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arithmetic to Reed Solomon codewords have been disclosed. 
Reconstruction methods by applying n-valued reversing logic 
functions are also provided. A correct codeword can be 
selected from calculated codewords by comparing a calcu 
lated codeword with the Reed-Solomon codeword in error. A 
correct codeword can also be found by comparing a codeword 
in error with possible (p,k) codewords. Non Galois Field 
Reed Solomon coders are disclosed. Methods for correcting 
symbols in errors that have been identi?ed as being in error 
are provided. Apparatus that implement the error correction 
methods are disclosed. Systems, including communication 
and storage systems that use the disclosed methods are also 
provided. 
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SYMBOL RECONSTRUCTION IN 
REED-SOLOMON CODES 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This patent application claims the bene?t of the priority of 
US. Provisional Application 60/ 821,980, ?led on Aug. 10, 
2006 Which is incorporated herein by reference in its entirety. 

BACKGROUND OF THE INVENTION 

The present invention relates to error correcting coding and 
decoding. More speci?cally it relates to Reed-Solomon cod 
ing and decoding. 

Error correction of digital codes is Widely used in telecom 
munications and in transfer of information such as reading of 
data from storage media such as optical disks. Detection of 
errors can take place by analyZing symbols that Were added to 
the information symbols during coding. The relation betWeen 
information symbols and the added coding symbols is deter 
mined by a rule. If after reception of the symbols such relation 
betWeen the symbols no longer holds, it can be determined 
that some of the symbols are different or in error compared to 
the original symbols. Such a relationship may be a parity rule 
or a syndrome relationship. If the errors do not exceed a 
certain number Within a de?ned number of symbols it is 
possible to identify and/or correct these errors. Known meth 
ods of creating error correcting codes and correction of errors 
are provided by BCH codes and the related Reed-Solomon 
(RS) codes. These codes are knoWn to be cyclic codes. Error 
correction in RS-codes usually involves calculations to deter 
mine the location and the magnitude of the error. The calcu 
lations in RS-codes error correction can be time and/or 
resource consuming and may add to a coding latency. 

Accordingly methods that can decode Reed-Solomon 
codes in a faster or easier Way are required. 

SUMMARY OF THE INVENTION 

One aspect of the present invention provides a method for 
error correcting decoding a codeWord generated as a (p,k) 
Reed-Solomon codeWord comprised of p n-valued symbols 
of Which k symbols are information symbols and having no 
more than (p—k)/2 symbols in error into a correct codeWord 
by determining calculated codeWords. 

It is another aspect of the present invention to provide a 
method of error correcting decoding of a Reed Solomon 
codeWord Wherein calculated codeWords are determined by 
applying Galois Field arithmetic operations in GF(n). 

It is a further aspect of the present invention to provide a 
method of error correcting decoding a Reed Solomon code 
Word Wherein the GF(n) is an extended binary ?eld. 

It is another aspect of the present invention to provide a 
method for error correcting coding of a Reed Solomon code 
Word Wherein calculated codeWords are determined by apply 
ing reversing n-valued logic functions. 

It is a further aspect of the present invention to provide a 
method of error correcting decoding a Reed Solomon code 
Word Wherein calculated codeWords are determined in paral 
lel. 

It is another aspect of the present invention to provide a 
method for generating a Reed Solomon encoded (p,k) code 
Word of n-valued symbols by applying a k element n-valued 
LFSR in Fibonacci con?guration Wherein at least one feed 
back tap includes a reversible inverter not representing a 
GF(n) multiplier. 
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2 
It is a further aspect of the present invention to provide a 

method for generating a Reed Solomon encoded (p,k) code 
Word of n-valued symbols Wherein applied logic functions in 
an LFSR are equivalent to logic functions and multipliers and 
at least one reversible inverter not representing a GF(n) mul 
tiplier. 

It is another aspect of the present invention to provide a 
method for correcting an error in a RS codeWord When it is 
knoWn Which symbol in a codeWord is in error. 

It is a further aspect of the present invention to provide a 
method for generating a Reed Solomon encoded (p,k) code 
Word of n-valued symbols Wherein the applied LFSR is an 
Galois equivalent of a Fibonacci LFSR that includes at least 
one reversible inverter not representing a GF(n) multiplier. 

It is another aspect of the present invention to provide a 
method and apparatus for reconstructing a symbol in error by 
executing one or more n-valued logic expressions When the 
position of a symbol in error Was previously determined. 

It is a further aspect of the present invention to provide 
apparatus that implement the methods provided as aspects of 
the present invention. 

It is another aspect of the present invention to provide 
systems that apply methods of error correction provided 
herein. 

DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a diagram of an LFSR in Fibonacci con?guration 
With no multipliers or inverters. 

FIG. 2 is a diagram of an LFSR in Fibonacci con?guration 
comprising multipliers. 

FIG. 2a is another diagram of an LFSR in Fibonacci con 
?guration enabled for direct initialiZation. 

FIG. 3 is a diagram of an LFSR in Galois con?guration. 
FIG. 4 is a diagram ofanother LFSR in Fibonacci con?gu 

ration. 
FIG. 5 is a diagram of an LFSR demonstrating a Reed 

Solomon coder. 
FIG. 6 is another diagram of an LFSR in Fibonacci con 

?guration. 
FIG. 7 is a diagram illustrating a Reed Solomon coder. 
FIG. 8 is another diagram illustrating a Reed Solomon 

coder. 
FIG. 9 is a diagram illustrating a Reed Solomon coder in 

Fibonacci con?guration With multipliers. 
FIG. 10 is a diagram illustrating a Reed Solomon coder in 

Fibonacci con?guration not having multipliers. 
FIG. 11 is a How diagram illustrating steps according to one 

aspect of the present invention. 
FIG. 12 is a How diagram illustrating steps according to 

another aspect of the present invention. 
FIG. 13 is a diagram illustrating a Reed Solomon coder in 

Fibonacci con?guration With multipliers and inverters. 
FIG. 13a is a diagram illustrating a Reed Solomon coder in 

Fibonacci con?guration With no multipliers or inverters. 
FIG. 14 is a diagram of a knoWn Reed Solomon coder. 
FIG. 15 is a truth table of an adder over GF(8). 
FIG. 16 is a truth table ofa multiplier over GF(8). 
FIG. 17 is a truth table of an 8-valued division. 
FIG. 18 is a diagram of a decoder in accordance With an 

aspect of the present invention. 
FIG. 19 is a diagram of a communication system in accor 

dance With an aspect of the present invention. 
FIG. 20 is a diagram of a data storage system for Writing 

data in accordance With an aspect of the present invention. 
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FIG. 21 is a diagram of a data storage system for reading 
data in accordance With an aspect of the present invention. 

DESCRIPTION OF A PREFERRED 
EMBODIMENT 

Reed-Solomon (RS) codes are often designated as (p,k) 
error-correcting codes. This means that a codeWord consists 
of p symbols of Which k symbols are the information or 
message symbols. The remaining (p-k) symbols are “over 
head” symbols or check symbols to enable error correction. 
The “overhead” symbols in RS codes are generally remainder 
symbols generated by an LFSR. The LFSR used in RS coders 
are generally applied in Galois con?guration. It is also pos 
sible to generate RS codes by using LFSRs in Fibonacci 
con?gurations. 

In an earlier invention by the inventor as described in US 
Non-Provisional Patent Application entitled: ERROR COR 
RECTION BY SYMBOL RECONSTRUCTION IN 
BINARY AND MULTI-VALUED CYCLIC CODES, Ser. 
No. 11/739,189 and ?led on Apr. 24, 2007 and Which is 
incorporated herein by reference it Was shoWn that (p,k) error 
correcting codes can be generated by LFSRs Wherein a num 
ber of t errors can be corrected in a codeWord When the 
codeWord consists of k information or data symbols and 
2*t+1 overhead symbols. The advantage of the coded method 
provided in the cited invention is that With using n-valued 
symbols one can generate an (p,k) code for error correcting t 
errors When p>n. This comes With the disadvantage that 1 
more symbol has to be used than in a true RS-code. In a true 
RS-code the relation p—k:2*t applies. 

While it may appear that using one more symbol than in 
RS-codes is a disadvantage, the method as provided in the 
cited patent application Ser. No. 11/739,189 also has advan 
tages. For instance one of the constraints of an RS code over 
GF (q) is, according to the literature, that the codeWord should 
have the same symbols or at least one symbol less than the 
logic Wherein the code is developed. In other Words: When 
one Wants to develop an RS code in 7-valued logic, then the 
codeWord should not be comprised of more than 7 7-valued 
symbols. The method provided by the inventor in patent 
application Ser. No. 11/739,189 does not have such a strin 
gent constraint. As an example one can create a codeWord of 
11 symbols in a 5-valued logic using an LFSR With 6 ele 
ments. The codeWords, using the appropriate functions, Will 
have at most 6 symbols in common and thus may correct up to 
2 symbol errors. 
One such code-generator con?guration is shoWn in FIG. 2. 

This LFSR can generate a sequence of 15524 5-valued sym 
bols. The multipliers are [1 1 2 0 2 2]. The multipliers can be 
combined With fp (5-valued addition) into single 5-valued 
reversible functions. So, in fact the advantage of the method is 
that one can create codeWords With more symbols than the 
value of the applied logic that can correct multiple errors. For 
some applications that can be a signi?cant advantage, as it 
may prevent going into large value logic approaches. 
One disadvantage of the RS-code in Galois con?guration is 

that RS codeWords are created individually: they can not be 
created by letting the coder run and pick out a neW codeWord. 
In fact in an RS-coder in Galois con?guration one has to start 
With a shift register With content of all 0s. As disclosed by the 
earlier cited patent application if one has very cheap or fast 
means for analyZing a very long sequence, one can use a 
codeWord as generated according to cited patent application 
Ser. No. 11/739,189 and test if the received codeWord has a 
certain number of symbols in common With a tested portion of 
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4 
the sequence. If such comparison generates a minimum num 
ber then one has detected and corrected the codeWord. 

There is knoWn literature available that describes the gen 
eration of RS-code. One book is: Error Control Coding by 
Shu Lin and Daniel Costello, second edition, Prentice Hall, 
2004. The conditions for an (p,k) RS-codeWord over GF(q) to 
be able to correct t errors are: 

minimum distance d:2*l+l; 

In many cases the variable q is created from m bits so that 
GF(q):GF(2'"). In that case the Galois Field is called an 
extended binary Galois Field. The extended ?eld alloWs cre 
ating for instance an GF(8) Wherein each 8-valued symbol 
can be expressed as a binary Word of3 bits. 
RS (p,k) codeWords, meeting earlier cited conditions can 

be created by a method using an LFSR in Galois con?gura 
tion. In that case the LFSR has (p-k) elements, With initial 
content of the shift register being all 0s. The k information 
symbols are shifted into the LFSR for k clock pulses, thus 
?lling the (p-k) shift register elements With a neW content. 
The RS codeWord is the combination of k information sym 
bols With (p-k) symbols of the ?nal state of the shift register. 
Because in practical applications k>>(p—k) one tends to pre 
fer the Galois con?guration. 

Less known, but equally Workable is the Fibonacci LFSR 
con?guration for the RS coder. In that case the coder has an 
LFSR of k elements. The initial value of the shift register is 
formed by the k data symbols. By running the LFSR for p 
clock cycles the complete information Word is entered and the 
remaining (p-k) symbols for the RS codeWord are generated. 
The Fibonacci con?guration has a further advantage. The 

LFSR in an RS coder should run for p clock cycles to produce 
the (p-k) check symbols providing k information symbols 
into the LFSR. Usually this is done by shifting the informa 
tion symbols into the shift register. This is folloWed by shift 
ing out the check symbols out of the register of a Galois 
LFSR. Combined the coding (and decoding process) With a 
Fibonacci LFSR may take p+(p—k):2p—k clock cycles. It 
should be noted that all LFSRs Work under a clock signal. 
Such a clock signal is assumed in all the draWings and 
descriptions though not alWays shoWn or identi?ed. 

FIG. 2 shoWs a Fibonacci LFSR. One can see that produc 
ing (p-k) check symbols requires running the LFSR for (p-k) 
cycles after the register Was completely ?lled. The check 
symbols Will be available immediately at an output and do not 
require to be shifted out. In a Fibonacci LFSR the coding 
process may take just p clock cycles including shifting in the 
symbols into the LFSR. It should be clear that this number is 
only correct if all function operations are completed With a 
clock cycle. 

FIG. 2a shoWs hoW the shift register elements can also be 
?lled in one instance. For instance at an enabling signal pro 
vided to all individual elements of the shift register, each 
element is provided With its individual initial state. For 
instance When an enabling signal is provided on a common 
input 200 the shift register element 202 assumes the symbol 
that is provided on input 201 as is shoWn in FIG. 2a. The time 
for creating a codeWord can thus be reduced to (p-k) clock 
cycles, provided that all function operations of the LFSR can 
be completed Within a single cycle. 
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The difference between the Galois and Fibonacci LFSR 
con?guration is that in practical terms the Galois LFSR is 
smaller (if k>>(n—k)) but may have to run for more clock 
pulses. The Fibonacci LFSR (for k>>(n—k)) is larger, but may 
have to run for a feWer number of clock pulses if the number 
of feedback taps is small. This is illustrated in FIG. 3 and FIG. 
4 for a (7,3) RS code Which is a Reed Solomon code of Which 
a codeWord is 7 symbols and of Which 3 symbols are infor 
mation symbols. 
HoW to create equivalent Galois and Fibonacci LFSR con 

?gurations has been demonstrated by the inventor in an inven 
tion described in US. Non-Provisional patent application Ser. 
No. 11/696,261 entitled: BINARY AND N-VALUED LFSR 
AND LFCSR BASED SCRAMBLERS, DESCRAM 
BLERS, SEQUENCE GENERATORS AND DETECTORS 
IN GALOIS CONFIGURATION ?led on Apr. 4, 2007 and 
Which is incorporated herein by reference in its entirety. 

FIG. 3 shoWs a structure that resembles an RS-coder in 
Galois con?guration. One skilled in the art Will recogniZe that 
this is not really an RS-coder as it does not comprise the 
sWitches required to alloW entering the data symbols on 301 
and then sWitching to a situation Where the content of the shift 
register elements are outputted on 302. HoWever it shoWs that 
symbols are provided on 301 and 302. What Will happen 
during coding is that initially the shift register content is all 0s. 
Then during k clock cycles the k data symbols Will be inputted 
on 301. Immediately after the ?rst clock cycle there can be a 
non-Zero element in the last element 304 of the shift register, 
creating feedback symbols on 303 through n-valued adder fp 
305. After k clock cycles no more data symbols Will be 
entered. Because in this con?guration the n-valued adder fp is 
used, one may also say that after k clock cycles only 0 sym 
bols are entered. This means that after k clock cycles the 
content of the shift register is only shifted and Will not change. 
One may say that in clock cycles after k clock cycles the 
remainder is shifted out of the shift register. 

The (7,3) con?guration in FIG. 3 shoWs the classical mul 
tiplier and adder functions fp. The adder fp is an 8-valued 
adder over GF(23) as provided in an article by Bernard Sklar, 
entitled Reed-Solomon Codes and available on-line at http:// 
WWW.informit.com/content/images/art_sklar7_reed-so 
lomon/elementLinks/artskla,7_reed-solomon.pdf. The multi 
pliers are also de?ned over GF(23). The truth table of fp and 
the multiplier are provided in the folloWing truth tables. A 
multiplier as shoWn in FIG. 3 at 307 (multiplier 4) is de?ned 
as the roW (using origin 0) in the multiplier truth table ‘mul’ 
e.i.: [04567123]. 

0 b 

fp 0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 
1 1 0 4 7 2 6 5 3 

a 2 2 4 0 5 1 3 7 6 
3 3 7 5 0 6 2 4 1 
4 4 2 1 6 0 7 3 5 
5 5 6 3 2 7 0 1 4 
6 6 5 7 4 3 1 0 2 
7 7 3 6 1 5 4 2 0 

c b 

rnul 0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

-continued 

0 b 

mul 0 1 2 3 4 5 6 7 

a 2 0 2 3 4 5 6 7 1 
3 0 3 4 5 6 7 1 2 
4 0 4 5 6 7 1 2 3 
5 0 5 6 7 1 2 3 4 
6 0 6 7 1 2 3 4 5 
7 0 7 1 2 3 4 5 6 

The same 8-valued adding function fp and multiplier ‘mul’ 
are used in the (7,3) RS-coder in the Fibonacci con?guration 
in FIG. 4 Which is identical to the code generator of FIG. 3. 
As Was shoWn by the inventor in an earlier invention as 

described in US. Non-Provisional patent application Ser. No. 
10/935,960, ?led Sep. 8, 2004 entitled: TERNARY AND 
MULTI-VALUE DIGITAL SIGNAL SCRAMBLERS, 
DESCRAMBLERS AND SEQUENCE GENERATORS, 
and Which is incorporated herein by reference in its entirety, 
it is possible to combine an n-valued logic function With 
n-valued multipliers or inverters into a single n-valued logic 
function. When the function and multipliers or inverters are 
reversible then the combined function is also reversible. 
Accordingly the Galois con?guration as shoWn in FIG. 3 can 
be replaced by the Galois con?guration as shoWn in FIG. 5 
and the Fibonacci con?guration as shoWn in FIG. 4 can be 
replaced by a Fibonacci con?guration as shoWn in FIG. 6. 
Error Correction by Symbol Reconstruction 
The folloWing Will describe error correction by symbol 

reconstruction. The principle thereof is straight forWard. One 
may assume that in this illustrative case 2 symbols in a code 
Word in a certain position are in error. For simplicity it is 
assumed that 2 adjacent symbols are in error. HoWever errors 
may occur in any order of course. If these particular symbols 
are in error in the illustrative example, then clearly one also 
may assume that the other symbols are not in error. Accord 
ingly one can calculate the supposedly “in error” symbols 
from the supposedly “error-free” symbols. A reconstructed 
codeWord then has at most 2 symbols in difference With the 
original codeWord. Based on the characteristics of the coding 
method one can not construct more than one valid codeWord 

that has only 2 or less symbols in difference With the original 
codeWord With errors. If it turns out that the original code 
Word had no errors then all symbols of the reconstructed and 
the original codeWord are in common. 

“Symbols in common” betWeen a calculated codeWord and 
an RS codeWord is intended to mean symbols in common in 
like or corresponding positions. For instance the codeWords 
[0 1 2 3 4 5] and [5 4 3 2 1 0] have 6 symbols in common, but 
have no symbols in corresponding positions in common. 

It is of course possible in the assumption that not the 
selected 2 symbols but 2 different code symbols Were in error. 
Based on the assumption and according to the characteristics 
of the code one Will then have created a codeWord on that 
assumption that has a difference of more than 2 symbols With 
the original codeWord and thus should be rejected as an incor 
rect solution. 

Accordingly one has to either create all possible errors, or 
only those errors that matter. For instance in a (7,3) code there 
are 3 information symbols that determine the 4 remainder 
symbols. Assuming that the errors occur in the remainder and 
not in the information symbol one can just take the three 
information symbols and recalculate the remainder. The 
neWly recalculated codeWord can then at maximum only have 
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a tWo symbol difference With the original codeword. If that is 
the case then the calculated codeWord is the error-free code 
Word. 

Because the functions as used in FIG. 5 and FIG. 6 can be 
reversed one can then apply the method of error correction by 
reconstructing of symbols. In a (7,3) RS-code there are 3 
information symbols and 4 overhead symbols. The properties 
of the RS-code are such that each 7 symbol Word in that code 
only has 2 symbols in common in like or corresponding 
positions With each other codeWord. 

In order to perform error correction a set of equations has to 
be solved. As shoWn in the earlier cited patent application Ser. 
No. 11/739,189 it is assumed for ease of formula manipula 
tion that potential errors that occur are adjacent to each other. 
That condition is not required for the method here provided as 
one aspect of the present invention to Work, hoWever it Will 
limit the number of formulas and makes the process easier to 
folloW for illustrative purposes. The assumption then is that 2 
errors Will have occurred in tWo adjacent symbols of the 7 
symbol codeWord and that 5 symbols are correct. Based on 
the assumed to be correct symbols one can calculate the 
assumed to be in error symbols. Accordingly one has then 
calculated an assumed to be correct 7 symbol codeWord. One 
then determines hoW many symbols in the calculated Word 
and in the “in error” codeWord in like positions are in com 
mon. If calculated and received overhead symbols (or remain 
der symbols) are identical, then no errors have occurred. If at 
least 5 symbols in the original (7,3) codeWord and the calcu 
lated (7,3) codeWord are in common in like positions, then the 
calculated codeWord is the correct codeWord and the 3 infor 
mation symbols in the calculated codeWord are the error free 
information symbols. 

First it is shoWn hoW the equation set is determined for the 
Galois con?guration. FIG. 7 shoWs hoW the intermediate 
results are determined in the LFSR. When the circuit starts the 
content of the shift register is all 0s. The circuit Will run and 
shift for three clock pulses. The input is [al a2 a3]. At the end 
of the 3 pulses the overhead symbols (fromback to front of the 
shift register) should be [b1 b2 b3 b4]. The total codeWord 
then is [al a2 a3 b1 b2 b3 b4]. FIG. 8 shoWs hoW [b1 b2 b3 b4] 
are the generated result. 

The folloWing equations are determined after entering a 
symbol at 501. First symbol a1 entered: 

[1:0 

[4:0, 

Wherein t1, t2, t3 and t4 are the outputs of the shift register 
elements. 

143 q1*in+0:4 >“a1 

After clock pulse: 

11 :inlqlal 
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13 :al 

141m 

Second symbol a2 entered: 

u3:4*in+l3:4* (4al+a2)+al 

After the clock pulse: 

l4:u3:(4*(4a1+a2)+a1) 

Third symbol a3 entered: 

The result [in1 u1 u2 u3] is the remainder achieved by the 
Galois con?guration. It should be noted that the ‘+’ function 
is provided by fp and the * or multiplication by ‘mul’. Due to 
the fact that addition With 0 does not affect the result and 
multiplication by 0 is 0 one can actually apply Galois arith 
metic to these equations. One can also combine addition With 
the multipliers and create single functions that are reversible. 
The same approach can be used for creating the equation 

set for the Fibonacci con?guration. In the Fibonacci con?gu 
ration as shoWn in FIG. 4 the shift register Will contain the 3 
data symbols as [s3 s2 s1]. The con?guration has to run for 4 
cycles to generate the 4 overhead symbols. This can be 
described by the folloWing equation set. Before ?rst pulse: 

b1:l+4*s1:5a1+3a2+4a3 

After a clock pulse: 
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After next clock pulse 

After next clock pulse 

10 
Second rule: The reverse of fp is the function itself. Or the 
function fp is self-reversing. Or again in the terms of arith 
metic of this GF(23): c:a+bQa:c—b or a:c+b:b+c. 
Third rule: Dividing by a factor 0t is identical to multiplying 
by a factor [3. In fact multiplying a variable x by a constant 0t 
in the GF(23) is identical to inverting the variable x:[0 l 2 3 
4 5 6 7] by the inverter representing the factor 0t. Assume that 
(P5. In the multiplier this means the roW representing (F5 in 
multiplier truth table ‘mul’; or the inverter [0 5 6 7 l 2 3 4]. 
Dividing by 5 in the GF(23) is multiplying by [3:51. In that 
case 0t*[3:5*5_l:l. Or in terms of inversion one may con 
clude that the inverter represent P:5_l in the GF(23) should 

S1 b3 reverse the inverter representing (F5. One can easily check 
SZIM that the reversing inverter is then [3:4 or [0 4 5 6 7 l 2 3]. The 

15 folloWing table shoWs the division table ‘div’ as the inverse to 
s3:bl ‘mul’ in the GF(23). 

z:5b1+3b2 

b4:5b1+3b2+4b3 20 c b 

It should be clear that once one knoWs What the information dlv 0 1 2 3 4 5 6 7 

symbols [a3 a2 al] are, one can calculate the overhead sym- 0 0 0 0 0 0 0 0 0 

bols [b4 b3 b2 bl] from the expressions, Without actually i 8 ; i g g i 2 2 
running an LFSR. If one so desires one can actually store the a 3 0 6 7 1 2 3 4 5 

relevant codeWords in a memory and use the information 25 4 0 5 6 7 1 2 3 4 

symbols for example as a memory address. This applies to 5 0 4 5 6 7 1 2 3 

actually all LFSR generated symbols or Words and not only to g 8 g g i 2 Z i i 
the (7,3) code Which is used as an illustrative example. It is 
assumed that sometimes LFSR generated symbols or Words 
are pseudo-random Which some may interpret as the Words 30 OK 1_l:1; 2_l:7; 3_l:6; 4_l:5; 5_l:4; 6_l:3; 7_l:2 
being undetermined until generated. HoWever it should be P0111111 111161 The fl) and 111111 functions are diSU‘ibuIiVeI or 
clear that LFSR generated symbols are deterministic. * i * * 
GalOiS Field Arithmetic ” (“cm W C 

In the earlier cited provisional patent application Ser. No. Fifth ?llet The funCIiOn fp iS aSSOCiaIiVBI Or 
1 1/739, 1 89 it Was shoWn that reversing functions can be used 35 
to reconstruct the symbols. This Will be repeated here again as a+(b+c):(a+b)+c 
one embodiment for RS-code reconstruction. However as Sixth rule: the functions fp and mul are commutative: or 
another embodiment one may also apply Galois Field Arith 
metic. To those skilled in the art it should be clear that opera- a+bIb+a and a?pma‘ 
tions such as replacing subtraction by addition and division 40 In the above + is set equivalent With fp and * With mul. 
by multiplication etc depend on the Galois Field and have to For convenience the folloWing relations are provided in the 
be determined accordingly. HoWever the principles are the GF(23). One can check these relations by applying the truth 
same for extended Galois Fields and can be extended to any tables: 

x+x=0 
x + 2x = 4x 

x+3x=7x 2x+3x=5x 
x+4x=2x 2x+4x=x 3x+4x=6x 
x+5x=6x 2x+5x=3x 3x+5x=2x 4x+5x=7x 
x+6x=5x 2x+6x=7x 3x+6x=4x 4x+6x=3x 5x+6x=x 
x+7x=3x 2x+7x=6x 3x+7x=x 4x+7x=5x 5x+7x=4x 6x+7x=2x 

GF(q) or GF(2'"). Some operations, such as an addition being One can make a similar table for multiplications. 
self reversing only applies in extended GFs. 55 
One approach is to solve the equations for the Galois con 

?guration. Another approach is to solve the equations for the 
Fibonacci con?guration. The results are identical. One can 2 * 2 = 3 

easily check this by running both coders and comparing the 2 * 3 = 4 3 * 3 = 5 
results. 60 2*4=5 3*4=6 4*4=7 

The folloWing Will provide rules for arithmetic in GF(23) 2 * 5 = 6 3 * 5 = 7 4 * 5 = 1 5 * 5 = 2 

using the de?nition of ‘fp’ for addition and ‘mul’ for multi- 2 * 6 = 7 3 * 6 =1 4 * 6 = 2 5 * 6 = 3 6 * 6 =4 

plication as shoWn in the respective truth tables. There are 2 * 7 =1 3 * 7 = 2 4 * 7 = 3 5 * 7 =4 6 * 7 = 5 7 * 7 = 6 

several rules that can be derived from the truth tables. 
First rule: For every x (Wherein x is a variable that can have 65 
one of 8 states) ‘x fp x:0’. Or fp(x,x):0. Or, to use the terms 
of +, * and +:x+x:0 in this GF(23). 

It is an advantage of addition functions over GF(q:2’") 
With m§2 that x+x:0 for any of the GF(q) ?elds. That makes 
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arithmetic over GF(q:2'") relatively easy, as addition is then 
a self-reversing function that is associative. 
An example according to one aspect of the present inven 

tion of reconstructing the symbols in an (7,3) RS-code With 
errors using error assumptions and applying the GF arith 
metic rules on the Fibonacci equation set Will be provided 
next. 

The simplest error-occurrence is When the tWo errors 

appear in [b4 b3 b2 bl] and [a3 a2 a1] has no errors. The error 
situations then can be: 

One can address this situation by calculating [b4 b3 b2 bl] 
from the equations. Comparing the calculated Word can pro 
vide the folloWing situations: 
1. 5 or more symbols betWeen the calculated and original 
Word are identical in identical positions. In that case the 
calculated Word is the correct Word and [a3 a2 al] are the 
correct information symbols 
2. less than 5 symbols are identical. In that case there are more 

than 2 errors (this violates the assumption of at most 2 errors) 
or the errors occurred in at least one different place than 
assumed. 

It is next assumed that the errors occur in bl and a3 or the 

codeWord is [b4 b3 b2 e1 e2 a2 a1]. Earlier the equation Was 
determined for calculating b4 in Fibonacci con?guration (not 
having errors) by b4:5b l +3b2+4b3. In this case bl is in error. 
One can then calculate bl from: 

One can exhaustively test the above expression. One 
example Wouldbe to use the 8-valued Word [al a2 a3]:[0 6 7] . 
One may use either the Galois con?guration of FIG. 3 With 
initial shift register or the Fibonacci con?guration of FIG. 4 
With initial shift register [a3 a2 al]:[7 6 0] to create the 
RS(7,3) codeWord [al a2 a3 bl b2 b3 b4]:[0 6 7 7 2 6 2]. 
Substituting the values of [b2 b3 b4] in the equation bl:4b4+ 
6b2+7b3 Will generate the calculated value bl:7. 
The next step (as a3 Was assumed also to be in error) is to 

calculate a3 from symbols in the RS(7,3) codeWord Which are 
assumed to be correct. For example one can use: b3:5a3+ 
3bl+4b2 to solve a3. HoWever one can only execute this 
expression afterbl Was calculated. If it is required to calculate 
bl and a3 in parallel one may use the earlier equation for 
calculation of bl. For the illustrative example it may be 
assumed that bl is ?rst calculated. This can then be folloWed 
by: 5 *a3:b3+4*b2+3 *bl (Working under + is fp and * is mul) 
and a3:5_l*b3+5_l*4*b2+5_l*3*bl:4*b3+4*4*b2+ 
4*3*bl:4b3+7b2+6bl. Using Galois arithmetic this Will 
generate a3:7. 

After calculating bl and a3 one then should compare the 
calculated codeWord With the original codeWord With errors. 
If in comparing the calculated and original codeWords have at 
least 5 symbols in like positions in common, the calculated 
codeWord is the correct codeWord and [al a2 a3] Wherein a3 
Was reconstructed is then the correct set of information sym 
bols. 
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12 
One may repeat this approach When a3 and a2 or a2 and al 

are in error. HoWever When one may assume that [bl b2 b3 b4] 
Was error free one can directly calculate [a3 a2 a1] using the 
reversed equations as shoWn before. 

It is also possible to use the methods according to one 
aspect of the present invention to correct non-adjacent errors. 
The correction of adjacent errors has been shoWn as an illus 
trative example of RS error correction according to one aspect 
of the present invention. Because errors are adjacent one can 
use equations Wherein just one of the assumed errors Will 
participate. Solving the problem is then just solving an equa 
tion With one variable. To shoW a Wider applicability of 
aspects of the present invention assume tWo errors that are 
separated by an error-free symbol, for instance assume the 
original codeWord [b4 b3 e2 bl el a2 a1] Wherein b2 and a3 
are assumed to be in error. 

Use the folloWing tWo earlier equations from the Fibonacci 
(7,3) coder to solve this problem: 

b2:5a2+3a3+4bl. 

One can reWrite the equations as: 

The problem of solving a3 and b2 can be done in the normal 
Way, adjusted for the rules for + and * in the present Galois 
Field. 
HoW to use the equations in matrix form in limited form for 

the illustrative example is shoWn in the folloWing tables. First 
one solves the equations for b2 by eliminating a3. One can do 
that by multiplying equation (rs-l) by 3 and (rs-2) by 5. One 
can achieve the same by multiplying (rs-2) With a factor [3 so 
that [3*3I5. This can be achieved With [3:3. This is shoWn in 
the folloWing table: 

a2 a3 bl b2 B3 * 

0 5 3 4 l l 
5 3 4 l 0 3 

0 5 3 4 l 
7 5 6 3 0 
7 0 4 6 l + 

a2 a3 bl b2 b3 * 

0 5 3 4 l 
7 5 6 3 0 
7 0 4 6 l + 
2 0 6 l 3 /6 = *3 

Accordingly b2:2a2+6bl+3b3:2*6+6*7+36:7+5+l:2. 
One has to execute a similar process to eliminate b2: 

a2 a3 bl b2 b3 * 

0 5 3 4 l l 
5 3 4 l 0 4 
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-continued 

a2 a3 bl b2 b3 * 

0 5 3 4 1 
1 6 7 4 0 
1 1 1 0 1 + 

It should be clear to those skilled in the art that one can use a 

matrix representing the equations for generating the (p,k) 
code for instance in Fibonacci form to solve equations for 
different error situations. Such a matrix method, as shoWn in 
the illustrative example also does not require for the errors to 
be adjacent. 
Reversing Functions Methods 

Galois Field methods as presented here in error correction 
methods as one aspect of the present invention rely upon 
certain aspects of Galois Field arithmetic and alloW to be 
manipulated in matrix format. HoWever this is a convenience 
factor that is not really required. The reason for that is that as 
demonstrated in earlier inventions by the inventor such as in 
earlier cited patent application Ser. No. 10/935,960 that a 
reversible n-valued tWo input/ single output logic function 
With reversible n-valued inverters at inputs and/ or at the out 
put can be combined into single n-valued reversible logic 
functions With no inverters. Accordingly the RS codeWord 
generators as shoWn in FIG. 3 and FIG. 4 are equivalent to the 
Galois and Fibonacci codeWord generators as shoWn in FIG. 
5 and FIG. 6. In FIG. 5 the Galois con?guration of replaces 
multipliers and adders fp of FIG. 3 by Galois con?guration 
reversible 8-valued functions fgl, fg2 and fg3. The function 
fp at the input of the coder remains and so does the multiplier 
m:4. In FIG. 6 the tWo functions fp and the three multipliers 
of FIG. 4 have been replaced by the tWo reversible 8-valued 
functions ffl and ff2. For illustrative purposes creating the 
reversible equations Will be limited to the Fibonacci con?gu 
ration of FIG. 6. It should be clear that the reversing can also 
be applied to the Galois con?guration of FIG. 5. 

The folloWing equations apply to the Fibonacci con?gura 
tion of FIG. 6 to generate the codeWord [b4 b3 b2 bl a3 a2 a1] 
When starting With content [a3 a2 al] in the shift register. 
t:a2 ff2 a1 
b 1 :a3 ffl t 
Next cycle: 
t:a3 ff2 a2 
b2:b1 ffl t 
Next cycle: 
t:b1 ff2 a3 
b3:b2 ffl t 
Next cycle: 
t:b2 ff2 bl 
b4:b3 ffl t 
The variable t provides an intermediary value for the next step 
in determining a neW output value. 

For example assume that an RS(7,3) codeWord [b4 b3 b2 
bl a3 a2 a1] has tWo adjacent errors so that symbols bl and a3 
are in error. The last equations can be applied to solve bl and 
assuming that symbols b4, b3 and b2 are correct. The folloW 
ing rules apply: ffl and ff2 are reversible, possibly they are 
not commutative. Further more in an equation a ff b, the 
function ff can be represented by a truth table Wherein ‘a’ 
indicates a roW in the truth table and ‘b’ represents a column. 
Accordingly if ‘c:a ff b’ then ‘b:a ffrc c’ and ‘a:c ffr b’. 
Herein ‘ffrc’ represents the reversing truth table of ‘ff’ over 
the columns and ‘ffrr’ represents the reversing truth table of 
‘?" over the roWs. 
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14 
With that ‘b4:b3 ffl t’ provides ‘t:b3 fflrc b4’.And ‘t:b2 

ff2 b1’ provides ‘b 1 :b2 ff2rc t’. Calculating t from ‘t:b3 ffl rc 
b4’ and substituting into ‘b1:b2 ff2rc t’ Will provide the value 
of b1 under the present assumptions. One can in a similar 
fashion determine the value of a3 and generate a calculated 
codeWord. One should then compare the calculated codeWord 
With the original codeWord. If the calculated and the original 
(7,3) codeWords have at least 5 symbols in like positions in 
common then the calculated codeWord is the correct code 
Word and the calculated a3 together With the original a2 and 
al are the correct information symbols. 
One can repeat the methods here provided With single 

reversible n-valued logic functions for any of the assumptions 
of symbols in [b4 b3 b2 b1 a3 a2 a1] being in error Within the 
constraints of a (7,3) Reed-Solomon code. While the initial 
effort appears to be different from using Galois arithmetic, it 
should be clear that both methods Will lead to identical 
results. The difference may be that the Galois expressions 
may be simpli?ed and may be comprised of feWer expres 
sions. HoWever in achieving the correct reconstruction there 
is no difference. 
7-Valued Examples 

For illustrative purposes the tWo methods: error correction 
in RS(p,k) by reconstructing symbols by Galois arithmetic 
and by reversing functions Will be applied to a 7-valued 
RS(6,2) code. The 7-valued RS(6,2) codeWord has 6 7-valued 
symbols of Which 2 are 7-valued information symbols. With 
this code one can correct up to tWo errors. 

The folloWing truth table shoWs the 7-valued function fp 
representing an addition in GF(7). 

fp 0 1 2 3 4 5 6 

0 0 1 2 3 4 5 6 
1 1 2 3 4 5 6 0 
2 2 3 4 5 6 0 1 
3 3 4 5 6 0 1 2 
4 4 5 6 0 1 2 3 
5 5 6 0 1 2 3 4 
6 6 0 1 2 3 4 5 

This function is created from the modulo-7 addition. 
The folloWing truth table shoWs the 7-valued function ‘mul’ 
representing a 7-valued multiplication in GF(7). 

mul 

The function ‘mul’ is created from the modulo-7 multiplica 
tion. The functions are distributive and associative. 
The folloWing truth table shoWs the 7-valued function ‘div’ 

representing a 7-valued division. 

d1v 0 l 2 3 4 5 6 

0 0 0 0 0 0 0 0 
l 0 l 2 3 4 5 6 
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-continued -continued 

div 0 1 2 3 4 5 6 mine 0 1 2 3 4 5 6 

2 0 4 1 5 2 6 3 2 5 6 0 1 2 3 4 
3 0 5 3 1 6 4 2 5 3 4 5 6 0 1 2 3 
4 0 2 4 6 1 3 5 4 3 4 5 6 0 1 2 
5 0 3 6 2 5 1 4 5 2 3 4 5 6 0 1 
6 0 6 5 4 3 2 1 6 1 2 3 4 5 6 0 

From the functions ‘mul ’ and ‘div’ one can see that dividing 
by a number is identical to multiplying by a number. For 
instance x/3:5 *x. or 3_1x:5*x. Further more multiplication 
and addition are commutative in GF(7). For illustrative pur 
poses the following tables of addition and multiplication in 
GF(7) are provided. 

One can make a similar table for multiplications in GF(7). 

The folloWing truth tables shoW the reversing functions for 
fp. It is clear that fp is not self reversing as in the 8-valued 
example. Accordingly the 7-valued function has tWo revers 
ing functions: one over the roWs and one over the columns of 
the truth table of fp. The expression c:a+b can be considered 
as a function With tWo inputs: ‘a’ and ‘b’. The variable ‘a’ 
represents the roW of the truth table and ‘b’ the columns. One 
can then Write c:fp(a,b). Because fp is commutative this 
Would generate the same result as fp(b,a). HoWever in dealing 
With the reversing function it is important to keep track of the 
order of ‘a’ and ‘b’. First the reversing function ‘minr’ Will be 
determined over roW ‘a’. In formula: When c:f(a,b) then 
a:minr(c,b). This generates the folloWing truth table: 

minr 0 1 2 3 4 5 6 

0 0 6 5 4 3 2 1 
1 1 0 6 5 4 3 2 
2 2 1 0 6 5 4 3 
3 3 2 1 0 6 5 4 
4 4 3 2 1 0 6 5 
5 5 4 3 2 1 0 6 
6 6 5 4 3 2 1 0 

The reversing function ‘minc’ of fp over the columns is 
determined by: When c fp)(a,b) then b:minc(a,c) With the 
truth table of ‘minc’: 

mine 0 l 2 3 4 5 6 

0 0 l 2 3 4 5 6 
l 6 0 l 2 3 4 5 
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The functions ‘minr’ and ‘minc’ (Which are subtractions) 
are not associative, but they are distributive for both ‘mul’ and 
‘div’. 

FIG. 9 shoWs the Fibonacci con?guration of the Reed 
Solomon or RS(p,k) code generator for 7-valued symbols. 
The RS coder is a RS(7,3) coder With 7 symbols of Which 3 
are the information symbols. A codeWord according to this 
RS(7,3) coder is generated by initiating the shift register With 
the 3 information symbols and generating 4 additional sym 
bols by the LFSR of FIG. 9. It should be clear that one may 
also create 7-valued RS codeWords generated by an Galois 
con?guration, of Which an illustrated example Will be pro 
vided next. 

Each codeWord thus generated Will have 7 7-valued sym 
bols. Each of the possible 7*7*7:343 codeWords has only 2 
symbols in common in like positions of any other codeWord. 
One Way to ?nd the correct con?guration is by running all 
possible values for the multipliers and check if the generated 
codeWords meet the requirement of having only 2 symbols in 
common. One con?guration that Will Work has the multipliers 
[l 2 6] as shoWn in FIG. 9. The requirement of 2 symbols is 
needed to enable the correction of up to 2 errors in a code 
Word. 
The folloWing equations apply for generating a codeWord 

[b4 b3 b2 bl a3 a2 a1] With the coder of FIG. 9 With initial 
content [a3 a2 al]. In the folloWing equations ‘fp’ is the same 
as ‘+’ and ‘mul’ is the same as 
Generate symbol bl: 

The notation fp(a3,t) may be more convenient for determin 
ing a reversing function. Generate symbol b2: 

b2:b1 +1 

Generate symbol b3: 

b3:b2+z 

Generate symbol b4: 

Using the arithmetic rules of GF(7) one can reconstruct the 
symbols in error applying pre-set assumptions and by con 
sidering all relevant assumptions. Because the code is an 
RS(7,3) code one can reconstruct 2 errors. For instance 
assume that ‘bl’ and ‘a3’ as adjacent symbols are in error. 
This means that it is assumed that ‘b4’, ‘b3’, ‘b2’, ‘a2’ and 
‘al’ are not in error. There are different Ways to solve this 
problem. As an illustrative example the folloWing steps are 
used: 
















