defined by a multiplica-
tion over an alternate finite field with an input sequence of
symbols In, that generates a sequence Int of symbols.
Sequence Int is provided to an encoding state 3403 which
modifies the statistical distribution of symbols without
changing the number of symbols to generate sequence Outc.
For decoding by a decoder 3401 a received sequence Outc is
provided on decoding stage 3404 which reverses 3403 to
generate Int with the previous statistical distribution of sym-
bols which is provided to decoding stage 3405 which reverses
encoder 3402 to generate original sequence In. An encoding
step may be preceded or succeeded by signal processing
including modulation, demodulation, detection, amplifica-
tion or other signal processing as is known in the art. FIG. 35
illustrates an encoder 3500 wherein 3502 performs modifica-
tion of statistical distribution of symbols and 3503 performs
an encoding process in accordance with a method as provided
herein using at least an implementation of an addition over an
alternate finite field and preferably an addition over an alter-
nate finite field and an inverter defined by a multiplication
over an alternate finite field. FIG. 35 also illustrates a decoder
3501 with 3504 reversing 3503 and 3505 reversing 3502.

The above approaches also apply to the generation of other
classes of alternate fields GF(¢”) with q=2 and p=1 or p=2.

An alternate finite field GF(n) is not a classical finite field.
The existing literature in Field Theory uses in general O as the
neutral element or as the zero element ‘e’ of a field so that
‘a+e=e’. At least one class of an alternate finite field GF(n)
herein is defined as the field GF(n) defined by the addition scn
wherein an element not represented by the field element 0 is
the neutral element and by a corresponding multiplication. It
is noted that a field can be defined by a single addition and one
of a plurality of possible multiplications.

In accordance with an aspect of the present invention an
implementation of at least one addition over an alternate finite
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field GF(n) and at least one inverter defined by a multiplica-
tion over an alternate finite field GF(n) with n=3 is applied in
an encoder as provided herein.

In accordance with an aspect of the present invention an
implementation of at least one addition over an alternate finite
field GF(n) and at least one inverter defined by a multiplica-
tion over an alternate finite field GF(n) with n>3 is applied in
an encoder as provided herein.

In accordance with an aspect of the present invention an
implementation of at least one addition over an alternate finite
field GF(n) and at least one inverter defined by a multiplica-
tion over an alternate finite field GF(n) with n>4 is applied in
an encoder as provided herein.

In accordance with an aspect of the present invention an
implementation of at least one n-state function which is
defined by a truth table that is a reduction of an addition over
an alternate finite field GF(n) and at least one inverter defined
by a multiplication over an alternate finite field GF(n) with
n=3 is applied in an encoder as provided herein.

In accordance with an aspect of the present invention an
implementation of at least one n-state function which is
defined by a truth table that is a reduction of an addition over
an alternate finite field GF(n) and at least one inverter defined
by a multiplication over an alternate finite field GF(n) with
n=3 is applied in an encoder as provided herein.

In accordance with an aspect of the present invention an
implementation of at least one n-state function which is
defined by a truth table that is a reduction of an addition over
an alternate finite field GF(n) and at least one inverter defined
by a multiplication over an alternate finite field GF(n) with
n>3 is applied in an encoder as provided herein.

In accordance with an aspect of the present invention an
implementation of at least one n-state function which is
defined by a truth table that is a reduction of an addition over
an alternate finite field GF(n) and at least one inverter defined
by a multiplication over an alternate finite field GF(n) with
n>4 is applied in an encoder as provided herein.

In accordance with an aspect of the present invention an
alternate binary finite field is defined by an addition being the
EQUAL (or =) function and a multiplication being the NAND
function. Extension fields created from the EQUAL and the
NAND function from primitive or minimal polynomials may
also be called alternate finite fields. However, they may also
be considered as a different type of alternate finite field com-
pared to those that cannot be generated from primitive or
minimal polynomials only.

In accordance with an aspect of the present invention an
encoder that is provided in accordance with an aspect of the
present invention is provided with a corresponding decoder.

In accordance with an embodiment of the present invention
an encoder and a corresponding decoder use at least an imple-
mentation of an addition over an alternate finite field GF(n).
In such an embodiment inverters may be used or the addition
may be modified in accordance with an inverter. In a further
embodiment an inverter defined by a multiplication defining
the alternate finite field GF(n) is required or an implementa-
tion of an addition in accordance with an inverter over the
alternate finite field is required.

In some cases only illustrative examples of a 4-state or an
8-state or an n-state encoder and or decoder is provided. It is
fully contemplated that similar encoders and decoders in any
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of'the alternate finite fields GF(n) can easily be constructed by
one of ordinary skill without undue experimentation. Any
additional effort may come from the increased number of
states of GF(n>n1) if n1 is greater than n and not from differ-
ent principles.

In accordance with a further aspect of the present invention
the here provided methods of encoding and decoding are used
in a system, such as a communication system. Such a com-
munication system may be a wired system or a wireless
system. Such a system may be used for data transmission,
telephony, video or any other type of transfer of information.
A diagram of such a system is provided in FIG. 29. Herein
1101 is a source of information. The information is provided
to a coder 1102. The information provided to a coder 1102
may already be in a digital form. [t may also be converted into
digital form by the coder 1102. The coder 1102 creates the
coded symbols in a signal. The codewords are organized in
such a way that up to a number of symbols in error can be
identified as such. The thus created codewords may be pro-
vided directly to a transmission medium 1103 for transmis-
sion. They may also be provided to a modulator/transmitter
1106 that will modify the digital coded signal provided by
1102 to a form that is appropriate for the medium 1103. For
instance 1106 may create an optical signal or an electrical
signal. Modulator 1106 may also be aradio transmitter, which
will modulate the signal on for instance a carrier signal, and
wherein 1103 is a radio connection.

Atthe receiving side a receiver 1107 may receive, amplify,
and demodulate the signal coming from 1103 and provide a
digital signal to a decoder 1104. The decoder 1104 applies the
methods provided herein to decode symbols including cor-
recting symbols in error. A decoded and/or error corrected
signal is then provided to a target 1105. Such a target may be
a radio, a phone, a computer, a tv set or any other device that
can be a target for an information signal. A coder 1102 may
also provide additional coding means, for instance to form a
concatenated or combined code. Additional information,
such as synchronization or ID information, may be inserted
during the transmission and/or coding process.

In accordance with another aspect of the present invention
the here provided methods and apparatus for coding includ-
ing error correcting coding and decoding including error cor-
recting decoding of signals can also be applied for systems
and apparatus for storage of information. For instance data
stored on a CD, a DVD, a magnetic tape or disk or in mass
memory in general may benefit from error correcting coding.
A system for storing symbols coded in accordance with an
aspect of the present invention is shown in diagram in FIG.
30. A source 1201 provides the information to be coded. This
may be audio, video or any information data. The data may
already be presented in n-valued symbols by 1201 or may be
coded in such a form by 1202. Unit 1202 may create code
words of a plurality of data symbols with added check sym-
bols as described herein as another aspect of the present
invention. The thus created coded symbols may be provided
directly to a channel 1204 for transmission to an information
carrier 1205. The information carrier 1205 may be an optical
disk, an electro-optical disk, a magnetic disk, a magnetic tape,
a flash memory device or any other device or medium that can
store information. In general a modulator/data writer 1203
will be required to write a signal to a carrier 1205. For
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instance the channel may require optical signals, electrical
signals or it may require magnetic or electro-magnetic or
electro-optical signals. Modulator/data writer 1203 will cre-
ate a signal that can be written via channel 1204 to a carrier
1205. Additional information such as for ID and/or synchro-
nization may be added to the data.

FIG. 31 shows a diagram for decoding information read
from a carrier 1305. The information is read through a chan-
nel 1304 (such as an optical channel or electrical or magnetic
or electro-magnetic or electro-optical channel) and provided
in general to a detector 1303 that will receive and may amplify
and/or demodulate the signal. The signal is then provided to a
decoder 1302. The information signal, possibly readied for
presentation as an audio or video signal or any other form is
then provided to atarget 1301. The target 1301 may be a video
screen, a compute, a radio or any other device that can use the
decoded signal.

The methods and apparatus here provided can be imple-
mented using a general processor, a dedicated signal proces-
sor or customized logic. N-valued symbols may be processed
as binary words, being created from n-valued symbols by
Analog/Digital converters. After being processed n-valued
signals may be created from binary words by applying Digi-
tal/Analog converters. Switching functions may be created as
customized n-valued circuits. For instance U.S. Pat. No.
6,133,754 by Olson, issued Oct. 17, 2000 entitled “Multiple-
valued logic circuit architecture; supplementary symmetrical
logic circuit structure (SUS-LOC)” discloses embodiments
of n-valued CMOS switches. In United States Patent Appli-
cation, application Ser. No. 11/000,218 filed Nov. 30, 2004
entitled “Single and composite binary and multi-valued logic
functions from gates and inverters” which is incorporated
herein by reference in its entirety, it is shown how n-valued
logic circuits can be created. N-state logic embodiments, for
instance using look-up tables are also contemplated.

It has been shown in for instance U.S. Published Patent
Publication Ser. No. 2007009160 to Lablans published on
May 3, 2007 which is incorporated herein by reference in its
entirety that an LFSR, with may be part of a scrambler or a
descrambler is implemented in an addressable memory and
using an implementation of an n-state switching function. In
one embodiment of the present invention an LFSR imple-
mented with an addressable memory applies an implementa-
tion of an addition over an alternate finite field, or an imple-
mentation of an addition over an alternate finite field and an
inverter defined by a multiplication over an alternate finite
field, or an implementation of a single truth table of an addi-
tion over an alternate finite field modified by an inverter
defined by a multiplication over an alternate finite field.

In some encipherment applications security comes from
large finite fields GF(n), preferably with n being prime and in
certain cases with n=2° to facilitate binary execution. Elliptic
Curve Coding coders and AES coders are an example of that.
In accordance with an aspect of the present invention instead
of'n being a large prime, n can be a much smaller integer but
with many different alternate finite fields are used. For
instance n=251 (which can be represented by 8 bits) has
hundreds of alternate finite fields. Furthermore, there are
different alternate finite fields having the same addition but
different multiplications as was shown herein. In a coder and
adecoder instead of one large finite field or one large alternate
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finite field many different smaller alternate finite fields are
applied. And rather than calculating a state in a finite field by
applying complex Galois field or polynomial arithmetic the
states are stored in an addressable memory, which makes
processing much faster. Additional security is introduced by
determining which alternate finite field to apply for instance
based on a key or a pseudo-random sequence of symbols. In
a further embodiment of the present invention, the order of
alternate finite fields is changed per message, per time period
or by any other pre-determined parameter that can be syn-
chronized between sender and receiver.

FIG. 32 illustrates a processor in accordance with an aspect
of'the present invention. A processing unit 50000 is provided
to process at least binary words that represent an n-state
symbol. The processing unit may also implement circuitry
that implements n-state logic tables. The processing unit has
at least one input/control port to provide the processing units
directly with input and/or control signals. The processing unit
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means that an addition over a classical field GF(6) does not
exist. Such an addition conceivably would be a modulo-6
addition. However, no set of multiplications in combination
with the modulo-6 addition exists to create a finite field.
Accordingly, an addition over a finite field, be it a classical
field or a class of alternate fields, requires a corresponding
multiplication.

As an example of a small alternate finite field that defines a
group over an elliptic curve an illustrative example will be
provided for n=8 which will be applied to an example as
provided on the website of Certicom® of Mississauga,
Canada with URL of pages <URLwww.certicom.com/index-
.php/44-quiz-3> and <URLwww.certicom.com/index.php/
44-quiz-3—solutions>. The page defines a field GF(8)
defined by the polynomial x*+x+1 and provides an elliptic
curve y>+xy=x"+g°x>+g°. Rather than working in binary rep-
resented states, the truth table of classical addition and mul-
tiplication over this field can be provided as follows:

sc8¢las 0 1 2 3 4 5 6 7 m8las 0 1 2 3 4 5 6 7
0 o 1 2 3 4 5 6 7 o 0 0 0 0 0 0 0
1 1 0 4 7 2 6 5 3 o 1 2 3 4 5 6 7
2 2 4 0 5 1 3 7 6 0O 2 3 4 5 6 7 1
3 37 5 0 6 2 4 1 o 3 4 5 6 7 1 2
4 4 2 1 6 0 7 3 5 o 4 5 6 7 1 2 3
5 5 6 3 2 7 0 1 4 o 5 6 7 1 2 3 4
6 6 5 7 4 3 1 0 2 o 6 7 1 2 3 4 5
7 7 3 6 1 5 4 2 0 o 7 1 2 3 4 5 6

may also have a communication port to receive external data.
While the processing unit may have its own internal memory,
preferably it is bi-directionally connected to a memory 50001
to store and retrieve data and instructions. The memory may
work in binary mode or as a non-binary memory. If the
memory is a binary memory then if non-binary symbols are
provided as non-binary signals a converter such as an A/D
50002 converts non-binary signals to binary words that are
stored in 50001. The processing unit process the n-state sym-
bols in accordance with the herein provided encoding and/or
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The curve then should be written as y>+xy=x"+3x+7. One
can easily check that the following points in the field lic on the
curve: (2,0) and (2,2), (4,5) and (4,7) and (0,4) as was pro-
vided in the Certicom® example. The points (1,0) and (1,1),
(6,0) and (6,6) among others also lie on the curve. The coor-
dinates of 2P of P=(4,1) can be determined as (5,2). As the
correct solution for developing 2P one should apply the for-
mula yR=s(xP+xR)+xR+yP, which leads to 2P=(5,2).

In an alternate scenario one uses the alternate finite field
defined by:

sc8@2 O 1 2 3 4 5 6 7 mg&2 O 1 2 3 4 5 6 7
0 3 2 1 0 6 7 4 5 o 1 2 3 4 5 6 7
1 2 3 0 1 5 4 7 6 1 4 5 3 2 7 0 6
2 1 0 3 2 7 6 5 4 2 5 6 3 7 0 4 1
3 o 1 2 3 4 5 6 7 33 3 3 3 3 3 3
4 6 5 7 4 3 1 0 2 4 2 7 3 5 6 1 0
5 7 4 6 5 1 3 2 0 s 7 0 3 6 1 2 4
6 4 7 5 6 0 2 3 1 6 0 4 3 1 2 7 5
7 s 6 4 7 2 0 1 3 7 6 1 3 0 4 5 2
55

decoding methods over an alternate finite field GF(n) and
provides the result on an output. If the processing unit oper-
ates on binary words a converter such as a D/A converter
50003 generates non-binary signals from the binary words.
Itis again noted that a finite field and an alternate finite field
are defined by an addition and a multiplication. In one
embodiment of the present invention it is a requirement that
an encoder or a corresponding decoder applies at least an
implementation of an addition over an alternate finite field.
This automatically requires that a multiplication over the
alternate finite field also exists, even if such multiplication or
an inverter defined by such multiplication is not used. This
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One curve is defined as y*+xy=x"+x"+4. The terms without
coefficient actually have coefficient 0 in accordance with the
field and the curve over the alternate finite field is 0%*y>+
0*xy=0%x>+0*x"+4. Points in the alternate finite field that lie
on the curve are: (0,5) and (0,7); (1,0) and (1,2); (4,1) and
(4,5) and (3,1). These points are generated by evaluating all
points of the finite field and checking if they are one the curve.
One can easily check that for all generated points on the curve
(-P)=(xP, xP+yP) when P=(xP, yP) wherein ‘+’ is sc8e2.
Determining 2P when P is (4,1) using the proper addition and
multiplication rules over the alternate finite field will lead to:
2P=(0,6). Accordingly, it has been shown that the calculations
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asrequired for elliptic curve coding in a finite field can also be
performed in an alternate finite field.

The multiplication ‘m8clas’ is a standard or classical mul-
tiplication over GF(8). It is characterized by a shift in position
of part of a column in its truth table compared to a preceding
or a succeeding column. Other, non-classical or non-stan-
dard, multiplications over GF(n) for n>7, and/or n>31 and/or
n>200 in a further definition of a finite alternate field define a
zero-alternate finite field wherein the neutral element is 0. As
is disclosed herein, an alternate finite field in yet another
definition is defined as a multi-alternate finite field when is
has two different multiplication with neutral element O.

In one embodiment of the present invention an encoder or
adecoder includes an implementation of a multiplication over
an alternate finite field. If a constant multiplier or an equiva-
lent inverter is required one can provide a constant input
symbol on at least one input of such a multiplication which
then in effect implements a constant multiplier.

For smaller finite fields and alternate finite fields it is attrac-
tive to store the complete truth table in an addressable
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The inverter inv is for instance [0 1 23]—[1 03 2] (or[1 2
3 4]—[2 1 4 3] if one works in an origin 1 system). Such an
inverter in one embodiment of the present invention is imple-
mented in a binary look-up table in a memory, which is
illustrated in FIG. 36. The truth table of sc4 is a ‘standard’
addition over GF(n) can be realized by XOR-ing the binary
words representing the n-state symbols. The inverters can be
realized by memory storing look-up tables. This approach
works for any truth table over GF(n) that can be deconstructed
into an n-state truth table that can be realized by at least an
n-state truth table that can be realized by XOR-ing binary
words followed by an n-state inverter, for instance in a
memory look-up table, that inverts the output states in accor-
dance with an inverter. Additional Galois Field operations can
be realized by including additional inverters, for instance
defined by rows or columns from m4a.

Yet another alternate Galois Field GF(8) or alternate finite
field for GF(2%) is illustrated by the following truth tables of
an addition sc8m and a multiplication m8m over GF(8).

memory. This may not be desirable for higher order fields. In

s8m 0 1 2 3 4 5 6 7 m8m O 1 2 3 4 5 6 7
0 7 3 6 1 5 4 2 0 0 1 2 3 4 5 6 7
1 3 7 5 0 6 2 4 1 1 2 3 5 6 4 0 7
2 6 5 7 4 3 1 0 2 2 3 5 4 0 6 1 7
31 0 4 7 2 6 5 3 35 4 6 1 0 2 7
4 5 6 3 2 7 0 1 4 4 6 0 1 3 2 5 7
5 4 2 1 6 0 7 3 5 5 4 6 0 2 1 3 7
6 2 4 0 5 1 3 7 6 6 0 1 2 5 3 4 7
7 0 1 2 3 4 5 6 7 77 7 7 7 7 1 71

As discussed, a finite field is defined by the elements in the

35 field, an addition over the field which should be associative,

that case it is desirable to de-construct a Galois Field calcu-
lation to one that involves an addition over a standard GF(27)
so that a relatively simple XOR-ing can be applied. As an
example an alternate 4-state Galois Field is used defined by
the following truth tables.

scda 0 1 2 3 mda 0 1 2 3
0 1 0 3 2 0 1 2 3
1 0 1 2 3 1 1 1 1
2 3 2 1 0 2 1 3 0
3 2 3 0 1 3 1 0 2

A Galois Field is defined by an addition and a multiplica-
tion over GF(n) that are commutative, associative and dis-
tributive and that has in the field a neutral element ‘e’ so that
{a=a+e} and {a+(-a)=e}. In a standard Galois Field e is
usually 0. So, one definition of an alternate Galois Field is that
the neutral element is not 0. Another definition is wherein a
multiplication is not a standard multiplication. A standard
multiplication in a Galois Field in one embodiment of the
present invention is defined by a generating polynomial of the
field. Other definitions of an alternate Galois Field are also
possible. In the above field the zero-element is 1. The com-
bination is commutative, associative and distributive. The
function mdm above is not a standard multiplication.

FIG. 37 illustrates a device implementing the function
scda. FIG. 38 illustrates a different device implementing the
same addition scda by first implementing a truth table sc4
followed by an inverter ‘inv’ which inverts the output states.
The standard addition sc4 over GF(4) has been provided
earlier herein. It is inverted by an inverter inv.
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the addition should be commutative, and the addition should
have a zero element. Furthermore, the field is defined by a
multiplication, which should be distributive with the addition
and each multiplication should be commutative and associa-
tive and should have a reverse, which should also be in the
field. One can check that sc8m and m8m meet the require-
ments for a finite field. Because the ‘zero’ or ‘neutral’ element
is 7 and not 0, the above field meets at least one definition for
an alternate finite field.

The above alternate finite field can for instance be used in
a simple Elliptic Curve Coding (ECC) encryption application
as illustrated in the modified Certicom® example.

Finite fields and certainly finite fields over GF(2?) with p>1
are generally represented as ‘modulo-polynomial’ using
complete binary representations. Very seldom are the truth
tables provided of the n-state addition and n-state multiplica-
tion. If the truth tables are provided at all, they are immedi-
ately related to standard or generic binary representations or
in a related conceptual representation which does not really
provide actual n-state tables. Examples are the earlier men-
tioned Sklar article and U.S. Pat. No. 4,162,480 to Berlekamp
issued on Jul. 24, 1979, which is incorporated herein by
reference. In further embodiments of the present invention
truth tables of addition and/or multiplication over a finite field
GF(n) are stored in an addressable memory, including bit not
limited to: with n>2; with n=2° with p>1; and with n=2° with
p>7. Inyet one or more embodiments of the present invention
atruth table of an addition over finite field GF(n) modified in
accordance with an n-state inverter is stored in an addressable
memory including but not limited to: with n>2; with n=2*
with p>1; and with n=27 with p>7. In accordance with yet
another embodiment of the present invention the finite fields
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of the above embodiments are alternate finite fields. In accor-
dance with yet another aspect of the present invention an
n-state inverter is defined by amultiplication over a finite field
GF(n), wherein the finite field in one embodiment is an alter-
nate finite field. In accordance with yet another aspect of the
present invention an n-state inverter is defined by a multipli-
cation over a finite field GF(2?), wherein the finite field in a
further embodiment is an alternate finite field including but
not limited to p>1, p>5 and p>7.

Current coders, decoders and apparatus that apply an addi-
tion and/or a multiplication over GF(n) usually implement
these functions in binary logic defining GF(n) states in terms
of a generating polynomial. Certainly for binary extension
fields GF(2?) an addition over GF(2?) is relatively simple to
implement with XOR switches. Multiplications over GF(27)
may be implemented as a shift operation. However, a true
multiplication of two variables over GF(27) is quite involved.
Furthermore, division over GF(27) in binary switching rather
than memory form is also fairly complex. Executing arith-
metical operations such as addition, multiplication and divi-
sion is much faster by using a truth table stored in an addres-
sable memory. One should keep in mind that a multiplicative
inverse (division) in a finite field GF(n) is another element of
the field. For instance, Reed-Solomon codes operate on 8-bit
words in a GF(256) field. Coding and decoding or error
correcting of Reed-Solomon codewords and of convolutional
codes using stored truth tables in accordance with an aspect of
the present invention are much faster by using truth tables that
are stored in addressable memory. While such a solution cost
more in memory size, it will provide as an unexpected result
a much faster coding and decoding operation.

It is believed that truth tables of an addition and/or a mul-
tiplication and/or a division of at least two variables or a
variable and a constant in a Galois Field for at least n=256 or
p=8 in n=27 stored in an addressable memory to perform
coding and/or decoding operations in a communication sys-
tem and/or a data storage system are unknown and are herein
provided herewith as an aspect of the present invention.

An addressable memory in one embodiment of the present
invention is an electronic memory, containing electronic
memory elements, for instance flash memory, RAM, ROM,
PROM, EEPROM or DRAM or any other memory that can
store data. A data storage system in one embodiment is an
electronic memory system a rotating storage system contain-
ing rotating or moving data storage elements including but
not limited to magnetic, optical, electro-optical, magnetic-
optical platters, drums, tapes, wires. A data storage system in
one embodiment is a static carrier such as a magnetic, optical
or otherwise machine readable device wherein the storage
material can be in one of n states. A data storage system or
device herein includes a computer magnetic disk, a CD or
DVD disk or any disk that contains media data for replay in an
apparatus, a media player such as audio or video and MP3
player. A data storage system or device herein embodies at
least one or more aspects of the present invention.

The truth tables of an addition and/or a multiplication
and/or a division of at least two variables or a variable and a
constant stored in an addressable memory for the above sys-
tems are also provided in different embodiments of the
present invention which include, but are not limited to finite
fields and finite alternate fields GF(n): for n>2; for n>32; for
n>200; for n=256; for n>256 and p>8 with n=27; for n=242
and p>4 and u>2 with n=v”. In further embodiments of the
present invention a truth table of addition over GF(n) is imple-
mented in active operations of binary switches such as XOR
and all corresponding multiplications and/or divisions or
n-state inverters related to the additions are implemented in
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addressable memory for: n>2; n>32; for n=256 and n>256. In
yet a further embodiment of the present invention a truth table
of'a multiplication and/or a division over GF(n) with n=64, or
n=128 orn=256 or n=512 is stored in an addressable memory.

An n-state symbol of a truth table may be saved as a binary
word. An n-state output state of an n-state truth table is deter-
mined by one n-state input symbol in case of an inverter and
by at least 2 n-state input symbols in case of an addition, a
multiplication and a division. The input symbol or input sym-
bols that determine an output symbol of a truth table are used
to create an address of the output symbol in the memory that
stores the truth table.

The working of an addressable memory 7900 is known. It
is illustrated in FIG. 39. Assume an implementation of a
2-dimensional n by n truth table. An addressable memory
7900 has an address decoder 7903 with two inputs: input 7901
is enabled to receive a signal or a plurality of signals repre-
senting a first n-state symbol and input 7902 is enabled to
receive a signal or a plurality of signals representing a second
n-state symbol. The address decoder 7903 combines or pro-
cesses the two symbols to activate a memory line 7904 which
is unique to an address in a memory or data storage 7905. The
memory has at least enough storage to store all relevant output
states of the truth table. Each memory line when activated
allows a content of the data storage 7906 to be provided on
output 7907. Data content of a data storage or of one or more
memory elements only appears on output 7907 when the
corresponding memory line is activated by the address
decoder. The output 7907 thus provides a signal or a plurality
of signals that corresponds with the output state of the truth
table that belongs to two input symbols to the truth table.

When the field is very large, the storage of a complete truth
table in a memory with a look-up table of an operation over
that field may not be practical. In that case, the use of stored
inverters and execution of long binary words with XOR
devices may be preferable. The truth table of the addition
should then be reduced to an implemented form as shown in
FIG. 55. Inthe GF(8) case sc8m should be de-constructed into
a XOR executable form ‘sc8” with an inverter ‘inv’ to invert
the generated output states.

The truth table of sc8m can in fact be realized with an
inverter [0 1234 567]—=[73615420]on a standard
addition sc8 which has been provided above.

One commonly uses the terms addition and multiplication
to define a finite field. One not of ordinary skill in field theory
may have problems recognizing the above functions as addi-
tion and multiplication. Formally, a finite field is defined by a
first and a second “law of composition on a set of elements”
as for instance explained in the book Introduction to Field
Theory, second edition, by lain T. Adamson, Dover Publica-
tions, Mineola, N.Y., 2007, which is incorporated herein by
reference in its entirety. One should view the terms “addition”
and “multiplication” in terms of these definitions rather than
in the terms of for instance modulo-n or modulo-2? opera-
tions. However, after defining an alternate field, it is an aspect
of the present invention to implement the functions of the
alternate field with binary components, which include binary
switching devices and binary memories. As a further aspect of
the present invention the functions of the alternate field are
implemented with non-binary components, which include
non-binary switching devices and non-binary memories.

An addition over an alternate field can be created by invert-
ing an addition over a standard finite field with an n-state
inverter. It is noted that the corresponding multiplication can
usually not be found by inverting the multiplication of the
standard field with the same inverter as used to create the
addition of the alternate finite field. It is further noted that
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each column or row of the truth table of the multiplication
over the alternate field can be created by inverting a row or
column of the multiplication over the standard finite field.

The following patent applications, including the specifica-
tions, claims and drawings, are hereby incorporated by refer-
ence herein, as if they were fully set forth herein: U.S. Non-
Provisional patent application Ser. No. 10/935,960, filed on
Sep. 8, 2004, entitled TERNARY AND MULTI-VALUE
DIGITAL SCRAMBLERS, DESCRAMBLERS AND
SEQUENCE GENERATORS; U.S. Pat. No. 7,002,490 by
Lablans, issued Feb. 21, 2006, entitled TERNARY AND
HIGHER MULTI-VALUE SCRAMBLERS/DESCRAM-
BLERS; U.S. patent application Ser. No. 11/000,218, filed
Nov. 30, 2004, entitled SINGLE AND COMPOSITE
BINARY AND MULTI-VALUED LOGIC FUNCTIONS
FROM GATES AND INVERTERS; U.S. Provisional Patent
Application No. 60/599,781, filed Aug. 7, 2004, entitled
MULTI-VALUED DIGITAL INFORMATION RETAIN-
ING ELEMENTS AND MEMORY DEVICES; U.S. patent
application Ser. No. 11/566,725 filed Dec. 5, 2006, entitled
ERROR CORRECTING DECODING FOR CONVOLU-
TIONAL AND RECURSIVE SYSTEMATIC CONVOLU-
TIONAL ENCODED SEQUENCES; U.S. patent application
Ser. No. 11/018,956, filed Dec. 20, 2004, entitled Multi-value
digital calculating circuits, including multipliers; U.S. patent
application Ser. No. 11/534,777 filed Sep. 25, 2006, entitled
ENCIPHERMENT OF DIGITAL SEQUENCES BY
REVERSIBLE TRANSPOSITION METHODS; U.S. patent
application Ser. No. 11/680,719 filed Mar. 1, 2007, entitled
MULTI-VALUED CHECK SYMBOL CALCULATION IN
ERROR DETECTION AND CORRECTION; U.S. patent
application Ser. No. 11/964,507 filed Dec. 26, 2007, entitled
IMPLEMENTING LOGIC FUNCTIONS WITH NON-
MAGNITUDE BASED PHYSICAL PHENOMENA; U.S.
patent application Ser. No. 12/061,286 filed Apr. 2, 2008,
entitled Multi-State Latches From n-State Reversible Invert-
ers; U.S. patent application Ser. No. 12/330,255 filed Dec. 8,
2008, entitled N-State Ripple Adder Scheme Coding with
Corresponding N-State Ripple Adder Scheme Decoding;
U.S. patent application Ser. No. 12/188,261 filed Aug. 8,
2008, entitled Methods and Systems for Modifying the Sta-
tistical Distribution of Symbols in a Coded Message; and U.S.
patent application Ser. No. 12/952,482 filed Nov. 23, 2010,
entitled Methods and Apparatus in Alternate Finite Field
Based Coders and Decoders.

While there have been shown, described and pointed out
fundamental novel features of the invention as applied to
preferred embodiments thereof, it will be understood that
various omissions and substitutions and changes in the form
and details of the device illustrated and in its operation may be
made by those skilled in the art without departing from the
spirit of the invention. It is the intention, therefore, to be
limited only as indicated by the scope of the claims appended
hereto.

The invention claimed is:

1. An apparatus for encoding a first plurality of n-state
symbols with n equal to or greater than 3, each symbol being
represented by a signal, comprising:

an input of a device enabled to receive the first plurality of

n-state symbols;

the device enabled for processing the first plurality of

n-state symbols by implementing an addition and a mul-
tiplication over an alternate finite field GF(n), wherein
the alternate finite field GF(n) is a finite field defined by
the addition, the multiplication, and a zero element of
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the finite field; wherein the zero element of the alternate
finite field GF(n) is a neutral element of the addition and
is not 0; wherein

the apparatus is part of a communication system or a data

storage system and an output enabled to provide a sec-
ond plurality of symbols as a result of the processing.

2. The apparatus of claim 1, wherein n>4.

3. The apparatus of claim 1, further comprising:

an implementation of at least one n-state inverter defined

by the multiplication over the alternate finite field GF(n).

4. The apparatus of claim 1, wherein the second plurality of
n-state symbols is applied in symbol error correction.

5. The apparatus of claim 1, wherein the device is part of a
Feistel-like network.

6. The apparatus of claim 1, wherein the apparatus is an
Advanced Encryption Standard (AES) encoder.

7. The apparatus of claim 1, wherein the apparatus is an
Elliptic Curve Coding encoder.

8. The apparatus of claim 1, wherein the apparatus modifies
a statistical distribution of symbols in the first plurality of
symbols compared to the second plurality of symbols.

9. The apparatus of claim 1, further comprising a corre-
sponding apparatus to decode the second plurality of symbols
into the first plurality of symbols.

10. The apparatus of claim 1, wherein the second plurality
of' symbols includes at least one check symbol.

11. The apparatus of claim 1, wherein n is a prime number.

12. The apparatus of claim 1, wherein n=2"" with m>1.

13. The apparatus of claim 1, wherein the apparatus is a
transposition encoder.

14. The apparatus of claim 1, wherein the apparatus per-
forms a Galois arithmetical operation for encoding.

15. The apparatus of claim 1, wherein an n-state symbol is
represented by a plurality of binary signals.

16. An apparatus for encoding a first sequence of n-state
symbols, each n-state symbol being represented by a signal,
comprising:

an input of a device enabled to receive the first sequence of

n-state symbols;

the device enabled for processing the first plurality of

n-state symbols by implementing a single truth table that
is a truth table of a modified addition over an alternate
finite field GF(n), wherein the alternate finite field GF(n)
is a finite field defined by the addition, a multiplication
and a neutral element of the addition; wherein the neu-
tral element of the addition is not 0 and the modified
addition over the alternate finite field GF(n) is the addi-
tion over the alternate finite field GF(n) that is modified
by at least one n-state inverter defined by the multipli-
cation over the alternate finite field GF(n) wherein nis an
integer greater than 4; and wherein
the apparatus is part of a communication system or a data
storage system; and an output that provides a second
sequence of symbols as a result of the processing.

17. The apparatus of claim 16, wherein the apparatus is one
of the group consisting of:

a scrambler, a convolutional coder, a Reed-Solomon coder,

a Hamming coder, a check-symbol based error correct-
ing coder, a transposition coders, a hopping rule coder, a
Linear Feedback Shift Register based coder, a Feistel-
like network based coder, an Elliptic Curve Coding
coder, a symbol statistical distribution modifying coder,
a Galois Field arithmetic based coder, a sequence gen-
erator based encoder, a streaming coder, a block coder
and an Advanced Encryption Standard (AES) coder.
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18. A method for decoding a sequence of encoded n-state
symbols with n>4, each n-state symbol in the sequence of
encoded n-state symbols being represented by a signal, com-
prising:

providing a plurality of signals representing the encoded 5

sequence of n-state symbols to an input of a processor;
wherein
the encoded sequence of n-state symbols was generated
using an encoder in the group consisting of a convolu-
tional encoder, a Reed-Solomon encoder, a Hamming 10
coder, a check-symbol based error correcting encoder, a
transposition encoder, a hopping rule encoder, a stream-
ing cipher encoder, a block coder, a Feistel-like network
based encodes an Elliptic Curve Coding encoder, a sym-
bol statistical distribution modifying encoder, a Galois 15
Field arithmetic based encoder and an Advanced
Encryption Standard (AES) encoder;

the processor processing the plurality of signals represent-
ing the encoded sequence of n-state symbols by an
implementation of an addition and a multiplication over 20
an alternate finite field, wherein the addition and the
multiplication over the alternate finite field define the
alternate finite field; wherein a zero element of the alter-
nate finite field is a neutral element of the addition over
the alternate finite field and is not 0; and an output 25
providing a plurality of signals representing a decoded
sequence of n-state symbols on an output as a result of
the processing.



