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Methods and apparatus create codewords of n-state symbols
having one of 3 or more states with n-state check symbols.
Check symbols are created from independent expressions.
Codewords are associated with a matrix for detection of one
or more symbols in error and the location of such symbols in
error. Symbols in error are reconstructed from symbols not in
error, error syndromes and check symbols not in error. Delib-
erately created errors that can be corrected are used as nui-
sance errors.
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1
MULTI-STATE SYMBOL ERROR
CORRECTION IN MATRIX BASED CODES

STATEMENT OF RELATED CASES

This application is a continuation-in-part of U.S. patent
application Ser. No. 11/680,719 filed on Mar. 1, 2007 which
claims the benefit of U.S. Provisional Patent Application Ser.
No. 60/779,068 filed on Mar. 3, 2006, which are both incor-
porated herein by reference in their entirety. This application
also claims the benefit of U.S. Provisional Patent Application
Ser. No. 61/035,563 filed on Mar. 11, 2008, which is incor-
porated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

The present invention relates to correction of one or more
multi-state symbols in error in a sequence of symbols which
can be ordered in a matrix. More specifically, it relates to error
correction by first identifying the location of possible errors
in a matrix of multi-state symbols, followed by reconstruction
of the original symbols from the remaining symbols believed
to be not in error.

Error correction in a plurality of multi-state symbols or a
sequence of binary symbols representing multi-state symbols
is known, especially in the field of communications and infor-
mation storage or transfer. In general, a series of symbols that
is being transferred may have experienced interference or
noise on a transmission channel. Possibly the storage
medium, such as an optical or magnetic disk, may have been
damaged. As a consequence, a received sequence of multi-
state symbols may be different from the sequence from which
it originated. The difference between an original sequence of
symbols and a received sequence may be considered to be
errors.

Error control measures can be applied to detect and to
correct errors. These measures in general comprise adding
additional symbols to a sequence, based on the existing sym-
bols in the original sequence. The redundancy of symbols
allows for detection and sometimes correction of errors.

It usually requires a greater number of redundant symbols
than errors to correct errors compared to the process of merely
detecting that symbols are in errors. For instance, in data
communications, wherein re-sending of information is pos-
sible and not detrimental to the quality of data transfer, it may
be sufficient to detect errors and request the transmitter to
resend the symbols. However, in many applications resending
of symbols is impossible or undesirable. In such cases error
correction is desirable and more symbols are added to a
sequence of symbols to enable error correction.

Error-correction techniques for symbols in a sequence
attempt to achieve the best result with as few redundant sym-
bols as possible, and with as limited processing requirements
and memory or storage requirements as possible. Error cor-
recting redundancy is usually set to address some maximum
or optimal expected symbol error ratio. If information is
coded into codewords, it is to be expected that many code-
words are error-free and in error-free codewords extra sym-
bols provided for error correction or detection are truly redun-
dant.

It is known in error correcting codes like Reed Solomon
codes, which is multi-state based, that k extra symbols, which
can be called check symbols, may allow at most %2k symbols
in error to be corrected. Arranging of data symbols in a matrix
such as a 2 dimensional matrix is known. Herein columns and
rows may for instance represent a Reed Solomon codeword.
Such a code is called a product code. A product code still has
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the disadvantage that redundancy in the codewords is not
fully used to determine position of errors and based on the
positions of errors in a matrix calculate the correct state for
the symbols in error.

Accordingly, novel and improved methods and apparatus
providing improved use of check symbols and redundancy in
a multi-state symbol matrix are required.

SUMMARY OF THE INVENTION

In accordance with an aspect of the present invention an
apparatus is provided for correcting errors in a sequence of'k
n-state data symbols, an n-state symbol being represented by
asignal, withn>2, and k=1, comprising, a memory enabled to
store instructions, a processor that retrieves and executes
instructions from the memory to perform the steps of receiv-
ing on an input a plurality of signals representing the
sequence of k n-state symbols and p n-state check symbols
with p=k, each of the signals representing p n-state check
symbols being generated by an implementation of one of p
independent reversible n-state expressions using the k n-state
symbols as variables, determining as an independent step
which of up to p of the k n-state data symbols are potentially
in error and solving as an independent step up to p indepen-
dent n-state expressions to determine an n-state value for the
up to p of thek n-state symbols that are potentially are in error,
wherein the solving applies at least an implementation of an
n-state reversible logic function that is determined by an n by
n truth table.

In accordance with another aspect of the present invention
the apparatus as provided further comprises instructions to
perform receiving on the input one or more signals represent-
ing one or more check-the-check symbols to correct an error
in one or more of the p n-state check symbols.

In accordance with yet another aspect of the present inven-
tion the apparatus as provided further comprises instructions
to perform receiving on the input one or more signals repre-
senting one or more additional sequences of n-state symbols,
each additional sequence containing k n-state data symbols
and p n-state check symbols, each of the p n-state check
symbols being generated by an implementation of one of p
independent reversible n-state expressions with the k n-state
symbols as variables, receiving on the input signals represent-
ing at least q*k n-state check symbols with q=1 and q=p,
determining additional n-state data symbols in error by recal-
culating the n-state check symbols, and solving any addi-
tional errors of up to p> errors.

In accordance with yet another aspect of the present inven-
tion the apparatus is provided, wherein a first plurality of
n-state check symbols is determined by using a first arrange-
ment of the k n-state data symbols in a first matrix and a
second plurality of n-state check symbols is determined by
using a second arrangement of the k n-state data symbols in a
second matrix.

In accordance with yet another aspect of the present inven-
tion the apparatus is provided wherein, p errors have deliber-
ately been introduced as nuisance errors.

In accordance with yet another aspect of the present inven-
tion the apparatus is provided, wherein a position of an n-state
data symbol in error is known to the apparatus.

In accordance with yet another aspect of the present inven-
tion the apparatus is provided, wherein instructions to solve
the p errors are provided to the apparatus through a network.

In accordance with yet another aspect of the present inven-
tion the apparatus is provided, wherein instructions to solve
the p errors are unique to the sequence of k n-state symbols.
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In accordance with yet another aspect of the present inven-
tion the apparatus is provided, wherein the apparatus is part of
a communication system.

In accordance with yet another aspect of the present inven-
tion the apparatus is provided, wherein the apparatus is part of
at least one of the group consisting of an audio player, a video
player, a data storage device, and a communication device.

In accordance with a further aspect of the present invention
amethod is provided for by a processor correcting of errors in
a sequence of'k n-state data symbols, an n-state symbol being
represented by a signal, with n>2, and k=1, comprising,
receiving on an input of the processor a plurality of signals
representing the sequence of k n-state symbols and p n-state
check symbols with p<k, each of the signals representing p
n-state check symbols being generated by an implementation
of one of p independent reversible n-state expressions using
the k n-state symbols as variables, determining as an inde-
pendent step which of up to p of the k n-state data symbols are
potentially in error, and solving as an independent step up to
p independent n-state expressions to determine an n-state
value for the up to p of the k n-state symbols that are poten-
tially are in error, wherein the solving applies at least an
implementation of an n-state reversible logic function that is
determined by an n by n truth table.

In accordance with yet a further aspect of the present inven-
tion the method as provided further comprises receiving on
the input one or more signals representing one or more check-
the-check symbols to correct an error in one or more of the p
n-state check symbols.

In accordance with yet a further aspect of the present inven-
tion the method as provided further comprises receiving on
the input one or more signals representing one or more addi-
tional sequences of n-state symbols, each additional sequence
containing k n-state data symbols and p n-state check sym-
bols, each of the p n-state check symbols being generated by
an implementation of one of p independent reversible n-state
expressions with the k n-state symbols as variables, receiving
on the input signals representing at least q*k n-state check
symbols with q=1 and q=p, determining additional n-state
data symbols in error by recalculating the n-state check sym-
bols, and solving any additional errors of up to p> errors.

In accordance with yet a further aspect of the present inven-
tion the method is provided, wherein a first plurality of n-state
check symbols is determined by using a first arrangement of
the k n-state data symbols in a first matrix and a second
plurality of n-state check symbols is determined by using a
second arrangement of the k n-state data symbols in a second
matrix.

In accordance with yet a further aspect of the present inven-
tion the method is provided, wherein p errors have been
introduced deliberately.

In accordance with yet a further aspect of the present inven-
tion the method is provided, wherein a position of an n-state
data symbol in error is known to the apparatus.

In accordance with yet a further aspect of the present inven-
tion the method is provided, wherein instructions to solve the
p errors are provided to the processor through a network.

In accordance with yet a further aspect of the present inven-
tion the method is provided, wherein instructions to solve the
p errors are unique to the sequence of k n-state symbols.

In accordance with yet a further aspect of the present inven-
tion the method is provided, wherein the processor is part of
at least one of the group consisting of an audio player, a video
player, a data storage device, and a communication device.

In accordance with yet a further aspect of the present inven-
tion the method is provided, wherein the processor is part of
a communication system.
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In accordance with a further aspect of the present inven-
tion, novel methods and system are provided that will correct
errors in a sequence of symbols by detecting which symbols
are in error and then reconstructing the error symbol by
n-state logic expressions with symbols in errors as unknowns.

In accordance with another aspect of the present invention,
amethod is provided for coding and decoding of a plurality of
n-valued data symbols with n>2, comprising: associating the
plurality of n-state data symbols with a k-dimensional matrix
with k=2; generating p check symbols with p=1 for q
instances with q=2 of a first dimension of the first matrix, each
check symbol in an instance of a first dimension being gen-
erated by applying an n-state logic expression with data sym-
bols as variables; generating q check symbols for a plurality
of instances of a second dimension of the k-dimensional
matrix, each check symbol in an instance of a second dimen-
sion being generated by applying an n-state logic expression
with data symbols as variables; associating the plurality of
n-valued data symbols and generated check symbols with a
second matrix of which the k-dimensional matrix is a sub-
matrix and transmitting the symbols associated with the sec-
ond matrix to a target; and correcting in a deterministic way at
least pxq symbols in error in the second matrix.

In accordance with a further aspect of the present inven-
tion, a method is provided for coding and decoding of a
plurality of n-valued data symbols with n>2, further compris-
ing correcting in a deterministic way up to pxqxq errors in the
second matrix.

In accordance with another aspect of the present invention,
amethod is provided for coding and decoding of a plurality of
n-valued data symbols with n>2, further comprising correct-
ing in an iterative way more than pxq symbols in error.

In accordance with a further aspect of the present inven-
tion, a method is provided for coding and decoding of a
plurality of n-valued data symbols with n>2, further compris-
ing a second set of check symbols associated with the second
matrix, wherein each check symbol in the second set of check
symbols is generated from an expression with two or more
check symbols generated from n-state data symbols as vari-
ables.

In accordance with another aspect of the present invention,
amethod is provided for coding and decoding of a plurality of
n-valued data symbols with n>2, wherein one or more check
symbols generated from n-state data symbols and two or more
check symbols from the second set of check symbols form a
Reed Solomon codeword.

In accordance with a further aspect of the present inven-
tion, a method is provided for coding and decoding of a
plurality of n-valued data symbols with n>2, wherein an
expression for generating a check symbol is defined in GF(n).

In accordance with another aspect of the present invention,
amethod is provided for coding and decoding of a plurality of
n-valued data symbols with n>2, wherein an expression is
implemented in binary logic.

In accordance with a further aspect of the present inven-
tion, a method is provided for coding and decoding of a
plurality of n-valued data symbols with n>2, further compris-
ing: determining a magnitude of an error for a symbol in error;
and adjusting a symbol in error with the magnitude of the
error.

In accordance with another aspect of the present invention,
a system is provided for coding and decoding of a plurality of
n-state data symbols with n>2, comprising: a processor
enabled to execute instructions upon the n-state data symbols;
means to store the instructions; and instructions enabled to
perform the steps of: associating the plurality of n-state data
symbols with a k-dimensional matrix with k=2; generating p
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check symbols with p=1 for q instances with q=2 of a first
dimension of the first matrix, each check symbol in an
instance of a first dimension being generated by applying an
n-state logic expression with data symbols as variables; gen-
erating q check symbols for a plurality of instances of a
second dimension of the k-dimensional matrix, each check
symbol in an instance of a second dimension being generated
by applying an n-state logic expression with data symbols as
variables; associating the plurality of n-valued data symbols
and generated check symbols with a second matrix of which
the k-dimensional matrix is a sub-matrix and transmitting the
symbols associated with the second matrix to a target; and
correcting in a deterministic way at least pxq symbols in error
in the second matrix.

In accordance with a further aspect of the present inven-
tion, a system is provided for coding and decoding of a
plurality of n-state data symbols with n>2, further comprising
correcting in a deterministic way up to pxqxq errors in the
second matrix.

In accordance with another aspect of the present invention,
a system is provided for coding and decoding of a plurality of
n-state data symbols with n>2, further comprising correcting
in an iterative way more than pxq symbols in error.

In accordance with a further aspect of the present inven-
tion, a system is provided for coding and decoding of a
plurality of n-state data symbols with n>2, further comprising
a second set of check symbols associated with the second
matrix, wherein each check symbol in the second set of check
symbols is generated from an expression with two or more
check symbols generated from n-state data symbols as vari-
ables.

In accordance with another aspect of the present invention,
a system is provided for coding and decoding of a plurality of
n-state data symbols with n>2, wherein one or more check
symbols generated from n-state data symbols and two or more
check symbols from the second set of check symbols form a
Reed Solomon codeword.

In accordance with a further aspect of the present inven-
tion, a system is provided for coding and decoding of a
plurality of n-state data symbols with n>2, wherein an expres-
sion for generating a check symbol is defined in GF(n).

In accordance with another aspect of the present invention,
a system is provided for coding and decoding of a plurality of
n-state data symbols with n>2, wherein an expression is
implemented in binary logic.

In accordance with a further aspect of the present inven-
tion, a system is provided for coding and decoding of a
plurality of n-state data symbols with n>2, further compris-
ing: determining a magnitude of an error for a symbol in error;
and adjusting a symbol in error with the magnitude of the
error.

In accordance with another aspect of the present invention,
a method is provided for coding and decoding of n-state data
symbols, an n-state symbol able to assume one of n states with
n>2, comprising, associating the n-state data symbols with a
k-dimensional matrix with k>2; generating p independent
n-state check symbols with q instances of a first dimension of
the k-dimensional matrix, generating q independent n-state
check symbols with p instances of a second dimension of the
k-dimensional matrix; associating the n-state data symbols
and check symbols with a second matrix which has the k-di-
mensional matrix as a sub-matrix; determining that m
instances of the first dimension of the k-dimensional matrix
are in error with m>p but not more than q instances of the
second dimension of the k-dimensional matrix are in error;
and solving up to mxq symbols in error from the second
matrix.

20

25

30

35

40

45

50

55

60

65

6

In accordance with another aspect of the present invention,
a method is provided for coding and decoding of n-state data
symbols, an n-state symbol able to assume one of n states with
n>2, further comprising: making a symbol that is in an
instance of a first and a second dimension in error of the
second matrix an unknown in an equation; and solving q
unknowns in an instance of second dimension of the second
matrix from a set of q independent equations.

In accordance with another aspect of the present invention,
a method is provided for coding and decoding of n-state data
symbols, an n-state symbol able to assume one of n states with
n>2, further comprising: determining a magnitude of an error
fora symbols in error; and adjusting a symbol in error with the
magnitude of the error.

DESCRIPTION OF THE DRAWINGS

FIG.11is a diagram of a matrix in accordance with an aspect
of the present invention;

FIG. 2 is another diagram of a matrix in accordance with an
aspect of the present invention;

FIG. 3 is a diagram of an equation solver in accordance
with an aspect of the present invention;

FIG. 4 is another diagram of a matrix in accordance with an
aspect of the present invention;

FIG. 5 is yet is another diagram of a matrix in accordance
with an aspect of the present invention;

FIG. 6 is yet is another diagram of a matrix in accordance
with an aspect of the present invention;

FIG. 7 is yet is another diagram of a matrix in accordance
with an aspect of the present invention;

FIG. 8 is yet is another diagram of a matrix in accordance
with an aspect of the present invention;

FIG. 9 illustrates a system that is used to perform the steps
described herein in accordance with another aspect of the
present invention;

FIG. 10 illustrates a storage system for writing data to a
storage medium in accordance with yet another aspect of the
present invention;

FIG. 11 illustrates a storage system for reading data from a
storage medium in accordance with yet another aspect of the
present invention; and

FIGS. 12 and 13 illustrate an implementation of an n-state
truth table.

DESCRIPTION OF A PREFERRED
EMBODIMENT

According to one aspect of the present invention, an error
correcting code is provided for a matrix of multi-state sym-
bols enhanced with check symbols.

Herein, the terms multi-state, n-state, multi-valued and
n-valued symbol will mean a symbol which may assume one
of 3 or more states, which distinguishes it from binary sym-
bols or bits which can only assume one of 2 states. Further-
more, the terms state or value and multi-state or multi-valued
will be used interchangeably. The logic functions that are
provided herein represent the switching of states. A state may
be represented by a digit or a number. This may create the
impression that an actual value is attached to a state. One may,
to better visualize states, assign a value to a state. However,
that is not a requirement for a state. A name or designation of
a state is just to indicate that it is different from states with
different designations. Because some logic functions herein
represent an adder the names state and value may be used
meaning the same.
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Furthermore, because of the practice in binary logic to
represent a state by a physical level of a signal such as a
voltage, one often assumes that different n-state signals have
different levels of a signal, such as voltage or intensity. While
such representations of a state are allowed it is not limited to
that. A state may be represented by independent phenomena.
Forinstance, different states of a signal may be represented by
different wavelengths of an optical signal. A state may also be
represented by a presence of a certain material, by a quantum-
mechanical phenomenon, or by any other phenomenon that
can distinguish a state from another state.

Furthermore, a symbol, which is regarded herein as a single
element, may also be represented by 2 or more p-state sym-
bols wherein p<n. For instance, a 4-state symbol may be
represented by 2 binary symbols.

The generation of check symbols, especially in sequences
of binary symbols, is known, and either a parity symbol or a
combination of symbols representing a checksum is gener-
ated. One may also generate n-valued check symbols by
applying n-valued symbols to one or more n-valued logic
functions. For instance, one may have a sequence of 4 4-val-
ued data symbols [d1 d2 d3 d4]. One may create a check
symbol ¢ (or the fifth symbol in the sequence) by for instance
adding modulo-4 the value (or representation of the state of
each data symbol) of each data symbol. One has thus created
the sequence [d1 d2 d3 d4 c]. Assume d1=0; d2=2; d3=2; and
d4=3. Then c=(d1+d2+d3+d4)mod-4=(7)mod-4=3.

This is merely an example. The symbols are n-state, with at
this stage no limitation to the number of states (just n>2). The
functions can be any n-valued switching function, related to
the n-state of the symbols. For error correction an n-valued
function for determining a check symbol is preferably a
reversible n-valued logic function. While it seems strange,
one may also solve equations with non-reversible n-valued
logic functions. A non-reversible n-valued logic function has
a truth table with at least one row or column that has two
identical output states for different input states. By providing
sufficient different equations one can address the uncertainty
related to the states of for instance inputs (x1, x2) and (x1,x3)
generating the same output state d1.

In accordance with a further aspect of the present inven-
tion, one should arrange a sequence of symbols in a matrix.
For instance a sequence of 9 multi-state symbols d12, d12,
d13, d21, d22, d23, d31, d32 and d33 can be arranged in a
2-dimensional matrix as shown in FIG. 1 having rows and
columns. To each row of data symbols at least one check
symbol qi (q1, q2 and q3) is added. Further more to each
column 2 check symbols p and p are added. Each check
symbol is created from data symbols in its respective row or
column. One may also create a first check symbol from data
symbols and a second symbol from data symbols and the first
check symbol. FIG. 1 is merely an illustrative example. One
may have a multi-dimensional matrix (more than 2 dimen-
sions). Multi-dimensional matrices are fully contemplated
and the term row and column are extended to other dimen-
sions in a multi-dimensional matrix. One may have more or
fewer check symbols per column or row. One may have no
check symbols in one or more rows or columns. One may also
have a different number of check symbols in each row or each
column.

The position of a check symbol in a row or a column is
shown for illustrative purposes at the end of a row or the
bottom of a column. It should be clear that one may position
a check symbol anywhere in a matrix as long as one knows
from which data symbols a check symbol is determined.

A sequence of symbols can be arranged in a matrix for
analysis and determination of check symbols. It should be
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clear that the symbols are usually not transmitted in a matrix.
One does not have to arrange symbols in an actual matrix for
analysis. It is required that one knows the relationships
between data symbols and check symbols and how two or
more different check symbols may have at least one data
symbol in common.

A preferred embodiment as one aspect of the present inven-
tion, is to first identity which symbols in a matrix are possibly
in error, and based on a selected coding scheme reconstruct
the symbols that were detected as being possibly in error by
using reversing equations. Assume that in a 2-dimensional
matrix each row has p check symbols and each column has q
check symbols and no more than q rows or no more than p
columns are in error one may solve up to pxq errors in a
deterministic manner. A row or a column being in error herein
means that a row or a column has at least one check symbol
which after being recalculated has a value or state different
from its received value. With more columns or rows in error
one may apply an iterative scheme, based on making an initial
assumption about at least one symbol that can possibly be in
error in actuality not being in error. Based on such an assump-
tion one may then calculate the values or states of remaining
symbols that may be in error. If the thus calculated values
resultin an error free matrix there is a high probability that the
assumption was correct and that the calculated values are
correct. If such an assumption leads to a matrix still contain-
ing errors there is a high probability that the assumption was
wrong and a different assumption has to be tried, until an error
free matrix is achieved.

The advantage of a Reed Solomon code is that each word
having 2xk check symbols may correct up to k errors. How-
ever in light of the complexity of solving for instance an error
location polynomial, solving errors is a relatively complex
process. If one can identify location of errors, reconstruction
of'the symbol in errors is relatively simple.

Reconstruction of symbols (including n-valued symbols)
in error based on known correct symbols has been demon-
strated by the Applicant in U.S. patent application Ser. No.
11/566,725, filed on Dec. 5, 2006 entitled ERROR COR-
RECTING DECODING FOR CONVOLUTIONAL AND
RECURSIVE SYSTEMATIC CONVOLUTIONAL
ENCODED SEQUENCES, which is incorporated herein in
its entirety by reference. Reconstruction of symbols in error
in Reed Solomon codes and in what the Applicant calls Reed-
Solomon like codes also are described in U.S. Non-provi-
sional patent application Ser. No. 11/739,189, filed on Apr.
24,2007, which claims the benefit of U.S. Provisional Patent
Application Ser. No. 60/807,087 filed Jul. 12, 2006; U.S.
Non-provisional patent application Ser. No. 11/743,893, filed
on May 3, 2007, which claims the benefit of U.S. Provisional
Patent Application Ser. No. 60/821,980 filed Aug. 10, 2006,
which are all four incorporated herein by reference in their
entirety.

Especially in a matrix wherein errors are distributed in such
a way that only a limited number of rows or columns (or on
dimensions in a multi-dimensional matrix) are in error, the
use of Reed Solomon codes may be excessive and use of error
detection and symbol reconstruction as provided herein as an
aspect of the present invention may be simpler and more
effective, achieving a bigger “bang-for-the-buck” so to speak
for each check symbol.

The issue with matrix based codes is that multiple errors
may hide errors by creating a check symbol that appears to be
correct. Assume that the previously provided example before
transmission creates the sequence: [d1 d2 d3 d4 c]. Wherein
d1=0; d2=2; d3=2; and d4=3 and c=(d1+d2+d3+d4)mod-4=
(7)mod-4=3. Accordingly, [d1 d2 d3 d4 c]=[0 2 2 3 3].
Assume that after transmission one receives [0 2 3 2 3]. Both
d3 and d4 are in error. However when one recalculates the
check symbol one determines c=3. Based on that it is impos-
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sible to determine that two errors have occurred. The errors
cancel each other out in determining the check symbol. In
other words the errors are hidden. It was shown by the inven-
torin U.S. patent application Ser. No. 11/969,560 filed on Jan.
4, 2008, which is incorporated herein by reference, that errors
in a matrix code can be unhidden by applying check symbols
which are determined from different arrangements of sym-
bols in a matrix.

In accordance with an aspect of the present invention, one
can solve a set of p errors in a plurality of symbols if one has
p independent equations wherein the p symbols in errors are
the unknowns.

Independent Equations for Determining Check Symbols

Binary check symbols or parity bits are based on a limited
relationship between the constituting bits. The relationship is
commonly established by the binary XOR function. N-valued
check symbols can have more varied reversible relationships
as was explained in the earlier cited application Ser. No.
11/680,719. For instance one may have a word of 4 n-valued
symbols [a b ¢ d]. One may create a first n-valued check
symbol c1=abbPePd. One may also create a second check
symbol c2=a®b® c®d . If only one of the symbols a, b, c or
d is in error one can reconstruct the symbol in error both from
cl or c2 if these are not in error and both & and ® are
reversible operations. It should also be clear that two symbols
in error can be reconstructed if the equations for c1 and ¢2 are
independent and the operations are reversible. Calculation of
cl and ¢2 by @ and ® may be independent because the
operations are different and/or independent. The equations
for c1 and ¢2 may be independent because the symbols a, b, ¢
and d are processed with the same function but with for
instance different n-valued inverters. For instance,
c2=aP2bP3cP2d in an n-valued code. The advantage of
using n-valued coders with LFSRs either in Galois or in
Fibonacci configuration is that each next generated check
symbol has an independent equation from another check
symbol in the code. That is a reason why Reed Solomon (RS)
codes work as error correcting codes.

The advantage of using an LFSR is that one does not need
to execute each expression or equation in full to generate a
check symbol. The appropriate configuration of the LFSR
takes care of generating the check symbols in accordance
with independent expressions or equations. The drawback of
the RS code is that the location of an error first has to be found
by for instance solving an error correction polynomial. In
order to be able to do that for each error there have to be 2
check symbols. By knowing where the errors occur, for
instance by using a matrix with error symbols derived from
columns and rows, one may be able to use just one check
symbol per error.

Methods for Solving N-Valued Error Equations

There are actually several different methods to solve the
n-valued error equations. Which method one applies may
depend on the complexity of the equations, the properties of
the functions and which of the symbols are in error. The
complexity and properties of functions is directly related to
the value of n. For instance, if n=27 then one can use a function
scl which is an addition over GF(2?) and multipliers over
GF(27). In that case scl is self-reversing, commutative and
associative. This makes solving equations much easier. An
illustrative example will be provided.

Under conditions where the position of an error symbol can
be determined unambiguously, it is also possible to solve the
equations unambiguously. If for some reason it is impossible
or undesirable to solve equations in an algebraic fashion, one
can solve the equations iteratively by using all possible values
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for the symbols in error. One will find only one combination
of values that solves all equations correctly.

One method is to solve the equations in an algebraic fash-
ion. In order to solve equations it is useful to review the rules
for reversible, non-commutative and non-associative n-val-
ued logic functions. Assume n-valued logic function ‘sc’to be
reversible, non-commutative and non-associative.

When (a sc b=c) then (b sc” a=c), with the truth table of sc”
being the transposed of the truth table of sc.

When (a sc b=c) then (¢ scrc b=a), with the function ‘scrc’
being the reverse of ‘sc’ over constant columns.

When (a sc b=c) then (a scrr c=b), with the function ‘scrr’
being the reverse of ‘sc’ over constant rows.

When (b sc” a=c) then (b sc’tr c=a), efc.

Assume a coder using 3 data symbols x1, x2 and x3 and
generating two check symbols pl and p2 using the following
two equations for generating pl and p2: p1={x1 sc2 (x2 scl
x3)} and p2={p1 sc2 (x1 scl x2)}.

Algebraic method. As a first 4-valued example, assume that
of [x1x2x3 pl p2] x3 and pl areinerror. Clearly a first simple
step is to solve p2={p1 sc2 (x1 scl x2)} which has pl as
unknown. One can rewrite the equation as: {p2 sc2rc (x1 scl
x2)}=p1. The truth tables of sc1 and sc2 are provided in the
following tables.

scl 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

sc2 0 1 2 3
0 0 1 2 3
1 2 3 0 1
2 3 2 1 0
3 1 0 3 2

Herein the function sc2rc is the reverse of sc2 over constant
columns. Its truth table is provided in the following table.

sc2rc 0 1 2 3
0 0 3 1 2
1 3 0 2 1
2 1 2 0 3
3 2 1 3 0

The assumption was that x3 and p1 were in error, so in the
example the received codeword was [3 3 x3 pl 0] using the
earlier example. Filling in the values in the equation provides
p1={0 sc2rc (3 scl 3)} or p1=0 sc2rc 0=0.

From pl1={x1 sc2 (x2 sc1 x3)} wherein now only x3 is an
unknown one can derive: (x2 scl x3)={x1 sc2rr p1} wherein
sc2rristhe reverse of'sc2 over constant rows. Keeping in mind
that scl is self reversing: x3=x2 scl (x1 sc2rr pl). The truth
table of sc2rr is provided in the following table.

sc2rr 0 1 2 3
0 0 1 2 3
1 2 3 0 1
2 3 2 1 0
3 1 0 3 2
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Thus, x3=x2 scl (x1 sc2rr pl) leads to: x3=3 sc1 (3 sc2rr 0)
or x3=3 scl 1=2.

One may apply the same approach when x2 and x3 are in
error. In that case, one may apply p2={p1 sc2 (x1 sc1 x2)} to
achieve (x1 scl x2)=pl sc2rr p2 and thus achieve x2=x1 scl
(p1 sc2rr p2). This will provide x2=3. Etc.

A more difficult situation occurs when x1 and x2 are deter-
mined to be in error. The equations will be fairly difficult to
solve. Assume that x1=e1 and x2=e2. The equations will then
be:

pl={el sc2 (e2 scl x3)} and

p2={pl sc2 (el scl e2)}.

The value of p1 and p2 are correct. So one way to solve the
equation in an iterative manner is to solve the equations:

11={el sc2 (e2 scl x3)} and

2={pl sc2 (el scl e2)}

for all values of el and e2, and determine for which values of
(el,e2) the value (p1-t1) and (p2-t2) are both 0. Not surpris-
ingly this will be the case for (el,e2)=(3,3). This is a time
consuming and not very elegant way to solve the problem,
and may be a solution of last resort.

Fortunately for codes with for instance check symbols
generated over GF(27), one can also use a different approach.
Within GF(2?) the addition can be a self reversing, commu-
tative and associative function. An LFSR in GF(2?) can be
realized with functions which are a combination of adders
with multipliers to generate check symbols. One may also
generate check symbols by evaluating an expression that
determines the check symbol. One can reduce the functions
by reduction of the truth tables according to the multipliers.
This makes the execution of the coder quicker. In order to
solve the equations one can revert back to associative adders
with multipliers.

The need for solving errors of 2 symbols in a word may be
because of the spill-over effect when one codes a symbol as
for instance a binary word. One can never be sure that only an
error in one symbol has occurred, so one should be prepared
to solve the equations for two adjacent n-valued symbols in
error. It is also possible that two errors have occurred in non
adjacent symbols in a word. This assumes a different error
behavior than for adjacent errors. Especially codewords gen-
erated by LFSRs (Galois and Fibonacci) that can be created
by additions (with or without multipliers) over GF(27), have
easier to solve equations because of the associative properties
of the addition function.

For instance, assume using again a 4-valued illustrative
example wherein x1 and pl are found to be in error. The
generating expressions were: p1={x1 sc2 (x2 scl x3)} and
p2={pl sc2 (x1 scl x2)}. Assume an inverter inv2=[0 2 3 1]
which is a 4-valued multiplier over GF(4). One can easily
check that the inverter is multiplication over GF(4) with a
factor 2. It can be checked that the function (a sc2 b) can be
replaced by (inv2(a) scl b). One can then replace the gener-
ating expressions by the next expressions: pl={xtl scl (x2
scl x3)} and p2={ptl scl (x1 scl x2)} using the earlier
defined functions. Herein xt1=inv2(x1) and pt1=inv2(p1)and
scl commutative, self-reversing and associative. The way to
approach this is to use arithmetic in GF(2?). The following
rules apply using + and x in GF(2?).
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x 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

Accordingly multiplication can be shown as:

1 2 3
x1 1 2 3
x2 2 3 1
x3 3 1 2

For instance, in GF(2?) under the earlier defined multiplica-
tion 2x2x1=3x1, etc.

Addition
+ x1 2x1 3x1
x1 x1+x1=0 x1 + 2x1 = 3x1 x1 +3x1 =2x1
2x1 2x1 +x1 =3x1 2x1+2x1=0 2x1 +3x1=x1
3x1 3x1 +x1 =2x1 3x1 +2x1=x1 3x1+3x1=0

The distributive property applies to ax(b+c)=axb+axc.
Division is the inverse of multiplying.

Accordingly, division by 1 is multiplying by 1; division by 2
is multiplying by 3; and division by 3 is multiplying by 2.

One can then write the equations as p1=2xx1+x2+x3 and
p2=2xpl+x1+x2.

For instance, assume that x1 and x2 are known to be in
error. Then x2=2xx1+x3+pl. Substitute in the p2 equation:
p2=2xpl+x1+(2xx1+x3+pl) or 2xx1+x1=2xpl+pl+p2+x3,
or 3xx1=3xpl+p2+x3. Dividing by 3 is multiplying by 2 so:
x1=pl+2xp2+2xx3=0+2x0+2x2=3. Etc.

As another example, one may assume that not adjacent
symbols x1 and p1 are in error. One must solve the equations
then for x1. This leads to 2xx1=3xx2+2xx3+p2; or x1=2x
X2+x3+3%xp2=2x3+2+0=1+2=3. One achieves this result by
applying the arithmetic rules in GF(2?) as stated before.

Galois field arithmetic may be preferred for solving the
equations for in error symbols. However, these easy solutions
may only be available for codewords defined in extension
binary fields.

As an illustrative example, a 5 symbol 5-valued code will
be generated with 3 data symbols and two check symbols
generated by using S-state switching function sc5, which is
the mod-5 addition with the following truth table.

sc5 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

The 5-valued equations for generating check symbols pl
and p2 are: p1={x1 sc5 (x2 sc5 2xx3)} and p2={p1 sc5 (x1
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sc5 2xx2)} to generate codeword [x1 x2 x3 p1 p2]. Because
sc5 is an addition (mod-5) one can write the equations as:
pl=x1+x2+2xx3 and p2=pl+x1+2xx2. The check symbols
can be generated by an LFSR.

For the 5-valued arithmetic the following truth table need
to be used for multiplication x and subtraction —, meaning
(a=b) wherein ‘a’ is the row and ‘b’ is the column of the truth
table.

- 0 1 2 3 4
0 0 4 3 2 1
1 1 0 4 3 2
2 2 1 0 4 3
3 3 2 1 0 4
4 4 3 2 1 0
x 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

One should further keep in mind that dividing by 2 is
multiplying with 3, dividing by 3 is multiplying by 2 and
dividing by 4 is multiplying by 4. Further more 3x3=4 and
4x4=1, etc.

Accordingly, one will find for x1: p2=2x1+3x2+2x3 or
3p2=x1+4x2+x3 or x1=(3p2-4x2)-x3. The data symbols [x1
x2 x3]=[0 4 3] will generate [p1 p2]=[03]. One may calculate
x1 and p1 from the other symbols (for instance when they are
in error). The equation correctly provides: x1=(3x3-4x4)-
3=(4-1)-3=0.

The methods here presented as different aspects of the
present invention also apply to detection and correction of
more than 2 errors, such as three errors. In order to detect k
errors in a codeword of n symbols, each codeword in a set of
codewords must have at least k+1 different symbols in com-
mon positions from any other codeword in the set. Or each
codeword may at most have (n-k-1) symbols in common
positions. The best one can do in a 7 symbol codeword to
detect 3 errors is having at most 3 symbols in common. Such
a code would require 8-valued symbols and is generally
known as an RS-code. Itis possible to meet the error detection
requirement in a lower valued symbol codeword. However,
that would require a codeword with more symbols. It is then
understood that other and different examples of detection 3
errors in a codeword can be provided according to different
aspects of the present invention.

As an illustrative example, an 8-valued 7 symbol codeword
with 3 check symbols will be provided to demonstrate error
correction when the position of errors is known.

One can identify the positions of the errors for instance by
establishing a matrix as shown in FIG. 2. The data symbols
occur sequentiallyasx1...x4,y1...y4,vl...v4d zl ... 74.
The symbols are broken up as 4 columns of 4 data symbols
and horizontal check symbols t and tt are generated as well as
vertical check symbols p, q, and r. The symbols tt are check
symbols on the check symbols. The assumption in the
example is that errors will occur as at most 3 errors in a
column. One skilled in the art may, of course, design 2 or 3
dimensional matrices for different (also non adjacent) errors
and different symbol error ratios as well as different code-
word sizes.
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Assume that all symbols in the illustrative examples are
8-valued. By running 8-valued coders on the received data
symbols one can check the newly generated check symbols
against the received check symbols and determine which
rows and columns are in error, thus determining the position
of the errors. Based on the known error positions and the
coder one can reconstruct the correct symbols in the error
positions.

The truth tables of the addition scl and multiplier over
GF(2%) are provided in the following truth tables.

+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 4 7 2 6 5 3
2 2 4 0 5 1 3 7 6
3 3 7 5 0 6 2 4 1
4 4 2 1 6 0 7 3 5
5 5 6 3 2 7 0 1 4
6 6 5 7 4 3 1 0 2
7 7 3 6 1 5 4 2 0
x 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 3 4 5 6 7 1
3 0 3 4 5 6 7 1 2
4 0 4 5 6 7 1 2 3
5 0 5 6 7 1 2 3 4
6 0 6 7 1 2 3 4 5
7 0 7 1 2 3 4 5 6

The following table shows the division rule in GF(23).

Or division by 2 is multiplying by 7, division by 3 is multi-
plying by 6, etc.

Four data symbols [x y v z] in a column will generate 3
check symbols [p q r]. The equations for generating the check
symbols are:

D=AX+y+y+2z;
q=Ap+x+y+2v;

r=4q+p+x+2y.

The above check symbols may also be generated by an
8-valued LFSR. One can solve these equations for any of the
3 symbols to be unknown. As one example assume [x y V] to
be in error. One can solve the linear equations by matrices or
by substitution. Applying substitution one will find:

v=Tp+4q+5r+z;
y=0p+6g+5r+6v;

X=p+aq+r+2y;

and thus with symbols [z p q r] known and error-free one can
solve the equations.

A partial set of 7 8-valued symbol codeword generated by
the above expressions is shown in the following table.
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X y v z p q T
0 4 7 2 2 3 4
1 3 7 1 0 3 7
2 5 6 4 1 2 2
3 5 4 2 5 7 1
4 3 7 1 5 6 3
5 4 6 6 0 0 0
6 3 4 0 7 1 2
7 7 2 4 7 0 1

One can easily check for the provided codewords using [z
p q r] in the equations to determine [X y Z].

One can provide the solution set for any of 3 or less sym-
bols in a codeword being in error.

One may also determine solutions for independent sets of
unknowns by applying Cramer’s rule. As an example, the set
of equations for the above coder will be used. For application
of Cramer’s rule one should apply all additions and multipli-
cations of this example in GF(8). When applying Cramer’s
rule using for other radix-n one should apply the appropriate
arithmetic. In this example, one should apply addition and
multiplication over GF(2?) of which the truth tables are pro-
vided above.

Assume that it is determined that x, y and z are in error. The
codeword in erroris [x yvzp qr|=[el e27 ¢4 5 6 3]. One
should the create three equations with unknowns x1, x2 and
x4 from the known equations as:

Ax+y+2z=p+v
x+y+0=4p+q+2v
x+2y+0=p+4q+r

Cramer’s rule then solves the above equations as:

dl 1 2
d2 1 0
d3 2 0

11 42
12 43

41d1‘

Herein

o~

12
D=(1120
120
10
20

=0+0+2(1+2)

10
10

11
=4 |

12

+ 1= + 2%

=244=5,

as the rules of GF(8) are used.
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Furthermore,
dl p+v 4
[d2]=[4p+q+2v]=[6]
43 p+ag+r 0
Accordingly,
L P
TEsERysgEomeI=s =L

This is in accordance with the elements in the word as gen-
erated by FIG. 9.

One may also apply Cramer’s rule to other n-valued codes,
such as the 5-valued coder of above. Herein, one should use
the rules of modulo-5 addition and modulo-5 subtraction in
the provided example, as well as the proper multiplication.
Assuming thatin a codeword [x1 x2x3 pl p2] the symbols x2,
pl and p2 are correct and x1 and x3 are in error the equations
become:

x¥1+2x3=p1-x2

x1+0=p2-p1-2x2.

2
ThedeterminantD:‘ ‘:1*0—2*1:—2:3.

10
pl—x2 ]

1
The solution vector is ( ] = (
a2 p2—pl-2x2

Assume that the codeword [x1 x2 x3 pl p2]=[el 4 e3 2 0]
was received. According to Cramer’s rule:

o ol [0 o]

xl= @ 0 =——=0,and
D 3 ’
1 dl 13

x3:‘1 dZ‘:‘l 0‘:1*0—3*1:—_3:_1:4.
D 3 3 3

Accordingly, the correct codeword is [x1 x2 x3 p1 p2]=[0
4 4 2 0]. It is thus demonstrated that as long as the position of
errors are known one may correct any set of errors within the
constraints of the number of independent equations.

For illustrative purposes errors are solved by using n-val-
ued adders and multiplications, either modulo-n or over
GF(n). An n-valued multiplication with a constant may be
dealt with as an n-valued inverter. One may reduce combina-
tions of n-valued inverters and an n-valued logic function to a
function with a modified truth table as was shown by the
inventor in U.S. patent application Ser. No. 10/935,960, filed
on Sep. 8, 2004, which is incorporated herein by reference.
An expression for a check symbol cs1=inv2(x1) sc5 inv3(x2)
sc5 inv4(x3) may then be replaced by sc1=x1 sc51 x2 sc52,
wherein sc51 and sc52 are the function sc5 modified in accor-
dance with the inverters. This reduction may be applied to any
expression having inverters and functions, including
modulo-n adders and multipliers and adders and multipliers
over GF(n). Accordingly, an n-valued expression created
from adders and having at least one multiplier may be
changed to an expression having at least one function not
being an adder modulo-n or over GF(n). A function not being
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an adder over GF(n) or a modulo-n adder herein may be
defined as an n-valued non-adder function.

In accordance with an aspect of the present invention, one
may thus circumvent using an adder and multiplication by
using an n-valued non-adder function in an expression to
solve an error. Such an expression may be part of Cramer’s
rule.

Furthermore, one may overestimate the number of errors
within the constraints. For instance, if only x1 was in error
and x3 was not in error but the other conditions still apply then
one still will reconstruct the correct value for x3. Even though
x3 was not in error.

It is fairly simple to calculate the symbols in error ‘on-the-
fly’, based on the errors. One can also already implement each
set of solutions based on the maximum number of errors.
Assuming 3 symbols in error even if only one is in error does
not matter to the final error correction. One merely recalcu-
lates the symbols. The only limitation is that one of course can
notsolve in a deterministic way more errors than independent
equations. One can again see the clear advantage here of
knowing where the errors are located. It cuts the number of
required check symbols in half, as compared to an RS code for
instance.

FIG. 3 provides a diagram for solving different equations
depending on different errors. One can store the equations for
specific combinations of errors. As an example, it is assumed
that at most 3 consecutive symbols can be in error. For each
error combination a solution set is determined a stored for
instance as an executable program or is hard wired as a circuit.
Assume a codeword having 10 data symbols and 3 check
symbols and each codeword of the set has at most 9 symbols
in common with another codeword. Assume that, for
instance, through using also horizontal error check symbols
one can determine where errors occur in a column 1000 in
FIG. 3. Assume that errors occurred in position 1001 or in the
first 3 symbols of the codeword. The solution for this situation
is enabled as ‘solution 1° in equation solver 1010. This equa-
tion solver may be part of a computer program or hard wired
logic circuits. The solver is then provided with the known
correct symbols [x4 x5 x6 x7 x8 x9 x10 pl p2 p3] and then
generates the correct [x1 x2 x3].

Such a circuit or computer program may calculate a value.
This may be achieved by n-valued or n-state circuits or
devices. It may also be achieved by binary circuitry, wherein
an n-state symbol is represented in binary form. Ultimately,
the solver will generate the correct state for the symbols in
error. The correct symbols may be generated as n-state sig-
nals, or in a binary signal representation or in any other signal
representation that can be used to represent the corrected
symbol. After error correction, a symbol in binary represen-
tation may for instance be converted into an n-state signal by
applying a Digital/Analog converter as is well known to one
of ordinary skill in the art. A symbol in binary representation
may also be further processed in binary form. After error
correction, the complete set of symbols as received and cor-
rected is then available for further processing by digital
devices or a processor or any other digital signal processing
device. Accordingly, actual devices are used. One requires
signals for further processing. For instance the received and
corrected n-valued symbols may be processed an converted
and provided by a device into an audio signal. It may also be
used to generate a video signal, a radar signal, or any other
useful signal. The methods and apparatus to correct n-valued
signals or representations of n-valued or n-state signals are
useful, as they prevent from errors to occur in for instance
audio and/or video signals and thus prevent a negative expe-
rience by the user of such audio or video signals. In one
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embodiment an apparatus evaluates and/or processes at least
100 n-state check symbols per second. In another embodi-
ment an apparatus evaluates and/or processes at least 1000
n-state check symbols per second. In yet another embodiment
an apparatus evaluates and/or processes at least 100,000
n-state check symbols per second. In yet another embodiment
an apparatus evaluates and/or processes at least one million
n-state check symbols per second.

For another error situation 1002 the solver addresses a
different ‘solution 2’ and generates [x5 x6 x7] and for error
situation 1003 the solver addresses yet another ‘solution 3’
which may generate just x10 or also [p1 p2] if those symbols
are used in a later stage.

Checking the Check Symbols

It has been shown that n-state symbols in error can be
corrected once their location is known. In this section as an
aspect of the present invention a method is provided to detect
multiple errors over a dimension of a matrix and to provide
possible locations of symbols in errors. Based on the location
one may calculate directly the magnitude of an error (by using
a syndrome) or the correct value of a symbol in error. When a
dimension of a matrix (such as a row or a column) contains
many data symbols of which only a few are in error it may
reduce the number of calculations by first determining a mag-
nitude of an error and then correct the symbol in error by that
magnitude.

If a dimension of a matrix such as a row or a column has p
check symbols of which each check symbol is generated of an
independent equation compared to the other check symbols
then always p symbols in error can be detected. Errors in such
a case cannot cancel each other out. During coding the check
symbols are calculated. The symbols are then processed,
stored or transmitted. After receiving the processed, stored or
transmitted symbols the check symbols are recalculated. The
existence of one and up to p symbols in error in a dimension
of'a matrix will create at least one recalculated check symbol
which is different from a received check symbol. The dimen-
sion such as a row or column of a matrix is then called in error,
and may be called a row, column or dimension in error.

Because a data symbol in a matrix shares at least two
dimensions such as a row and a column, an error in a data
symbol will put at least two dimensions or for instance a row
and column in error. Accordingly, an error may exist at the
cross point of two dimensions in error.

In a dimension in error not only data symbols may be in
error. Also check symbols may be in error. If only check
symbols are in error one may not care to solve the symbols in
errors as the data symbols are correct. If amix of data symbols
and check symbols are in error one may have to solve all
errors. It may be advantageous to assure that all check sym-
bols are error free, for instance by applying excess check-the
check symbols ‘tt” for instance by coding the check symbols
according to a Reed Solomon (RS) code. Such use of a RS-
code does not fundamentally change the approach herein
provided. For illustrative purposes it is assumed that in one
embodiment check symbols are error free, possibly by using
RS codes. This is shown schematically in FIG. 4 in a matrix
code 400. Herein the data symbols are in 401. The check
symbols of the rows are in 402 and of the columns in 403.
Check-the check symbols are in 404. The size of block 404
reflects that additional check on check-the check symbols are
included to allow error correction in the check symbols. It is
to be understood that in a different embodiment one may have
errors in check symbols that require correction.

Locating and Correcting Errors in a Matrix

The problem of narrowing the location of errors in dem-

onstrated in FIGS. 5 and 6 which show a matrix with errors
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related to the matrix code of FIG. 2. The check-the check
symbols ‘tt” are deliberately omitted in this illustrative
example to keep focus on error location, but may be assumed.

The situation in FIG. 5 is simple. The shaded row related to
check symbol t4 is in error. Also the shaded column related to
p3, g3 and 13 is in error. Accordingly the symbol in error is on
the crossing of this row and column: symbol 73 is in error.
One may resolve the error by using one of the equations to
determine the relevant check symbols as shown above.

The situation in FIG. 6 is more complicated. The shaded
rows related to t2 and t4 are in error and the shaded columns
related to pl and p3 are in error. Even if it is assumed that only
one error occurs in a row, this situation indicates that poten-
tially symbols y1, y3, z1 and 73 are in error. One cannot
resolve the errors over the rows in a deterministic way as each
row has just one independent check symbol. However, one
can resolve at least two independent equations per column.
One may thus resolve y1 and z1 in the first column. In case
just one symbol is in error one will find one symbol to be
changed as to its received value and one symbol being the
same as to its received value. The same applies to the column
with y3 and 73.

One can see in FIG. 6 that two columns are in error, even
though the error limitation of one error per row was not
exceeded. However, the limitation of 3 rows in error was not
exceeded. One may thus derive a rule for deterministic error
detection and correction in a matrix code.

A row of a matrix comprising n-state data symbols may
have p independent n-state check symbols. A column of the
matrix comprising n-state data symbols may have q indepen-
dent check symbols. If m columns are in error with m>p but
not more than q rows are in error one can solve up to mxq
symbols in error by assuming each symbol that is in a row or
a column in error as an unknown; by solving q unknowns in a
column from a set of q independent equations; and by solving
all unknowns for all columns.

One may interchange the terms column and rows for the
situation wherein m rows are in error with m>q but no more
than q columns are in error.

One may also adapt the rule for k-dimensional matrices
with k=2. A first dimension of a k-dimensional matrix com-
prising n-state data symbols may have p independent n-state
check symbols. A second dimension of the k-dimensional
matrix comprising n-state data symbols may have q indepen-
dent check symbols. If m instances of the first dimension are
in error with m>p but not more than q instances of the second
dimension are in error one can solve up to mxq symbols in
error by assuming each symbol that is in an instance of a first
and a second dimension in error as an unknown; by solving q
unknowns in an instance of second dimension from a set of q
independent equations; and by solving all unknowns for all
instances of a second dimension.

An instance of a dimension is then a row in that dimension.
An instance of a first dimension in a 2-dimensional matrix
may be a row in horizontal direction, commonly called a row.
An instance of a second dimension of a 2-dimensional matrix
is then a row in the vertical direction or commonly called a
column. An instance of a third dimension of a 3-dimensional
matrix is a row that is perpendicular to the first and second
dimensions, etc.

One may further code and decode a plurality of n-state data
symbols by associating the data symbols with a first matrix.
One may then generate check symbols over instances of a
dimension (a row for instance). In order to enable decoding
the data symbols and check symbols are then associated with
a second matrix. It should be clear that the second matrix has
more dimensions that the first matrix. Furthermore, one may
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create Reed Solomon codewords for the check symbols by
creating check symbols for the check symbols (check-the
check symbols).

While one may solve errors by using the symbols in errors
as unknowns one may also solve the magnitude of an error by
using syndromes.

As described above and by the inventor in U.S. patent
application Ser. No. 11/680,719 filed Mar. 1, 2007 and in Ser.
No. 11/739,1809 filed Apr. 24, 2007 and in U.S. patent appli-
cation Ser. No. 11/969,560 filed on Jan. 4, 2008, which are all
incorporated herein by reference, one may create n-state
check symbols by executing the n-state expression:
sl1—a*x1+b*x2+c*x3+d*x4 wherein + is an n-valued adder
(be it mod-n or over GF(n)) and * is an n-valued multiplica-
tion. If one wants to solve the equation for unknowns the
multiplication must be a reversible function. This means that
the multiplication could be defined in the extension field
GF(n=2%) if n is a multiple of 2.

It was also shown earlier that an n-valued constant multi-
plier applied to an n-state variable may be treated as an
n-valued inverter. Accordingly one may write the equation for
s11 as:

sl1—inv,(x1) scl inv,(x2) sc2 inv (x3) sc3 inv(x4).
Herein inv(x1) means that x1 is modified according to an
inverter inv,, which is n-valued multiplication by a factor ‘a’.

It was shown by the inventor in U.S. Non-Provisional
patent application Ser. No. 10/935,960, filed on Sep. 8, 2004
which is incorporated herein by reference how a function with
inputs containing an inverter can be reduced to a function
having no inverter. According to this aspect one could write
s11 for instance as: s11—(((x1 sc,,1 x2) sc,,2 x3) sc,,3 x4).
Herein a function sc,, is an n-valued function modified
according to one or more inverters. For illustrative purposes
functions over GF(27) will be used, as this make manipulation
of expressions easier. However, other n-state functions are
possible and are fully contemplated. Adders over GF(2?) are
associative, distributive and self reversing. As was shown
above, solving equations can easily be achieved with for
instance Cramer’s rule. Because Cramer’s rule will lead to
adding of terms which are multiplied by a coefficient, one
may in implementation reduce these functions again accord-
ing to the inverters which represent the multipliers, to reduced
functions not being an addition and not having multipliers,
thus making execution of an n-valued expression faster.

It was also shown that in n-valued or n-state logic one may
create from the same n-valued symbols two different and
independent equations to generate a check symbol. For
instance: sll—al*x1+b1*x2+c1*x3+d1*x4 s12—a2*x1+
b2*x2+c2%x3+d2*x4

The above, and other n-state switching expressions pro-
vided herein, may look like arithmetical expressions. It is
emphasized that these expressions are n-state switching or
logic expressions that are to be implemented in devices.

One can thus create a codeword [x1 x2 x3 x4 s11 s12]
which may be part of a code wherein each codeword differs at
least in 3 symbols in like positions. This means that in such a
code two errors can be detected in each codeword (without
determining a location) by recalculating the check symbols.
These errors may include errors in the check symbols. Code-
words with such a property can be generated by LFSRs, but
also by direct execution of the expressions as shown above. If
one uses an LFSR such an LFSR may be in Galois or
Fibonacci configuration. In general Galois configuration
LFSRs are used in the literature, however this is not required
and Fibonacci configurations may have a speed advantage as
one may start generating check symbols directly. A Galois
LFSR needs to read-in each symbol to generate the correct
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content of the shift register and then needs to read-out the
generated symbols. LFSR methods are for instance used in
CRC error detection. By using this type of codewords errors
in case of two errors in a codeword cannot be hidden by
canceling each other out under certain conditions.

For illustrative purposes the number of errors will not
exceed 3 in a word. One may use a 4-valued or higher valued
code to achieve the required number of independent equa-
tions to generate n-valued check symbols. While the selection
of n does not affect the number of errors that can be detected
with 100% certainty, it does affect the chance of hiding addi-
tional errors. Assume that a codeword has 5 n-valued symbols
of which 2 are check symbols generated by independent
equations. Assume further that 2 symbols are in error and can
be detected. The chance that a third error in one of the other
symbols will create a correct codeword is smaller as n
becomes greater and the chance that an additional error is
hiding becomes smaller.

For instance one may generate two 4-valued check sym-
bols sl and s2 by the following equations:

s1=x1+x2+x3; and

$2=x1+2*x2+43%x3,

wherein + and * are defined in GF(4).

There are 64 4-valued codewords [x1 x2 X3 s1 s2]. Assume
2 errors: el and e2 in the codeword for instance as: [el x2 €3
sl s2].

In accordance with an aspect of the present invention a
value of nis selected for creating codewords that will detect at
least p errors and that increases the chance to detect p+1
errors.

As an example apply the 4-valued codeword [x1 x2 x3 sl
$2]=[0 0 3 3 2], wherein check symbols s1=3 and s2=2 are
generated by the earlier provided independent expressions.
Assume that symbols x2 and s2 are received correctly. This
means that errors in x1, x3 and s1 must occur in such a way
that a correct codeword will be formed. The correct code-
words in this set of codewords with x2=0 and s2=2 are:
[10102];

[20022];and
[30212].
For an 8-valued code one may apply the expressions:

s1=x1+x2+x3; and

$2=x1+2*x2+7*x3,

wherein + and * are defined over GF(8).

Assume an 8-valued codeword [x1 x2x3 s1s2]=[174 6 3]
wherein check symbols s1=6 and s2=3 are generated by the
provided independent 8-valued expressions. Assume that
symbols x2 and s2 are received correctly. This means that
errors in x1, x3 and s1 must occur in such a way that a correct
codeword will be formed. The correct codewords in this set of
codewords with x2=7 and s2=3 are:

[07133];
[27723];
[37243];
[47613];
[57573];
[67353]; and
[77003].

Accordingly it is less likely for an 8-valued codeword with
3 symbols in errors to generate a correct codeword than it is
for errors in a 4-valued codeword to do the same. However it
is probably fair to say that that for higher values of n it already
is fairly unlikely to generate a correct codeword from errors.
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This means that most likely an n-valued codeword with p
check symbols over a first dimension with k n-valued sym-
bols generated by p independent equations but with m
instances of a second dimension in error with k>p, but
wherein a second dimension with q check symbols over a
second dimension has not more instances of the first dimen-
sion in error than p, one is likely able to solve qxm>pxq
errors.

Assume the three check symbols over a data symbols [x1
x2 %3 x4] are determined by three independent n-valued
expressions:

al*x1+a2*x2+a3*x3+ad*x4=s1;
b1*x1+b2*x2+b3*x3+b4*x4=s2; and

c1*x14c2*x2+3*x3+c4*x4=53.

For illustrative purposes assume ‘+’ to be an addition over
GF(8) and “*’be a multiplication over GF(8). Check symbols
may be generated by either executing the above expressions
by 8-valued switching functions, or by running an LFSR that
will generate [r] 12 r3], or by executing three 8-valued expres-
sions in a 8-state switching device which are equivalent to the
above expressions. It has been shown by the inventor in the
earlier cited patent applications that expressions containing a
multiplication by a constant and an addition may be reduced
to a function not being an addition and containing not a
multiplication. Such an equivalent expression may determine
a check symbol faster than an expression containing an mul-
tiplication. It may be easier to first determine all expressions
with multiplications and additions because in GF(8) these
functions are commutative, associative and distributive, and
reduce the obtained final expressions.

For solving the errors in a matrix wherein the number of
potential errors is significantly smaller than the number of
data symbols, it may be easier to apply syndrome calcula-
tions. In the above example one may assume that any of the
five symbols in the first row can be in error. It is also assumed
that the check symbols are known to be error free. One may
also use the methods disclosed herein for check symbols that
are not error free. However one then has to solve the equations
for solving errors in check symbols, as in that case no funda-
mental difference can be made between data symbols and
check symbols.

FIG. 7 shows a matrix code with 3 independent check
symbols per column and per row. An error situation is shown
in FIG. 7. After recalculation of check symbols it is clear that
errors have occurred in rows 1, 2 and 5; and it is clear that
errors have occurred in columns 1, 2, 3 and 4. Assume that the
code is dimensioned in such a way that “illegal” errors which
are more than 3 errors in a row or in a column have not
occurred. In fact an error ‘eij’ is an assumed error, not an
actual error. The actual errors are indicated as “aeij’ and are
printed in bold and a larger font in FIG. 7. The positions of the
actual errors are of course unknown a priori solving the errors.
However the total assumed number of errors can all be
resolved using the independent n-valued expressions.

Assuming that the check symbols are error free, one may
then determine:

al*(xl+el 1)+a2*(x2+el2)+a3* (x3+el3)+ad* (x4+
eld)=(s11+sell);

b1*(x1+el 1)+b2*(x2+e12)+b3* (x3+e13)+b4* (x4+
el4)=(s12+sel2); and

cl*(x1+el1)+c2*(x2+e12)+c3* (x3+e13)+ca* (x4+
el4)=(s13+sel3).
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Herein (x1+e11), (x2+e12), and (x1+e13) are the received
values of the data symbols for the position of x1,x2 and x3. It
may be assumed that the “error-free” value of a symbol was
changed during transmission by a value ‘e’. By inputting
these received values in the expressions one can determine the
calculated check symbol values. These calculated check
value symbols may differ from the received check value sym-
bols by a factor seij’. It was assumed that the received check
symbols are error free (or can be made error free by applying
a Reed Solomon code, using check symbols over check sym-
bols). Accordingly one can determine what a difference
between calculated and received data symbols is.

Because of the properties of the multiplication and addition
function one may reduce the above expressions to the syn-
drome equations:

al*ell+a2*el2+a3 *el3+ad*eld=sell;
bl*ell+b2*el2+b3*el3+b4*eld=sel12; and

cl*ell+c2*el2+c3*el 3+cd*eld=sel 3.

Because of the spreading of the errors over all column
positions, it is not possible to solve these column equations, as
there are 4 unknowns and 3 equations. It should pointed out
that if the error ‘ae11” in FIG. 7 had not occurred one would
be able to solve directly the syndrome equations for el1, e12
and el3 and create the correct value of x1, x2 and x3 by
adding over GF(8) the value of the error to the received value.
This is because el1+e11=0 over GF(8) and thus (x1+el1)+
ell=x1+(ell+ell)=x1+0=x1.

However, one can also see from FIG. 7 that each column
only will have 3 assumed syndrome errors (of which some
will be 0), and these can be calculated directly by solving the
set of equations for the syndromes, for instance by applying
Cramer’s rule.

A worked out 8-valued example will be provided next.
Assume that the three check symbols over a row of 8-valued
data symbols, as shown in FIG. 8 will be provided by the
8-valued expressions:

x1+x2+x3+x4=s1;
x1+2%#x2+5%x342 *x4=s2; and

x143*x2+4%x3+7 ¥x4=53.

Herein x1, x2, x3, and x4 are the consecutive data symbols
in a row and the codeword formed by a matrix row is then [x1
x2 x3 x4 s1 52 s3].

A similar approach can be applied to generating check
symbols rl, r2 and r3 over each column of data symbols. To
make a difference between data symbols ordered in a row or
a column the column symbols will be designated as ‘yi’. The
generating 8-valued expressions over GF(8) are then:

y1+2+y3+y4+y5=r1;
Y14+2%p2+43%p3+4%p44 5% y5S=¢2; and

Y1+5%p2+47 %P3 42 ¥p44+3%p5=¢3,

Please note that in the example a column has 5 data sym-
bols and a row has 4 data symbols. Each row and each column
have one symbol in common. It is assumed in FIGS. 7 and 8
for illustrative purposes that the check symbols are error free.
Check symbols to check the check symbols may be assumed
but are not shown and may be part of an RS code for check
symbols.
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The following matrix shows the received symbols of which
some may be in error and the correct check symbols as cal-
culated before being transmitted (d is a data symbol, ¢ indi-
cates a check symbol).

d d d d d c c c
d 1 2 3 0 0 0 0
d 1 2 3 4 0 6 4
d 3 3 3 3 0 1 6
d 5 5 5 5 0 3 1
d 7 7 2 3 0 5 3
c 5 5 5 5
c 5 5 5 5
c 1 1 1 1

A similar matrix, but now with the re-calculated check sym-
bols will generate:

d d d d d c c c
d 1 2 3 0 6 0 7
d 1 2 3 4 3 5 1
d 3 3 3 3 0 1 6
d 5 5 5 5 0 3 1
d 7 7 2 3 5 0 4
c 6 6 0 7
c 6 2 6 3
c 0 2 6 2

Comparing the difference in check symbols one may con-
clude that rows 1, 2 and 5 and all columns are in error.
Accordingly one may solve errors over the columns. The first
column with correct check symbols is [1 13 57 55 1].
Symbols 1, 2 and 5 may be assumed in error as [e]l e2 e3]. The
syndrome is [(6+5) (6+5) (0+1)] which is achieved by adding
GF(8) the re-calculated and the correct check symbol and
provides [1 1 1].

The syndrome equations are:

el+e2+e3=1;
el+2%e2+5%e3=1; and

el+5%e2+3%y5=1.

As shown before one can for instance calculate [el e2 e5]
by applying Cramer’s rule. This will provide e1=1, e2=0 and
e3=0. This means that yl=1+el=1+1=0; y2=1+0=1; and
y5=7+0=7.

One may apply this method to all columns, solve the errors
and determine the true value of the data symbols.

One may also solve the second column next. This is shown
in the following matrix with ‘correct’ check symbols.

d d d d d c c c
d 0 0 3 0 0 0 0
d 1 1 3 4 0 6 4
d 3 3 3 3 0 1 6
d 5 5 5 5 0 3 1
d 7 7 2 3 0 5 3
c 5 5 5 5
c 5 5 5 5
c 1 1 1 1
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The matrix with re-calculated check symbols is provided in
the following matrix.

d d d d d c c c
d 0 0 3 0 3 7 6
d 1 1 3 4 6 0 5
d 3 3 3 3 0 1 6
d 5 5 5 5 0 3 1
d 7 7 2 3 5 0 4
c 5 5 0 7
c 5 5 6 3
c 1 1 6 2

By comparing the two matrices one can tell that still rows
1,2 and 5 are in error but now only column 3 and 4 are in error.
One may make a decision to solve the errors over either the
columns or over the rows. The rows each have two unknowns,
while the columns each have 3 unknowns. While it does not
make a big difference in this case, in other cases it may make
a difference in computing time which approach one takes.
Accordingly, in accordance with an aspect of the present
invention it is determined if a column or a row has the fewest
number of unknowns. Based on this determination, the errors
in the column or row with the lowest number of errors are
solved.

As an aspect of the present invention thus a method has
been provided for error correcting coding and decoding of
n-valued symbols in a matrix that has at least 2 dimensions,
and wherein over a first dimension (for instance the rows) k
independent check symbols are developed and over a second
dimension (for instance the columns) p independent check
symbols are developed. One may provide check symbols over
check symbols to make sure that after reception the check
symbols are error free. As long as the errors in a row do not
exceed k and the number of rows with errors does not exceed
p, one may be able to correct all errors.

One may exchange the role of columns and rows as an
aspect of the present invention, wherein then the columns are
assumed to have a maximum number of errors that will not be
exceeded and wherein the check symbols over the rows will
be used to solve errors in the columns.

In reasonable error conditions such a code may have better
performance than for instance a Reed Solomon product code.
It can solve errors fairly easily, by virtue of simple error
location detection and simple calculation of error magnitude.
Ifnot too many errors occur one can use fewer check symbols
than a word coded in RS mode, which of course applies twice
as many check symbols. The advantage of the RS code is that
if the condition of sufficient independent check symbols (as-
sume 2*b) is met one may solve the maximum number of
errors (b) for each codeword.

It should be clear that the method of error correction can
error correct at least pxq symbols if one dimension of the
matrix each instance has p check symbols and each instance
of'the second dimension has q check symbols. In many cases
‘s’ n-valued check symbols generated by independent sets of
equations will detect more than ‘s’ errors. Assume that in a
row of data symbols p symbols in error may always be
detected. Assume that up to q symbols in error will be
detected in a column. Assume that each row has p errors, but
there will not be overlap between errors in different rows. One
then has to solve pxqxq unknowns of which pxq are errors.
However one can easily imagine that the other unknowns are
also errors, which have been detected. In that case one may
solve up to pxqxq errors in a deterministic way.
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The coding/decoding method provided above has of course
limitations in the number of errors that can be corrected. It is
assumed that a dimension has no more errors than can be
detected. Such a limitation may be reasonable for instance
over the rows, if the sequence of symbols is transmitted as
sub-sequent rows. However such a limitation is a disadvan-
tage to the column structure of the matrix. For instance
assume an 8 by 8 matrix of data symbols, wherein each row
and column is provided with three independently generated
check symbols. Assume that at most 3 symbols in error can
occur in a row. The following matrix shows an example of
how one may still correct errors when more than 3 rows are in
error.

(5] (5] (5]
(5] (5] (5]
(5] (5] (5]
(5] (5] (5]
(5] (5] (5]

Assume that the check symbols are error free. Symbols in
error are shown as ‘e’. The grey cells indicate that rows or
columns contain errors. In the above example each row has no
more than 3 errors. However 5 rows are in error. Fortunately
all errors are aligned in the same three columns. Though
errors may cancel each other out, it is likely that for 8-valued
symbols the columns in errors may still be identified cor-
rectly. In that case one can of course easily correct the errors.

The following matrix shows how both in a column or a row
not more than 3 errors occur.
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Errors occur in overlapping positions. One could provide
more check symbols per column to address this issue. This
would actually be a good deal, as each additional check
symbol would enable correcting an additional error in a col-
umn.

As will be shown one may also solve errors by making
assumptions. The assumptions for illustrative purposes will
be quite limiting, making quasi deterministic solutions pos-
sible. After demonstrating how to address the assumptions
and constraints it should be clear that one can make much
more relaxed assumptions, enabling to go through different
more or less likely solutions. Like in solving LDPC codes one
may create a more probabilistic iterative error correcting
approach. For solving the errors one needs to establish the
generating equations for the check symbols. This is a novel
approach, as most known LFSR based methods work with
generating polynomials over GF, rather than their generating
n-valued equation.

If one has just barely exceeded the conditions for deter-
ministic solving of errors one may try to solve one row or
column by “guessing” or running through all possibilities.
Just solving by “guessing” of a limited number of errors may
change the error tableau in such a way that next one may solve
the remaining errors in a deterministic way.

One assumption may be that at most 3 consecutive errors
will ever occur. That means that if more rows are in error than
consecutive errors can occur, then there is only partial overlap
of errors in rows. In that case also not all rows have overlap.
One may then solve the errors by making some further
assumptions. For instance in the above error situation one
may start with the assumption that in some cases the first 3
rows in errors do not overlap the bottom two rows in error and
solve the equations based in error for 3 columns. For each 3
columns one may solve the errors in a column and recalculate
the errors in rows and columns.

For instance the above error tableau has the situation:

Columns 1, 2,3,4, 5, 6 and 7 are in error; so are rows 1, 2,
4, 6 and 8. The number of rows in error is greater than the
maximum number of errors per row. Accordingly there may
be assumed a limited overlap of errors. Assume first that only
rows 1, 2 and 4 are in error and rows 6 and 8 are not. In a next
step solve errors for the first reach of columns in error, col-
umns 1, 2 and 3.
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When one solves the errors and recalculate the check symbols
the following error tableau will occur:

The solved errors will be named s. Recalculating the check
symbols over columns is unreliable, because of the assump-
tion. However recalculation of check symbols over a row will
show if one has caught all errors in a row. Accordingly, based
on the assumption, one will have cleared the errors in the first
rows and one may replace the received symbols with the
recalculated symbols. Row 2 will remain in error because
column 4 will remain in error. The same reasoning applies to
row 4. One may then fill in the correct values for the errors in
row 1, and recalculating the check symbols will create the
following tableau:

One may make the next assumption rows 2, 4 and 6 being
in error, as well as columns 2, 3 and 4. Most likely columns 2
and 3 may also be assumed to be error free due to the previous
step. Solving the errors and computing the correct value
allows comparison with the previous step to confirm the cor-
rect solution. This will lead to the following tableau:
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The above tableau now allows for solving the remaining
errors.

The iterative method as provided above can also be used
wherein the role of columns and rows are exchanged.

It should be clear that the successful execution of the above
iterations depends on making the right assumptions. Accord-
ingly, it would be beneficial to have several assumptions
available to calculate “assumed” errors. In accordance with
another aspect of the present invention one implements on a
processor several ‘assumption trees’ of possible errors situa-
tions and pursue the ones that clear (in this case) the row
errors. One may also implement and/or execute each tree in a
separate processor, thus enabling the processing of each tree
in parallel. One may then execute each ‘tree’ and check if such
atree provides a solution. One may then select the solution of
a tree that provides a clear and unambiguous solution. For
instance the assumption that rows 1 and row 8 are error free
for most of the columns will not clear the check symbols of
the rows.

It should be clear that while in the above examples the
check symbols are designed to be error free, this is not a
necessary requirement for the herein provided error correct-
ing methods to work. One may apply these methods also
when check symbols can be in error. However in that case one
may have to solve error situations wherein errors and solved
errors are check symbols. Such methods are fully contem-
plated as an aspect of the present invention.

Furthermore, to solve errors, the syndromes are used to
calculate the magnitude of the error and then calculate the
correct value of the symbol in error. When it is known which
symbols are in error and what the correct value of a check
symbol is, one may also directly solve the value of'a symbol
in error. However in general this requires solving more equa-
tions and may take more time. There may be situations
wherein solving more equations but not having to calculate
the correct value from a symbol in error and an error magni-
tude is actually faster and such situations are fully contem-
plated as an aspect of the present invention.

As was shown above, one may create a matrix of 2 or more
dimensions, with at least k columns and m rows of n-state data
symbols, wherein each row has p check symbols, each check
symbol being generated by applying one of p independent
n-state expressions with the symbols in the row as variables,
and each column has at least q check symbols, each of those
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check symbols being determined from m n-state data symbols
in a column by using one of q independent n-state expressions
with the m n-state data symbols as variables.

One may have several situations: p=q, p<q or q<p. In case
p=q or q<p then the maximum number of unknowns that can
beresolved in a matrix containing the data symbols and check
symbols are at most p* data symbols in error. One would
probably prefer to solve the equations with the fewest number
of unknowns. However a p by p set of unknowns requires (at
least initially) that the rows with p unknowns to be resolved.
Once, one has resolved enough rows so that q rows with
unknowns are left, one may proceed with solving equations
with up to q unknowns determined by columns. It should be
clear that the roles of columns and rows can be switched and
g>p or that a column has more check symbols than a row. In
that case up to q° unknowns can be resolved.

Reduced Row-Echelon Form Solution

In a number ofthe cases wherein one may have for instance
more rows in error than check symbols one may still have
enough independent equations to solve the errors from the
known syndromes. In such case the solutions may be overde-
termined. One may be able to solve the equations by using the
known Reduced Row-Echelon method, also known as the
Gauss or Gauss-Jordan Echelon method. Herein, one reduces
the matrix with the syndrome equations to the form wherein
each row has just one independent solution. This approach is
known and is for instance implemented in the mathematical
software program Matlab as the instruction “rref(A)”,
wherein A is the unreduced matrix with all equations. In
general the Matlab instruction rref(A) applies common
10-valued arithmetic to all elements of the matrix to wipe the
columns. It should be clear that one can adapt such a method
to for instance modulo-10 arithmetic. One may adapt the rules
also to any other arithmetic over GF(n), which is fully con-
templated as an aspect of the present invention. One may also
adapt the rule and implement it for error correction for any
modulo-n or GF(n) arithmetic.

As an illustrative example the normal decimal instruction
rref(A) in Matlab will be applied, with the understanding that
the method can be adapted to any n-valued logic. The purpose
is to show that in a number of cases a sufficient number of
independent equations is available to solve the errors.

For instance assume the following 10-valued code matrix:

rl 12

BE vk w

Inthis code 25 10-valued data symbols are ordered ina 5 by
5 matrix. Each row and each column has two check symbols:
rl and r2 to each row and q1 and g2 to each column. The first
check symbol of each row and each column is determined by
rl=x1+x2+x3+x4+x5. Herein, + (for illustrative purposes) is
the normal addition. This means that r1 can be multi-digit. In
the GF(n) case the ‘+’ is a logic function which can be an
addition over GF(n) such as modulo-n add if appropriate. In
that case the check symbol will be a single symbol. As was
shown above one can solve an equation for such a case.

The second symbol in this example is created by r2=x1+
2x2+5x3+6x4+8x5. These equations apply to check symbols
in columns as well as rows in the matrix. One can then
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calculate the check symbols for a specific set of data symbols.
One can assure that all check symbols are error free, for
instance by using a Reed Solomon code for the check sym-
bols. As was explained before, one may also solve any error in
a column or a row if one does not assure error free check 3
symbols. This makes the code less efficient because one may
have to solve non data symbol errors. However, this does not
fundamentally change the approach.

Assume a following syndrome matrix, based on error free

check symbols: 10
1 2 3 4 5 rl 2
1 el e2 2 3
2 3 e 2 3 15
3 e5 e6 2 3
4
5
ql 3 3
@2 8 8
20

From the syndromes it is clear that errors may have
occurred in rows 1, 2 and 3 in columns 1 and 2. Potential
errors can be el, e2, €3, e4, e5 and e6. This exceeds the
capabilities to solve the columns (as each column only has 2 55
equations but potentially 3 unknowns). One may solve of
course the rows, as each row has two equations and two
unknowns. One may also conclude that in total 6 unknowns
may be present with 10 equations. Accordingly, the system of
unknowns may be over-determined and can be solved by 3,
using Gauss-Jordan.

One can translate the above matrix to a matrix R wherein
each row represents an equation with unknownsel, e2, €3, e4,
e5 and e6. The matrix is shown in the following table:

35
el e2 e3 e4 ) eb check symbol
1 1 0 0 0 0 2
1 2 0 0 0 0 3
0 0 1 1 0 0 2 40
0 0 1 2 0 0 3
0 0 0 0 1 1 2
0 0 0 0 1 2 3
1 0 1 0 1 0 3
1 0 2 0 5 0 8
0 1 0 1 0 1 3
0 1 0 2 0 5 8 43
Applying Gauss-Jordan to this matrix by Matlab’s “rref(R)”
will provide
50
el e2 e3 ed es eb T
1 0 0 0 0 0 1
0 1 0 0 0 0 1
0 0 1 0 0 0 1 55
0 0 0 1 0 0 1
0 0 0 0 1 0 1
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 60

This provides the value 1 for each of the errors el, e2, €3,
ed, e5 and e6 which should be subtracted from the value of the
received corresponding data symbols.

Unfortunately Gauss Jordan does not work directly on a 65
situation wherein 3 rows and 3 columns appear to be in error.

In such a case one presumably has potentially 3x3 or 9 errors,
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with 6+6=12 equations. However the set turns out to be under-
determined. One may check such situations by determining if
a rank for Ax=0 and Ax+B=0 are identical.

One may assume that the rows will not exceed the maxi-
mum number of errors. By reducing the unknowns with just
one makes the set of equations solvable. For instance one may
have the error situation as provided in the following table

1 2 3 4 5 rl 12
1 el e2 e3 2 3
2 e4 e5 eb 2 3
3 e7 e8 e9 2 7
4
5
ql 2 3 1
q2 3 8 5

The check symbols imply that there may be 9 errors. How-
ever, the error condition dictates that no more than 2 errors
occur in arow. Accordingly at least one erroris 0. For instance
assume e3=0 and solve the 8 remaining errors with Gauss
Jordan with for instance Matlab statement ‘rref(A)’. This set
is solvable and provides the correct errors. Accordingly, one
may develop an iterative scheme and assuming that one or
more of the assumed errors are actually 0 and solving the
remaining error equations. One may also add one or more
check symbols to for instance a column which thus makes a
set of equations solvable. A matrix suggests a symmetry
wherein all columns (and all rows) have the same number of
check symbols. However such symmetry is not required and
one may add check symbols to any row or column.

In general, one connects a product code to a single matrix,
wherein data symbols in each row or column determines a
check symbol, which is also related to a row or a column. It
was shown in U.S. patent application Ser. No. 11/680,719
filed on Mar. 1, 2007 and which is incorporated herein in its
entirety that there are advantages to assign check symbols to
data symbols that are not strictly assigned to a single column
or row. Such an approach can be used to “unhide” data sym-
bols that are correct or in error. From the above, it should be
clear that there are situations wherein there may be sufficient
check symbols to solve the actual errors, if only one can
determine where they are located. Reed-Solomon codes pro-
vide the redundancy to solve up to k/2 symbols in error if one
has k or k+1 check symbols. In many cases one does not want
this overhead or redundancy.

In accordance with a further aspect of the present invention
one may combine aspects as disclosed above with check
symbols determined from data symbols that are not strictly in
one column or one column of 1 matrix. The following illus-
trative example illustrates this approach.

Assume one has 16 n-state symbols arranged in a 4 by 4
matrix. A check symbol may be determined over each
instance of a dimension (rows and columns). This is shown in
the following table.

x11 x12 x13 x14 sl
x21 x22 x23 x24 s2
x31 x32 x33 x34 s3
x41 x42 x43 x44 s4
pl p2 p3 p4

The symbols xij are the data symbols. The symbols si and
pj are check symbols determined over rows and columns



US 8,832,523 B2

33 34
respectively. One may add check symbols for the check sym-
bols, which may be assumed herein. Assume that one all
check symbols are error free after reception. Assume also that
x11, x22 and x33 are in error after transmission. This means
that check s1, s2, 83, p1, p2 and p3 will indicate an error. This 5
means that one has potentially 9 errors or unknowns that have
to be solved, which is not possible. One may determine 4
additional check symbols for error detection which are deter-
mined for instance as q1=F(x11, x22, x33, x44); q2=G(x12,
x23, x34, x41); q3=H(x13, x24, x31, x42); and q4=I(x14, 10
x21, x32,x43). The functions F, G, H and I may be different,
they may also be identical. The following table shows the
dependencies of check symbols:
x11  x12  x13 14 x21 x22 x23 x24 x31 x32 x33 x34 =x41 =x42 =x43 =44 s
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 e
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 e
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 e
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 e
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 e
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 e
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0o G
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 H
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0o I
The column cs shows with an ‘e’ if the check symbol
indicates an error. The check symbols indicated in the rows
containing G, H and I may assumed to be error free. One may
turn the ones in the rows indicated by ‘e’ in the columns of
rows with G, H and I from a 1 into a 0. This is shown in the
following table.
x11  x12  x13 14 x21 x22 x23 x24 x31 x32 x33 x34 =x41 =x42 =x43 =44 s
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 e
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 e
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 e
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 e
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0o G
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 H
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0o I
The above process of changes 1 has been highlighted by
making the Os bold and underlined. One can now read from
the first three rows which symbols are in error: x11, x22 and
x33, indicated by the 1s. By using the expressions to deter-
mine the check symbols in reverse one may solve the errors.
One may provide a more elaborate example by also making
x12 in error. This will lead to the following table:
x11  x12  x13 14 x21 x22 x23 x24 x31 x32 x33 x34 =x41 =x42 =x43 =44 s
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 e
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 e
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 e
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 e
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 e
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 e
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 e
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x11  x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 =x41 =x42 x43 =x44 s
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 e
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 H
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 I

Applying the above technique will lead to:

x11  x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 =x41 =x42 x43 =x44 s
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 e
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 e
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 e
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 e
0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 e
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 e
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 e
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 H
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 I

25

One should project all the ones in rows that are known to be
correct as 0 into the rows assumed to be in error. The above
table suggests that x11, x12, x22, x23, and x33 may be in
error. There are several ways to solve the errors. The simplest
way is to clean up iteratively by first determining which row
or column has only one error (column 1). Solve x11 in this
column. Now row 1 has only one error, so solve x12. Now
column 2 has only one error, so solve x22. Now row 2 has only
one error, solve x23. Finally solve x33. Other approaches are
also possible. For instance one may recalculate the check
symbols every time an error has been resolved. There are
sufficient equations to solve the unknowns (even if the
unknowns are not in error). One may solve a set of equations
to determine all unknowns.

The above example shows only the dependency of check
symbols with the re-arranged n-state symbols in a matrix. The
number of n-state-symbols in the first and the second matrix
are preferably the same. Strictly speaking, that requirement is
not absolutely necessary. For instance, one may use a second
matrix for errors only occurring in the start of the rows of the
first matrix. In the example, the check symbols in the second
matrix are used for error detection. It should be clear that one
can arrange a second matrix and create rz=different and inde-
pendent check symbols per row or column. One may then use
the expressions that are used to generate the check symbols to
create systems of equations with the expressions of the first
matrix to resolve errors. One may also create a different third
matrix along the lines of the second matrix but with different
jumps in index to unhide hidden errors.

All steps to resolve the errors in a decoder are determinis-
tic, though they can be iterative, by cleaning errors from a row
or column in a matrix that has a number of errors that is not
greater than the number of check symbols associated with a
row or a column. After an error has been resolved in a row of
a matrix, it also diminishes the number of errors in the corre-
sponding column of the matrix. This may put the total number
of'errors in a column in a condition of being equal or smaller
than the related number of check symbols, which makes all
errors in that column solvable. It also may be the case that by
solving an error in a row of a first matrix, the numbers of
errors in a row or a column in a related second matrix have
become such that the errors have become solvable. It should
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be clear that while the above approach is illustrated by using
errors in a row, it applies to solving errors in a column or in
any other dimension in a k-dimensional matrix.

The selection of the size of a matrix depends among other
aspects on the expected number of errors, and if errors are
expected to appear in bursts or completely random. Errors
may also be introduced deliberately.

The above approach works well with random errors and
adjacent errors. Especially when n-state symbols are trans-
mitted as binary words, it is possible that burst errors will
affect at least two adjacent n-state symbols or words.

It should be understood that a matrix code is a virtual
matrix made up from data symbols and calculated check
symbols. In general symbols will not be transmitted as a
matrix, but for instance sequentially in a frame of symbols. At
the receiving end the virtual matrix can be reconstructed by
assigning each symbol in a frame a position in the virtual
matrix, which may for instance be stored in an addressable
electronic memory.

In accordance with a further aspect of the present inven-
tion, the here provided methods and apparatus for error cor-
rection by error detection and symbol reconstruction can be
used in a system, such as a communication system. A com-
munication system may be a wired system or a wireless
system. Such a system may be used for data transmission,
telephony, video or any other type of transfer of information.
A diagram of'such a system is provided in FIG. 9. Herein 901
is a source of information. The information is provided to a
coder 902. The information provided to a coder 902 may
already be in a digital form. It may also be converted into
digital form by the coder 902. The coder 902 creates the code
words of a plurality of data symbols with added check sym-
bols as described herein as another aspect of the present
invention. The codewords are organized in such a way that up
to a number of symbols in error can be identified as such. The
thus created codewords may be provided directly to a medium
903 for transmission. They may also be provided to a modu-
lator/transmitter 906 that will modify the digital coded signal
provided by 902 to a form that is appropriate for the medium
903. For instance, 906 may create an optical signal, which
may be written on an optical disk, or provided to a transmis-
sion medium such as an optical fiber. Modulator 906 may also
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be a radio transmitter, which will modulate the signal on for
instance a carrier signal, and wherein 903 is a radio connec-
tion. Not specifically shown, but assumed, is circuitry as
known to one of ordinary skill in the art to provide and insert
“housekeeping” signals, which may include synchronization
signals or other signals to assist a receiver to receive, demodu-
late, decode and display a signal.

At the receiving side a receiver 907 may receive, amplify,
and demodulate the signal coming from 903 and provide a
digital signal to a decoder 904. The decoder 904 identifies if
and which symbols are in error in accordance with another
aspect of the present invention and then applies the methods
provided herein to correct symbols in error. A decoded and
error corrected signal is then provided to a target 905. Such a
target may be a radio, a phone, a computer, a tv set or any other
device that can be a target for an information signal. A coder
902 may also provide additional coding means, for instance to
form a concatenated or combined code. In that case, the
decoder 904 has equivalent means to decode the additional
coding. Additional information, such as synchronization,
frame or ID information, may be inserted during the trans-
mission and/or coding process.

In accordance with another aspect of the present invention,
the here provided methods and apparatus for error correcting
coding and decoding of signals can also be applied for sys-
tems and apparatus for storage of information. For instance,
data stored ona CD, a DVD, amagnetic tape or disk or in mass
memory in general may benefit from error correcting coding.
A system for storing error correcting symbols in accordance
with another aspect of the present invention is shown in
diagram in FIG. 10. A source 1001 provides the information
to be coded. This may be audio, video or any information
data. The data may already be presented in n-valued symbols
by 1001 or may be coded in such a form by 1002. Unit 1002
also creates the code words of a plurality of data symbols with
added check symbols as described herein as another aspect of
the present invention. Codewords are organized in such a way
that up to a number of symbols in error can be identified as
such. The thus created codewords may be provided directly to
a channel 1004 for transmission to an information carrier
1005. In general, a modulator/data writer 1003 will be
required to write a signal to a carrier 1005. For instance the
channel requires optical signals or it may require magnetic or
electromagnetic or electro-optical signals. Modulator/data
writer 1003 will create a signal that can be written via channel
1004 to a carrier 1005. Important additional information such
as for ID and/or synchronization may be added to the data.

Accordingly, apparatus and methods for error detection
and error correction as provided herein may be part of an
audio player, a video player, a communication device, a stor-
age device or any other device or system that may benefit
from correction of errors in a signal. For instance it may be
part or implemented in a mobile computing device such as a
mobile phone or a personal digital assistant (PDA). It may
also be part of a computer. It may also be part of any com-
puting device that is enabled to receive and exchange data,
either through a network or via a storage medium. A storage
medium may be an optical disk, a magnetic disk or an elec-
tronic medium. Such media may store binary symbols and
store n-state symbols as binary words such as bytes. It may
also store n-state symbols as multi-state symbols, each sym-
bol having one of 3 or more states. A computing device
implementing one or more of the methods and/or n-state
expressions may be connected to a network. Such a network
may be a wired or a wireless network. The network may be the
Internet. It may also be a single connection to another appa-
ratus. Communication may take place with binary symbols,
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analog signals or signals being a multi-state symbol having
one of 3 or more states, such as 16-QAM signals or any other
signal that can have one of 3 or more states. A signal may be
an electronic signal, a radio signal, an optical signal, an
acoustical signal, a mechanical signal, a quantum mechanical
signal, a chemical or bio-chemical signal that is able to trans-
mit a symbol having one of 3 or more states.

FIG. 11 shows a diagram for error correcting decoding
information read from a carrier 1105. The information is read
through a channel 1104 (such as an optical channel or mag-
netic or electro-magnetic or electro-optical) and provided in
general to a detector 1103 that will receive and may amplify
and or demodulate the signal. The signal is provided to a
decoder 1102 where error detection and error correction takes
place. The information signal, possibly readied for presenta-
tion as an audio or video signal or any other form, is then
provided to a target 1101. The target may be a video screen, a
computer, a radio or any other device that can use the decoded
signal.

Not shown, but assumed, in all applications may be cir-
cuitry that performs housekeeping tasks such as synchroni-
zation, equalization, amplification, filtering, D/A and A/D
conversion and the like to facilitate the processing of a signal.

The methods of error detection and error correction can be
implemented in accordance with an aspect of the present
invention in an apparatus that can perform the steps of the
methods. The implementation can take place in a program
with instructions that can be stored in a memory and that can
be retrieved by a processor for execution. One may also
implement the methods in accordance with an aspect of the
present invention in dedicated hardware that will perform the
steps of the methods. Such hardware may comprise custom
designed circuitry. Such circuitry may be n-state circuitry that
implements at least one of the n-state switching functions that
is used in either determining a check symbol or to detect or to
correct a symbol in error. Such hardware may also comprise
programmable units that can be programmed to perform a
certain function such as Field Programmable Gate Arrays.
Instructions may also be implemented in binary logic cir-
cuitry, combined with Analog/Digital conversion circuitry to
convert an n-state signal into a binary signal; or with Digital/
Analog converter circuitry to convert a binary signal into an
n-state signal.

One may represent an n-state symbol by an n-state signal
with n>2. Such an n-state signal may be an n-level signal,
wherein a state may be represented by one of n voltage levels
or intensity levels with n greater than 2. One may also repre-
sent an n-state symbol with a signal that can assume one ofn
states which are linear independent, so that linear addition of
2 or more n-state signals will not create another n-state signal
with n greater than 2. One may also represent an n-state
symbol by a plurality of p-state symbols with p<n. One may
also consider a plurality of binary signals to represent an
n-state symbol. One may process an n-state symbol by a
processor implementing an n-state switching function which
may be represented by at least an n by n truth table. One may
also process a plurality of binary signals as representing an
n-state symbol by a binary processor, wherein the binary
processor processes the plurality of binary symbols by a
binary implementation of an n-state logic function in binary
form and wherein the n-state logic function can be repre-
sented by at least an n-by-n truth table with n>2.

As an example one may process a plurality of binary sig-
nals as if 3 binary signals represent for instance an 8-state
symbol. One may then process binary words wherein each
word is formed by 3 bits by an implementation of an 8-state
switching function. Such a function may be for instance the
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following function sc8 which is provided in 8-state notation
and in binary notation as sc8b.

40

errors may make use of a medium impossible. Accordingly,
error correction is desirable and useful. Error correction

s8 0 1 2 3 4 5 6 7 s8b 000 001 010 011 100 101 110 111
O 0 1 2 3 4 5 6 7 000 000 001 0l0 01l 100 101 110 111
1 1 0 3 2 5 4 7 6 001 00l 000 Ol 010 101 100 111 110
2 2 3 0 1 6 7 4 5 010 010 011 000 00l 110 111 100 101
3 3 2 1 0 7 6 5 4 01l 01l 010 00l 000 111 110 101 100
4 4 5 6 7 0 1 2 3 100 100 101 110 111 000 001 010 Oll
5 5 4 7 6 1 0 3 2 101 10l 100 111 110 001 000 Ol1 O10
6 6 7 4 5 2 3 0 1 110 110 111 100 101 010 0l1 000 001
7 7 6 5 4 3 2 1 0 111 111 110 101 100 011 010 001 000

FIG. 12 shows an n-state implementation 1200 of function
sc8, having an input 1202 and 1203, each enabled to receive
an 8-state signal and an output 1204 that can provide an
8-state signal in accordance with the truth table of sc8. The
implementation of the function sc8 may be based on compo-
nents as disclosed in U.S. Pat. No. 7,218,144 issued on May
15,2007, or with U.S. patent application Ser. No. 11/964,507
filed on Dec. 26, 2007, which are both incorporated herein by
reference in their entirety. FIG. 12 also shows a binary imple-
mentation of the truth table sc8b, which is equivalent to sc8.
An 8-state symbol herein may be provided as a word of 3
parallel bits on a set of 3 inputs 1205 and 1206. An 8-state
symbol is then provided in accordance with the truth table of
sc8b on the set of 3 outputs 1207. The binary implementation
of sc8b can be 3 parallel devices implementing an XOR
function. One can easily check that the output word of sc8b is
created by taken the XOR of the 3 bits of a first word provided
on input 1205 with the 3 bits of binary word provided on
1206.

A further possible implementation of the truth table of sc8b
is shown in FIG. 13, wherein an addressable binary storage
memory 1300 is used. It applies an address decoder 1303,
which is provided on 2 sets of 3 inputs 1301 and 1302 with 2
binary words of3 bits. Based on the inputted 6 bits the address
decoder enables a corresponding address line 1304, which
enables the reading of a content of a memory 1305. This
content is provided on the output set 1306 of 3 outputs. The
relation between the input address and the binary output of the
device of FIG. 13 is provided by the truth table of sc83.

In accordance with a further aspect of the present invention
all multi-state symbols may be represented and processed in
binary form as a plurality of binary symbols. It should be clear
that in such a situation one should apply means to synchronize
all symbols in accordance with the symbols they represent.
One may also use multi-state symbols during part ofa process
and binary or other representation and processing during a
different stage of processing. As an example it is knownto use
multi-state symbols for transmission of symbols. One may, if
so desired, prepare and process the multi-state symbols in for
instance binary form before actual transmission.

The present invention may be used in the detection and
correction of errors that may have occurred after coding, but
before decoding, for instance during but not limited to the
transmission of symbols or signals. Errors may be caused by
noise superimposed on a transmitted signal that was attenu-
ated in strength during transmission. It is well known that the
correction and/or detection of errors in signals before further
processing is useful. It may prevent extraction and use of
information that is no longer correct due to errors. It may
prevent inaccurate playing of audio and/or video signals,
which may be experienced by a user as noise or a nuisance. It
may make possible the use of noisy and/or a scarce transmis-
sion medium such as a radio spectrum. Failure to correct
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requires redundancy in a signal. The ability to correct more
errors with the same number of check symbols as in known
and earlier applied methods is very advantageous, as it
improves the use of spectrum and bandwidth. What one does
is exchanging processing capability with bandwidth or num-
ber of users.

In a further embodiment of the present invention one may
introduce deliberate errors in a signal as an annoyance or a
security factor. In a further embodiment one may introduce
errors at a rate that affects the quality of the use of received
symbols or signals. Deliberate errors may be introduced at
known positions in a frame of symbols, and may be consid-
ered erasures. In such situations, one knows at sending where
errors are located. Information on where errors are located
may be based on a predetermined scheme of which a receiv-
ing apparatus is aware or is made aware by an authority or by
a signal.

In accordance with a further aspect of the present inven-
tion, errors may be deliberately introduced at known posi-
tions in a sequence of symbols, or errors may be introduced at
random in a sequence of symbols. If errors are introduced at
random, the number of errors that is introduced should be
within the number of errors that can be solved by an error
correction scheme. For instance, one may introduce errors
deliberately that may be resolved by a Reed Solomon error
correcting scheme. Itis noted that RS codes are able to resolve
a number of errors that is about half of the number of related
check symbols. Furthermore, RS solving schemes are gener-
ally known. For error introduction to be effective, by requir-
ing a specific and unique error correction approach, one may
generate check symbols in a unique way that is not generally
known. Otherwise, a normal RS error correcting scheme may
be applied to solve the nuisance errors, thus rendering the
nuisance errors ineffective. Unique methods and apparatus
for generating RS-like codes and check symbols, are dis-
closed by the inventor in U.S. patent application Ser. No.
11/739,189 filed on Apr. 24, 2007; U.S. patent application
Ser. No. 11/775,963 filed on Jul. 11, 2007; U.S. patent appli-
cation Ser. No. 11/743,893 filed on May 3, 2007; and U.S.
patent application Ser. No. 11/969,560 filed on Jan. 4, 2008
which are all four incorporated herein by reference in their
entirety.

In accordance with an aspect of the present invention, a
receiving apparatus thus is able to identity a position of a
symbol deliberately put in error without requiring the appli-
cation of check symbols. Information on a position of an
n-state symbol deliberately put in error may be part of a
receiving apparatus; it may be embedded in an apparatus, for
instance as instructions in a program that can be executed by
the receiving apparatus or it may be stored as data in a
memory that can be read and processed by the receiving
apparatus. A receiving apparatus may also be provided with
the means to identify symbols that have been put deliberately
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in error, for instance by receiving and processing a signal, or
by reading specific data to that effect from a storage medium,
such as an optical disk, a memory or a magnetic disk or tape,
or any other known storage medium. Such information may
also be provided to a receiving apparatus via a network. Such
network may be the Internet or via any other connection that
allows a receiving apparatus to receive information related to
symbols deliberately put in error.

For instance, one may have a playing apparatus, such as an
audio player or a video player for playing an audio or video
program that is played by processing a stream of digital
signals. The stream of digital symbols may contain a plurality
of symbols that is put deliberately in error. Such programs
may still be playable, but may contain interference or noise-
like features or other error like effects that diminish the qual-
ity of the displayed program. In a first embodiment, a player
may be provided with information about the position of sym-
bols in error. In a further embodiment, the player may be
provided with means to use the information about the position
of errors to minimize the effect of the deliberate errors. For
instance a sender or originator of the deliberate errors may
make an error by providing a symbol a state that represents
the maximum intensity of a sound or a pixel. A receiver,
knowing where the symbols in error are, may provide the
symbols in error with a state that represents their lowest value.
This does not eliminate the error, but may diminish its effect.
In a further embodiment, one may also apply a program that
interpolates a value for a symbol in error, based on preceding
and succeeding symbols that are not in error. This may help to
overcome all or part of the errors.

In a further embodiment, the deliberate errors may be put in
a transmitted and to be received signal, so that they form a
burst error in the displayed signal. Signals that are provided
on Compact Disc or on DVD for instance, but also on trans-
mitted signals, may be interleaved. Burst errors in a received
signal or in a signal that is read from a storage medium is
spread over different frames or displayed signals after de-
interleaving. By positioning errors in a burst at pre-interleav-
ing, one may enhance the annoyance effect that is difficult to
overcome by interpolation measures.

In a further embodiment, one may provide a receiving or
displaying apparatus with data or information, which may
include instructions or rules for determining the check sym-
bols, that allows the receiving apparatus or player to correct
the symbols that were put deliberately in error, using also the
position information on those errors. The correct decoding
and/or position information of errors may be provided to an
apparatus as a separate signal or as part of a signal containing
the program to be displayed. Such data may be provided over
a network such as the Internet or over a wireless network or
via any other communication connection that can be used to
transmit data. That data may also be embedded on a storage
medium. Such information or data may be made available in
such a way that only authorized players or apparatus may use
it to correct deliberately introduced errors.

In yet a further embodiment one may provide errors delib-
erately in known positions by processing the correct symbol
with a known symbol by using a reversible n-state switching
function. One embodiment, using reversible n-state switch-
ing functions and known n-state symbols, is disclosed in U.S.
patent application Ser. No. 10/912,954 filed on Aug. 6, 2004
and Ser. No. 12/264,728, filed on Nov. 4, 2008 which are both
incorporated herein by reference in their entirety. These
applications apply self reversing n-state switching functions.
It should be clear that any reversible n-state switching func-
tion may be applied to modify (or scramble) a symbol in a
known position. It is pointed out that scrambling is different

20

25

30

40

45

55

60

65

42

from introducing errors. For correcting errors, one requires
redundancy, such as providing check symbols. Descrambling
does not require redundancy with check symbols, if one
knows which symbols have been scrambled. However, for
descrambling one requires at the receiving end information
which symbols were scrambled, what the known symbols are
against which the symbols were scrambled and the reversible
function(s) that were applied to change the symbols. Cryp-
tanalysis, including statistical analysis, may be applied to find
the appropriate n-state functions and the “known symbols”.
In a further embodiment, one may use a scrambler to provide
errors to symbols in known positions, but apply error correc-
tion using check symbols as for instance provided herein or in
any of the references incorporated herein by reference to
correct those errors.

For security or other reasons a signal may be scrambled,
thus preventing playing of the signal on for instance an audio
or video display if an appropriate descrambler is not applied.
In general, a complete signal is scrambled, thus preventing
the complete display of the signal. It would be beneficial to
scramble only part of the signal. This would allow a user to
evaluate the content of the signal, for instance for purchasing
it. One may for instance scramble part of a video program in
such a way that one may view part of a screen, or for instance
one may view a screen at a much lower than optimal quality.

For instance, one may apply an error ratio that affects the
quality of an audio and/or video signal during display if errors
are not corrected. One may apply an error ratio of correctable
errors that makes display of these signals as an audio or video
signal unusable. In a further embodiment, one may introduce
correctable errors at a rate at which one can display a video or
play an audio signal and discern the content of an image or a
sound, however at a quality which can be improved discern-
ibly by correcting the errors. In a further embodiment one
may also introduce errors into a signal at a known rate without
including check symbols. In one embodiment, one may intro-
duce errors in symbols in known positions in a frame of
symbols. One may calculate and include check symbols using
implementable binary or n-state expressions that allow a
receiver to detect or correct the errors.

In a further embodiment one may keep the expressions
required to correct errors secret for a receiver. In a further
embodiment, one may provide a receiver with instructions to
be implemented in a processor to detect and/or correct sym-
bols in error.

One may create a signal having a first part and a second
part, wherein the first part does not have errors introduced and
the second part has errors introduced. One may provide a
signal that has deliberate errors introduced with check sym-
bols that allow the detection and or correction of these errors
at a receiver.

In a first embodiment one may introduce errors in data
symbols after check symbols have been calculated. If the
errors are detectable and correctable, a receiver with the
appropriate error correcting apparatus may correct the errors,
providing a full quality signal. In another embodiment one
may withhold the error correction means from a receiver. By
placing errors in data symbols that are not correctable one
may create a deteriorated signal that still has sufficient qual-
ity, but a lower quality than what is optimally possible. A user
may for instance purchase the appropriate error correction
means, in either downloadable code via a network, or on a
storage medium and install it on a processor in a receiver so
that all introduced errors can be corrected, thus providing an
optimal quality signal.

In one aspect of the present invention two or more sets of
two or more n-state equations having two or more unknowns
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have to be resolved, for instance as it relates to solving errors
in two or more rows or two or more columns of a matrix
having at least two dimensions. One may solve the set of
equations serially. In many cases there is a time constraint of
the solving of errors, for instance in real time display of
signals such as digital video signals. The time available for
solving errors is then determined by the constraints imposed
by the Nyquist-Shannon sampling theorem. In such a case it
may be beneficial to have a separate and/or dedicated proces-
sor for solving a set of equations to solve one or more
unknowns in a row or a column of n-state data symbols. Each
set of equations is thus solved in parallel to others by a
processor that implements at least one n-state logic function
defined by at least an n by n truth table.

As stated above a processor may be a general processor or
a Digital Signal Processor (DSP). A processor may also be
dedicated hardware that is hardwired to execute the steps or
instructions that are aspects of the present invention. Retriev-
ing instructions thus may mean retrieving instructions from a
memory and for instance to be put in an instruction register of
a processor to be executed. Retrieving instructions in a hard-
wired circuit, in the context of this application, may mean
starting execution at a first circuit and forcing signals to go
through a pre-determined series of circuits. The memory is
thus a hardwired memory (hard-wired by connections in and/
or between circuits) and retrieving and executing an instruc-
tion is moving of a signal from a previous circuit to a next
circuit as is determined by the connections.

While there have been shown, described and pointed, out
fundamental novel features of the invention as applied to
preferred embodiments thereof, it will be understood that
various omissions and substitutions and changes in the form
and details of the devices, systems and methods illustrated
and in their operation may be made by those skilled in the art
without departing from the spirit of the invention. It is the
intention, therefore, to be limited only as indicated by the
scope of the claims appended hereto.

The following patent applications, including the specifica-
tions, claims and drawings, are hereby incorporated by refer-
ence herein, as if they were fully set forth herein: (1) U.S.
Non-Provisional patent application Ser. No. 10/935,960, filed
on Sep. 8, 2004, entitled TERNARY AND MULTI-VALUE
DIGITAL SCRAMBLERS, DESCRAMBLERS AND
SEQUENCE GENERATORS; (2) U.S. Pat. No. 7,002,490
issued on Feb. 21, 2006, entitled TERNARY AND HIGHER
MULTI-VALUE SCRAMBLERS/DESCRAMBLERS; (3)
U.S. Non-Provisional patent application Ser. No. 10/912,954,
filed Aug. 6, 2004, entitled TERNARY AND HIGHER
MULTI-VALUE SCRAMBLERS/DESCRAMBLERS; (4)
U.S. Non-Provisional patent application Ser. No. 11/042,645,
filed Jan. 25, 2005, entitled MULTI-VALUED SCRAM-
BLING AND DESCRAMBLING OF DIGITAL DATA ON
OPTICAL DISKS AND OTHER STORAGE MEDIA; (5)
U.S. Pat. No. 7,218,144, issued on May 15, 2007, entitled
SINGLE AND COMPOSITE BINARY AND MULTI-VAL-
UED LOGIC FUNCTIONS FROM GATES AND INVERT-
ERS; (6) U.S. patent Ser. No. 11/065,836 filed Feb. 25, 2005,
entitled GENERATION AND DETECTION OF NON-BI-
NARY DIGITAL SEQUENCES; (7) U.S. Pat. No. 7,397,690
issued on Jul. 8, 2008, entitled MULTI-VALUED DIGITAL
INFORMATION  RETAINING ELEMENTS AND
MEMORY DEVICES; (8) U.S. Non-Provisional patent
application Ser. No. 11/618,986, filed Jan. 2, 2007, entitled
Ternary and Multi-Value Digital Signal Scramblers,
Descramblers and Sequence Generators; (9) U.S. Non-Pro-
visional patent application Ser. No. 11/679,316 filed Feb. 27,
2007, entitled Methods And Apparatus In Finite Field Poly-
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nomial Implementations; (9) U.S. Non-Provisional patent
application Ser. No. 11/566,725, filed on Dec. 5, 2006,
entitled: Error Correcting Decoding For Convolutional And
Recursive Systematic Convolutional Encoded Sequences;
(10) U.S. Non-Provisional patent application Ser. No. 11/739,
189, filed on Apr. 24, 2007 entitled: Error Correction By
Symbol Reconstruction In Binary And Multi-Valued Cyclic
Codes; (11) U.S. Non-Provisional patent application Ser. No.
11/969,560 filed Jan. 4, 2008, entitled: Symbol Error Correc-
tion by Error Detection and Logic Based Symbol Reconstruc-
tion; (12) U.S. Non-Provisional patent application Ser. No.
11/964,507 filed on Dec. 26, 2007 entitled Implementing
Logic Functions With Non-Magnitude Based Physical Phe-
nomena.

The invention claimed is:

1. An apparatus for correcting errors in a sequence of k
n-state data symbols and a plurality of n-state check symbols,
ann-state symbol being represented by a signal, with n>2, and
k greater than 2, comprising:

a memory enabled to store instructions;

a processor that retrieves and executes instructions from

the memory to perform the steps of:

receiving on an input the sequence of k n-state symbols
and the plurality of n-state check symbols being a
plurality of codewords with at least two codewords
having no n-state data symbols in common, wherein
the n-state check symbols in the plurality of n-state
check symbols are determined by a first arrangement
of'the k n-state data symbols in an at least two-dimen-
sional matrix, wherein for each instance of the at least
two-dimensional matrix at least a first and a second
n-state check symbol are determined during a coding,
by evaluating a first n-state expression to generate the
first n-state check symbol and evaluating a second
n-state expression to generate the second n-state
check symbol, each n-state expression having all the
n-state data symbols in an instance for which the
n-state check symbols are determined as variables of
a degree 1;

arranging the received sequence of k n-state symbols in
the first arrangement of the at least two-dimensional
matrix, recalculating the first and second n-state
check symbols for each instance of the at least two-
dimensional matrix and comparing the received and
recalculated check symbols to determine instances of
the first and second dimensions of the at least two-
dimensional matrix that are in error;

determining at least two n-state syndrome equations of
degree 1 for one dimension of the at least two-dimen-
sional matrix from a comparison of received and
recalculated n-state check symbols, wherein each
variable in the atleast two n-state syndrome equations
has a degree 1 and a first unknown represents an error
magnitude of a common n-state symbol in a first
instance in error in the first dimension that is common
with a first instance in error in the second dimension
of the at least two-dimensional matrix;

determining the error magnitude of the common n-state
symbol by directly solving the at least two n-state
syndrome equations of degree 1 for the first unknown;
and

generating a correct state of the common n-state symbol
by combining the error magnitude with the common
n-state symbol by applying an n-state logic function.

2. The apparatus as claimed in claim 1, further comprising
instructions to perform:
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receiving on the input one or more n-state check-the-check
symbols to correct an error in one or more of the n-state
check symbols.

3. The apparatus as claimed in claim 1, further comprising
instructions to perform:

receiving on the input another plurality of n-state check

symbols, wherein the another plurality of n-state sym-
bols is determined by a second arrangement of the k
n-state data symbols in the at least two-dimensional
matrix;

determining instances in error of the second arrangement

of the k n-state data symbols in the at least two-dimen-
sional matrix by recalculating the another plurality of
n-state check symbols; and

solving additional errors.

4. The apparatus as claimed in claim 1, wherein a correct-
able error has been introduced deliberately into at least one of
the k n-state symbols.

5. The apparatus as claimed in claim 4, wherein a position
of the n-state data symbol placed deliberately in error is
known to the apparatus.

6. The apparatus as claimed in claim 4, wherein an instruc-
tion to solve the error is provided to the apparatus through a
network.

7. The apparatus as claimed in claim 4, wherein an instruc-
tion to solve the error is unique to the sequence of k n-state
symbols.

8. The apparatus as claimed in claim 1, wherein the n-state
reversible logic function is implemented in binary logic.

9. The apparatus as claimed in claim 1, wherein the appa-
ratus is part of at least one of the group consisting of an audio
player, a video player, a data storage device, and a commu-
nication device.

10. The apparatus of claim 1, wherein the one dimension
for the at least two n-state syndrome equations of degree 1 for
one dimension of the at least two-dimensional matrix is a
dimension with a fewest number of instances in error.

11. A method for correcting an error in an n-state codeword
in a plurality of n-state codewords which are part of an n-state
product code, the n-state product code containing k n-state
data symbols with n and k greater than 2 and a first plurality
of n-state check symbols, each n-state symbol being repre-
sented by a signal which is enabled to be processed by a
processor, comprising:

the processor receiving the plurality of codewords which is

formed during a coding and is determined by a first
arrangement of the k n-state symbols in an at least two-
dimensional matrix with rows and columns indicated as
instances, wherein the first plurality of n-state symbols is
determined by determining for each instance of the at
least two-dimensional matrix a first and a second n-state
check symbol by evaluating a first n-state expression to
generate the first n-state check symbol and evaluating a
second n-state expression to generate the second n-state
check symbol, each n-state expression having all the
n-state data symbols in an instance for which the n-state
check symbols are determined as variables of a degree 1;
the processor placing the received k n-state data symbols in
the first arrangement of the at least two-dimensional
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matrix, recalculating the first and second n-state check
symbols for each instance of the at least two-dimen-
sional matrix and comparing the received and recalcu-
lated n-state check symbols to determine instances of the
first and second dimensions of the at least two-dimen-
sional matrix that are in error;
the processor determining at least two n-state syndrome
equations of degree 1 for one dimension of the at least
two-dimensional matrix from a comparison of received
and recalculated n-state check symbols, wherein each
variable in the at least two n-state syndrome equations
has a degree 1 and a first unknown represents an error
magnitude of a common n-state symbol in a first
instance in error in the first dimension that is common
with a first instance in error in the second dimension of
the at least two-dimensional matrix;
determining a value of the error magnitude of the common
n-state symbol by solving the at least two n-state syn-
drome equations of degree 1 for the first unknown; and

generating a correct state of the common n-state symbol by
combining the value of the error magnitude with the
n-state symbol in error by applying an n-state logic
function.

12. The method of claim 11, further comprising:

receiving one or more n-state check-the-check symbols to

correct an error in one or more of the n-state check
symbols.
13. The method of claim 11, further comprising:
receiving another plurality of n-state check symbols,
wherein the another plurality of n-state symbols is deter-
mined by a second arrangement of the k n-state data
symbols in the at least two-dimensional matrix;

determining instances in error of the second arrangement
of the k n-state data symbols in the at least two-dimen-
sional matrix by recalculating the another plurality of
n-state check symbols; and

solving additional errors.

14. The method of claim 11, wherein a correctable error has
been introduced deliberately into at least one of the k n-state
data symbols.

15. The method of claim 14, wherein a position of the
n-state data symbol placed deliberately in error is provided by
an external source to the processor.

16. The method of claim 14, wherein an instruction to solve
the correctable error is provided to the apparatus through a
network.

17. The method of claim 14, wherein data to resolve the
correctable error are acquired via a network.

18. The method of claim 14, wherein data to resolve the
correctable error is stored on a storage medium.

19. The method of claim 11, wherein the n-state expres-
sions are implemented in binary logic.

20. The method of claim 11, wherein the method is applied
to at least one of the group consisting of an audio player, a
video player, a data storage device, and a communication
device.



